Calling a function on assignment in JavaScript - javascript

I'm pretty sure this is impossible but maybe someone clever out there knows if there is a chance of making this work. Is it possible to have code where:
1 myPerson = new Person();
2 myPerson.name = 'Charles Xavier';
Where the code on line #2 automatically checks if myPerson.setName exists and if so calls
myPerson.setName('Charles Xavier');
in place of of doing the direct assignment.

Nope, sorry! It is possible in ES6, though:
var o = {};
Object.defineProperty(o, "name", {
set: function (value) {
console.log("Property 'name' set to: " + value);
// store 'value' somewhere
}
});
c.f. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
related: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create
Since this is not possible in < ES6, frameworks like AngularJS use dirty-checking (aka they check the value X times per second) to watch for property changes.

Not for all browser, but there's javascript proxy which is only work on firefox, and make this become useless. :D
var Validator = {
set: function(obj, prop, value){
if(prop == 'name' && setName in obj)
obj.setName(value);
obj[prop] = value;
}
}
var myPerson = new Proxy(Person, Validator);
myPerson.name = 'Charles Xavier'; // This will call Validator.set

Related

What is difference between two functions in class returning the same value [duplicate]

I've been trying to get my head around getters and setters and its not sinking in. I've read JavaScript Getters and Setters and Defining Getters and Setters and just not getting it.
Can someone clearly state:
What a getter and setter are meant to do, and
Give some VERY simple examples?
In addition to #millimoose's answer, setters can also be used to update other values.
function Name(first, last) {
this.first = first;
this.last = last;
}
Name.prototype = {
get fullName() {
return this.first + " " + this.last;
},
set fullName(name) {
var names = name.split(" ");
this.first = names[0];
this.last = names[1];
}
};
Now, you can set fullName, and first and last will be updated and vice versa.
n = new Name('Claude', 'Monet')
n.first # "Claude"
n.last # "Monet"
n.fullName # "Claude Monet"
n.fullName = "Gustav Klimt"
n.first # "Gustav"
n.last # "Klimt"
Getters and Setters in JavaScript
Overview
Getters and setters in JavaScript are used for defining computed properties, or accessors. A computed property is one that uses a function to get or set an object value. The basic theory is doing something like this:
var user = { /* ... object with getters and setters ... */ };
user.phone = '+1 (123) 456-7890'; // updates a database
console.log( user.areaCode ); // displays '123'
console.log( user.area ); // displays 'Anytown, USA'
This is useful for automatically doing things behind-the-scenes when a property is accessed, like keeping numbers in range, reformatting strings, triggering value-has-changed events, updating relational data, providing access to private properties, and more.
The examples below show the basic syntax, though they simply get and set the internal object value without doing anything special. In real-world cases you would modify the input and/or output value to suit your needs, as noted above.
get/set Keywords
ECMAScript 5 supports get and set keywords for defining computed properties. They work with all modern browsers except IE 8 and below.
var foo = {
bar : 123,
get bar(){ return bar; },
set bar( value ){ this.bar = value; }
};
foo.bar = 456;
var gaz = foo.bar;
Custom Getters and Setters
get and set aren't reserved words, so they can be overloaded to create your own custom, cross-browser computed property functions. This will work in any browser.
var foo = {
_bar : 123,
get : function( name ){ return this[ '_' + name ]; },
set : function( name, value ){ this[ '_' + name ] = value; }
};
foo.set( 'bar', 456 );
var gaz = foo.get( 'bar' );
Or for a more compact approach, a single function may be used.
var foo = {
_bar : 123,
value : function( name /*, value */ ){
if( arguments.length < 2 ){ return this[ '_' + name ]; }
this[ '_' + name ] = value;
}
};
foo.value( 'bar', 456 );
var gaz = foo.value( 'bar' );
Avoid doing something like this, which can lead to code bloat.
var foo = {
_a : 123, _b : 456, _c : 789,
getA : function(){ return this._a; },
getB : ..., getC : ..., setA : ..., setB : ..., setC : ...
};
For the above examples, the internal property names are abstracted with an underscore in order to discourage users from simply doing foo.bar vs. foo.get( 'bar' ) and getting an "uncooked" value. You can use conditional code to do different things depending on the name of the property being accessed (via the name parameter).
Object.defineProperty()
Using Object.defineProperty() is another way to add getters and setters, and can be used on objects after they're defined. It can also be used to set configurable and enumerable behaviors. This syntax also works with IE 8, but unfortunately only on DOM objects.
var foo = { _bar : 123 };
Object.defineProperty( foo, 'bar', {
get : function(){ return this._bar; },
set : function( value ){ this._bar = value; }
} );
foo.bar = 456;
var gaz = foo.bar;
__defineGetter__()
Finally, __defineGetter__() is another option. It's deprecated, but still widely used around the web and thus unlikely to disappear anytime soon. It works on all browsers except IE 10 and below. Though the other options also work well on non-IE, so this one isn't that useful.
var foo = { _bar : 123; }
foo.__defineGetter__( 'bar', function(){ return this._bar; } );
foo.__defineSetter__( 'bar', function( value ){ this._bar = value; } );
Also worth noting is that in the latter examples, the internal names must be different than the accessor names to avoid recursion (ie, foo.bar calling foo.get(bar) calling foo.bar calling foo.get(bar)...).
See Also
MDN get, set,
Object.defineProperty(), __defineGetter__(), __defineSetter__()
MSDN
IE8 Getter Support
You'd use them for instance to implement computed properties.
For example:
function Circle(radius) {
this.radius = radius;
}
Object.defineProperty(Circle.prototype, 'circumference', {
get: function() { return 2*Math.PI*this.radius; }
});
Object.defineProperty(Circle.prototype, 'area', {
get: function() { return Math.PI*this.radius*this.radius; }
});
c = new Circle(10);
console.log(c.area); // Should output 314.159
console.log(c.circumference); // Should output 62.832
(CodePen)
Sorry to resurrect an old question, but I thought I might contribute a couple of very basic examples and for-dummies explanations. None of the other answers posted thusfar illustrate syntax like the MDN guide's first example, which is about as basic as one can get.
Getter:
var settings = {
firstname: 'John',
lastname: 'Smith',
get fullname() { return this.firstname + ' ' + this.lastname; }
};
console.log(settings.fullname);
... will log John Smith, of course. A getter behaves like a variable object property, but offers the flexibility of a function to calculate its returned value on the fly. It's basically a fancy way to create a function that doesn't require () when calling.
Setter:
var address = {
set raw(what) {
var loc = what.split(/\s*;\s*/),
area = loc[1].split(/,?\s+(\w{2})\s+(?=\d{5})/);
this.street = loc[0];
this.city = area[0];
this.state = area[1];
this.zip = area[2];
}
};
address.raw = '123 Lexington Ave; New York NY 10001';
console.log(address.city);
... will log New York to the console. Like getters, setters are called with the same syntax as setting an object property's value, but are yet another fancy way to call a function without ().
See this jsfiddle for a more thorough, perhaps more practical example. Passing values into the object's setter triggers the creation or population of other object items. Specifically, in the jsfiddle example, passing an array of numbers prompts the setter to calculate mean, median, mode, and range; then sets object properties for each result.
Getters and setters really only make sense when you have private properties of classes. Since Javascript doesn't really have private class properties as you would normally think of from Object Oriented Languages, it can be hard to understand. Here is one example of a private counter object. The nice thing about this object is that the internal variable "count" cannot be accessed from outside the object.
var counter = function() {
var count = 0;
this.inc = function() {
count++;
};
this.getCount = function() {
return count;
};
};
var i = new Counter();
i.inc();
i.inc();
// writes "2" to the document
document.write( i.getCount());
If you are still confused, take a look at Crockford's article on Private Members in Javascript.
I think the first article you link to states it pretty clearly:
The obvious advantage to writing JavaScript in this manner is that you can use it obscure values that you don't want the user to directly access.
The goal here is to encapsulate and abstract away the fields by only allowing access to them thru a get() or set() method. This way, you can store the field/data internally in whichever way you want, but outside components are only away of your published interface. This allows you to make internal changes without changing external interfaces, to do some validation or error-checking within the set() method, etc.
Although often we are used to seeing objects with public properties without any access
control, JavaScript allows us to accurately describe properties. In fact, we can use
descriptors in order to control how a property can be accessed and which logic we can
apply to it. Consider the following example:
var employee = {
first: "Boris",
last: "Sergeev",
get fullName() {
return this.first + " " + this.last;
},
set fullName(value) {
var parts = value.toString().split(" ");
this.first = parts[0] || "";
this.last = parts[1] || "";
},
email: "boris.sergeev#example.com"
};
The final result:
console.log(employee.fullName); //Boris Sergeev
employee.fullName = "Alex Makarenko";
console.log(employee.first);//Alex
console.log(employee.last);//Makarenko
console.log(employee.fullName);//Alex Makarenko
You can define instance method for js class, via prototype of the constructor.
Following is the sample code:
// BaseClass
var BaseClass = function(name) {
// instance property
this.name = name;
};
// instance method
BaseClass.prototype.getName = function() {
return this.name;
};
BaseClass.prototype.setName = function(name) {
return this.name = name;
};
// test - start
function test() {
var b1 = new BaseClass("b1");
var b2 = new BaseClass("b2");
console.log(b1.getName());
console.log(b2.getName());
b1.setName("b1_new");
console.log(b1.getName());
console.log(b2.getName());
}
test();
// test - end
And, this should work for any browser, you can also simply use nodejs to run this code.
If you're referring to the concept of accessors, then the simple goal is to hide the underlying storage from arbitrary manipulation. The most extreme mechanism for this is
function Foo(someValue) {
this.getValue = function() { return someValue; }
return this;
}
var myFoo = new Foo(5);
/* We can read someValue through getValue(), but there is no mechanism
* to modify it -- hurrah, we have achieved encapsulation!
*/
myFoo.getValue();
If you're referring to the actual JS getter/setter feature, eg. defineGetter/defineSetter, or { get Foo() { /* code */ } }, then it's worth noting that in most modern engines subsequent usage of those properties will be much much slower than it would otherwise be. eg. compare performance of
var a = { getValue: function(){ return 5; }; }
for (var i = 0; i < 100000; i++)
a.getValue();
vs.
var a = { get value(){ return 5; }; }
for (var i = 0; i < 100000; i++)
a.value;
What's so confusing about it... getters are functions that are called when you get a property, setters, when you set it.
example, if you do
obj.prop = "abc";
You're setting the property prop, if you're using getters/setters, then the setter function will be called, with "abc" as an argument.
The setter function definition inside the object would ideally look something like this:
set prop(var) {
// do stuff with var...
}
I'm not sure how well that is implemented across browsers. It seems Firefox also has an alternative syntax, with double-underscored special ("magic") methods. As usual Internet Explorer does not support any of this.
I was also somewhat confused by the explanation I read, because I was trying to add a property to an existing prototype that I did not write, so replacing the prototype seemed like the wrong approach. So, for posterity, here's how I added a last property to Array:
Object.defineProperty(Array.prototype, "last", {
get: function() { return this[this.length - 1] }
});
Ever so slightly nicer than adding a function IMHO.
You can also use __defineGetter__:
function Vector2(x,y) {
this.x = x;
this.y = y;
}
Vector2.prototype.__defineGetter__("magnitude", function () {
return Math.sqrt(this.x*this.x+this.y*this.y);
});
console.log(new Vector2(1,1).magnitude)
Or, if you prefer:
function Vector2(x,y) {
this.x = x;
this.y = y;
this.__defineGetter__("magnitude", function () {
return Math.sqrt(this.x*this.x+this.y*this.y);
});
}
console.log(new Vector2(1,1).magnitude)
But this function has been flagged as "legacy" recently, being dropped in favor of Object.defineProperty().
There's no example here with ES6 class (which is not even 'new' now, it's the norm):
class Student {
contructor(firstName, lastName){
this.firstName = firstName
this.lastName = lastName
this.secretId = Math.random()
}
get fullName() {
return `${this.firstName} ${this.lastName}`; // this is backtick in js, u can check it out here: https://stackoverflow.com/a/27678299/12056841
}
set firstName(newFirstName) {
// validate that newFirstName is a string (and maybe limit length)
this.firstName = newFirstName
}
get studentId() { return this.secretId }
}
and no setter for secretId because we don't want anyone to change it.
** if secretId shouldn't be changed at all, a nice approach is to declare it as 'private' to this class by adding a '#' to it
(e.g: this.#secretId = Math.random(), and return this.#secretId
Update: about backing fields
You might need to rename your field - or your setter function but it makes more sense to me to change your field name. One option is like I mentioned above (using a # for declaring the field as 'private'). Another way is to just rename it (_firstName, firstName_...)
I've got one for you guys that might be a little ugly, but it does get'er done across platforms
function myFunc () {
var _myAttribute = "default";
this.myAttribute = function() {
if (arguments.length > 0) _myAttribute = arguments[0];
return _myAttribute;
}
}
this way, when you call
var test = new myFunc();
test.myAttribute(); //-> "default"
test.myAttribute("ok"); //-> "ok"
test.myAttribute(); //-> "ok"
If you really want to spice things up.. you can insert a typeof check:
if (arguments.length > 0 && typeof arguments[0] == "boolean") _myAttribute = arguments[0];
if (arguments.length > 0 && typeof arguments[0] == "number") _myAttribute = arguments[0];
if (arguments.length > 0 && typeof arguments[0] == "string") _myAttribute = arguments[0];
or go even crazier with the advanced typeof check: type.of() code at codingforums.com

Unfamiliar syntax for JavaScript object key [duplicate]

I've been trying to get my head around getters and setters and its not sinking in. I've read JavaScript Getters and Setters and Defining Getters and Setters and just not getting it.
Can someone clearly state:
What a getter and setter are meant to do, and
Give some VERY simple examples?
In addition to #millimoose's answer, setters can also be used to update other values.
function Name(first, last) {
this.first = first;
this.last = last;
}
Name.prototype = {
get fullName() {
return this.first + " " + this.last;
},
set fullName(name) {
var names = name.split(" ");
this.first = names[0];
this.last = names[1];
}
};
Now, you can set fullName, and first and last will be updated and vice versa.
n = new Name('Claude', 'Monet')
n.first # "Claude"
n.last # "Monet"
n.fullName # "Claude Monet"
n.fullName = "Gustav Klimt"
n.first # "Gustav"
n.last # "Klimt"
Getters and Setters in JavaScript
Overview
Getters and setters in JavaScript are used for defining computed properties, or accessors. A computed property is one that uses a function to get or set an object value. The basic theory is doing something like this:
var user = { /* ... object with getters and setters ... */ };
user.phone = '+1 (123) 456-7890'; // updates a database
console.log( user.areaCode ); // displays '123'
console.log( user.area ); // displays 'Anytown, USA'
This is useful for automatically doing things behind-the-scenes when a property is accessed, like keeping numbers in range, reformatting strings, triggering value-has-changed events, updating relational data, providing access to private properties, and more.
The examples below show the basic syntax, though they simply get and set the internal object value without doing anything special. In real-world cases you would modify the input and/or output value to suit your needs, as noted above.
get/set Keywords
ECMAScript 5 supports get and set keywords for defining computed properties. They work with all modern browsers except IE 8 and below.
var foo = {
bar : 123,
get bar(){ return bar; },
set bar( value ){ this.bar = value; }
};
foo.bar = 456;
var gaz = foo.bar;
Custom Getters and Setters
get and set aren't reserved words, so they can be overloaded to create your own custom, cross-browser computed property functions. This will work in any browser.
var foo = {
_bar : 123,
get : function( name ){ return this[ '_' + name ]; },
set : function( name, value ){ this[ '_' + name ] = value; }
};
foo.set( 'bar', 456 );
var gaz = foo.get( 'bar' );
Or for a more compact approach, a single function may be used.
var foo = {
_bar : 123,
value : function( name /*, value */ ){
if( arguments.length < 2 ){ return this[ '_' + name ]; }
this[ '_' + name ] = value;
}
};
foo.value( 'bar', 456 );
var gaz = foo.value( 'bar' );
Avoid doing something like this, which can lead to code bloat.
var foo = {
_a : 123, _b : 456, _c : 789,
getA : function(){ return this._a; },
getB : ..., getC : ..., setA : ..., setB : ..., setC : ...
};
For the above examples, the internal property names are abstracted with an underscore in order to discourage users from simply doing foo.bar vs. foo.get( 'bar' ) and getting an "uncooked" value. You can use conditional code to do different things depending on the name of the property being accessed (via the name parameter).
Object.defineProperty()
Using Object.defineProperty() is another way to add getters and setters, and can be used on objects after they're defined. It can also be used to set configurable and enumerable behaviors. This syntax also works with IE 8, but unfortunately only on DOM objects.
var foo = { _bar : 123 };
Object.defineProperty( foo, 'bar', {
get : function(){ return this._bar; },
set : function( value ){ this._bar = value; }
} );
foo.bar = 456;
var gaz = foo.bar;
__defineGetter__()
Finally, __defineGetter__() is another option. It's deprecated, but still widely used around the web and thus unlikely to disappear anytime soon. It works on all browsers except IE 10 and below. Though the other options also work well on non-IE, so this one isn't that useful.
var foo = { _bar : 123; }
foo.__defineGetter__( 'bar', function(){ return this._bar; } );
foo.__defineSetter__( 'bar', function( value ){ this._bar = value; } );
Also worth noting is that in the latter examples, the internal names must be different than the accessor names to avoid recursion (ie, foo.bar calling foo.get(bar) calling foo.bar calling foo.get(bar)...).
See Also
MDN get, set,
Object.defineProperty(), __defineGetter__(), __defineSetter__()
MSDN
IE8 Getter Support
You'd use them for instance to implement computed properties.
For example:
function Circle(radius) {
this.radius = radius;
}
Object.defineProperty(Circle.prototype, 'circumference', {
get: function() { return 2*Math.PI*this.radius; }
});
Object.defineProperty(Circle.prototype, 'area', {
get: function() { return Math.PI*this.radius*this.radius; }
});
c = new Circle(10);
console.log(c.area); // Should output 314.159
console.log(c.circumference); // Should output 62.832
(CodePen)
Sorry to resurrect an old question, but I thought I might contribute a couple of very basic examples and for-dummies explanations. None of the other answers posted thusfar illustrate syntax like the MDN guide's first example, which is about as basic as one can get.
Getter:
var settings = {
firstname: 'John',
lastname: 'Smith',
get fullname() { return this.firstname + ' ' + this.lastname; }
};
console.log(settings.fullname);
... will log John Smith, of course. A getter behaves like a variable object property, but offers the flexibility of a function to calculate its returned value on the fly. It's basically a fancy way to create a function that doesn't require () when calling.
Setter:
var address = {
set raw(what) {
var loc = what.split(/\s*;\s*/),
area = loc[1].split(/,?\s+(\w{2})\s+(?=\d{5})/);
this.street = loc[0];
this.city = area[0];
this.state = area[1];
this.zip = area[2];
}
};
address.raw = '123 Lexington Ave; New York NY 10001';
console.log(address.city);
... will log New York to the console. Like getters, setters are called with the same syntax as setting an object property's value, but are yet another fancy way to call a function without ().
See this jsfiddle for a more thorough, perhaps more practical example. Passing values into the object's setter triggers the creation or population of other object items. Specifically, in the jsfiddle example, passing an array of numbers prompts the setter to calculate mean, median, mode, and range; then sets object properties for each result.
Getters and setters really only make sense when you have private properties of classes. Since Javascript doesn't really have private class properties as you would normally think of from Object Oriented Languages, it can be hard to understand. Here is one example of a private counter object. The nice thing about this object is that the internal variable "count" cannot be accessed from outside the object.
var counter = function() {
var count = 0;
this.inc = function() {
count++;
};
this.getCount = function() {
return count;
};
};
var i = new Counter();
i.inc();
i.inc();
// writes "2" to the document
document.write( i.getCount());
If you are still confused, take a look at Crockford's article on Private Members in Javascript.
I think the first article you link to states it pretty clearly:
The obvious advantage to writing JavaScript in this manner is that you can use it obscure values that you don't want the user to directly access.
The goal here is to encapsulate and abstract away the fields by only allowing access to them thru a get() or set() method. This way, you can store the field/data internally in whichever way you want, but outside components are only away of your published interface. This allows you to make internal changes without changing external interfaces, to do some validation or error-checking within the set() method, etc.
Although often we are used to seeing objects with public properties without any access
control, JavaScript allows us to accurately describe properties. In fact, we can use
descriptors in order to control how a property can be accessed and which logic we can
apply to it. Consider the following example:
var employee = {
first: "Boris",
last: "Sergeev",
get fullName() {
return this.first + " " + this.last;
},
set fullName(value) {
var parts = value.toString().split(" ");
this.first = parts[0] || "";
this.last = parts[1] || "";
},
email: "boris.sergeev#example.com"
};
The final result:
console.log(employee.fullName); //Boris Sergeev
employee.fullName = "Alex Makarenko";
console.log(employee.first);//Alex
console.log(employee.last);//Makarenko
console.log(employee.fullName);//Alex Makarenko
You can define instance method for js class, via prototype of the constructor.
Following is the sample code:
// BaseClass
var BaseClass = function(name) {
// instance property
this.name = name;
};
// instance method
BaseClass.prototype.getName = function() {
return this.name;
};
BaseClass.prototype.setName = function(name) {
return this.name = name;
};
// test - start
function test() {
var b1 = new BaseClass("b1");
var b2 = new BaseClass("b2");
console.log(b1.getName());
console.log(b2.getName());
b1.setName("b1_new");
console.log(b1.getName());
console.log(b2.getName());
}
test();
// test - end
And, this should work for any browser, you can also simply use nodejs to run this code.
If you're referring to the concept of accessors, then the simple goal is to hide the underlying storage from arbitrary manipulation. The most extreme mechanism for this is
function Foo(someValue) {
this.getValue = function() { return someValue; }
return this;
}
var myFoo = new Foo(5);
/* We can read someValue through getValue(), but there is no mechanism
* to modify it -- hurrah, we have achieved encapsulation!
*/
myFoo.getValue();
If you're referring to the actual JS getter/setter feature, eg. defineGetter/defineSetter, or { get Foo() { /* code */ } }, then it's worth noting that in most modern engines subsequent usage of those properties will be much much slower than it would otherwise be. eg. compare performance of
var a = { getValue: function(){ return 5; }; }
for (var i = 0; i < 100000; i++)
a.getValue();
vs.
var a = { get value(){ return 5; }; }
for (var i = 0; i < 100000; i++)
a.value;
What's so confusing about it... getters are functions that are called when you get a property, setters, when you set it.
example, if you do
obj.prop = "abc";
You're setting the property prop, if you're using getters/setters, then the setter function will be called, with "abc" as an argument.
The setter function definition inside the object would ideally look something like this:
set prop(var) {
// do stuff with var...
}
I'm not sure how well that is implemented across browsers. It seems Firefox also has an alternative syntax, with double-underscored special ("magic") methods. As usual Internet Explorer does not support any of this.
I was also somewhat confused by the explanation I read, because I was trying to add a property to an existing prototype that I did not write, so replacing the prototype seemed like the wrong approach. So, for posterity, here's how I added a last property to Array:
Object.defineProperty(Array.prototype, "last", {
get: function() { return this[this.length - 1] }
});
Ever so slightly nicer than adding a function IMHO.
You can also use __defineGetter__:
function Vector2(x,y) {
this.x = x;
this.y = y;
}
Vector2.prototype.__defineGetter__("magnitude", function () {
return Math.sqrt(this.x*this.x+this.y*this.y);
});
console.log(new Vector2(1,1).magnitude)
Or, if you prefer:
function Vector2(x,y) {
this.x = x;
this.y = y;
this.__defineGetter__("magnitude", function () {
return Math.sqrt(this.x*this.x+this.y*this.y);
});
}
console.log(new Vector2(1,1).magnitude)
But this function has been flagged as "legacy" recently, being dropped in favor of Object.defineProperty().
There's no example here with ES6 class (which is not even 'new' now, it's the norm):
class Student {
contructor(firstName, lastName){
this.firstName = firstName
this.lastName = lastName
this.secretId = Math.random()
}
get fullName() {
return `${this.firstName} ${this.lastName}`; // this is backtick in js, u can check it out here: https://stackoverflow.com/a/27678299/12056841
}
set firstName(newFirstName) {
// validate that newFirstName is a string (and maybe limit length)
this.firstName = newFirstName
}
get studentId() { return this.secretId }
}
and no setter for secretId because we don't want anyone to change it.
** if secretId shouldn't be changed at all, a nice approach is to declare it as 'private' to this class by adding a '#' to it
(e.g: this.#secretId = Math.random(), and return this.#secretId
Update: about backing fields
You might need to rename your field - or your setter function but it makes more sense to me to change your field name. One option is like I mentioned above (using a # for declaring the field as 'private'). Another way is to just rename it (_firstName, firstName_...)
I've got one for you guys that might be a little ugly, but it does get'er done across platforms
function myFunc () {
var _myAttribute = "default";
this.myAttribute = function() {
if (arguments.length > 0) _myAttribute = arguments[0];
return _myAttribute;
}
}
this way, when you call
var test = new myFunc();
test.myAttribute(); //-> "default"
test.myAttribute("ok"); //-> "ok"
test.myAttribute(); //-> "ok"
If you really want to spice things up.. you can insert a typeof check:
if (arguments.length > 0 && typeof arguments[0] == "boolean") _myAttribute = arguments[0];
if (arguments.length > 0 && typeof arguments[0] == "number") _myAttribute = arguments[0];
if (arguments.length > 0 && typeof arguments[0] == "string") _myAttribute = arguments[0];
or go even crazier with the advanced typeof check: type.of() code at codingforums.com

Validate/Preprocess property before assigning it to object in JavaScript

What is the best-practice to validate and/or preprocess a property before assigning it to an object in JavaScript?
The application for that would be to create an object and to guarantee that a specific property of it will always have a specific type or maybe do some preprocessing with it.
For example, if I create an object:
var obj = {
settings: {}
};
Then when I do something like:
obj.settings = "{foo: bar}";
It would automatically check the type of the assignment - if it is a string, it will try to parse it to an object; if it's an object, it will just assign it; else it will throw an error. This would protect the object's property against being assigned to "anything".
Also, does this make sense at all to do in JavaScript or am I just trying to have strong typed features in a language that is weak typed?
You can do this with Object.defineProperty:
var obj = {}
Object.defineProperty(obj, 'settings', {
set: function (x) {
if (typeof x === 'string') {
this._settings = JSON.parse(x)
} else {
this._settings = x
}
},
get: function () {
return this._settings
}
})
obj.settings = {foo: 'bar'}
console.log(obj.settings)
obj.settings = '{foo: "baz"}'
console.log(obj.settings)
However, if this is desirable depends on your specific use case. I frankly never used it so far. My recommendation is: don't get fancy :)
IMHO this is not strong typing, but the opposite as you are more dynamic. If you want strong typing you could try flow or TypeScript
A simple solution could be to use a getter/setter like below that gets triggered if a value is assigned to a property and how to process it :
let obj = {}
Object.defineProperty(obj, "settings", {
set: function (value) { // preprocess
this._value = value;
},
get: function () {
return "changed";
}
});
You could do this afterward:
obj.settings = "{foo: bar}";
Let me know if this makes any sense.
Reference:
MDN Reference: Object.defineProperty()

Is there some way to add meta-data to JavaScript objects?

I would like to add key-value pairs of metadata to arbitrary JavaScript objects. This metadata should not affect code that is not aware of the metadata, that means for example
JSON.stringify(obj) === JSON.stringify(obj.WithMetaData('key', 'value'))
MetaData aware code should be able to retrieve the data by key, i.e.
obj.WithMetaData('key', 'value').GetMetaData('key') === 'value'
Is there any way to do it - in node.js? If so, does it work with builtin types such as String and even Number? (Edit Thinking about it, I don't care about real primitives like numbers, but having that for string instances would be nice).
Some Background: What I'm trying to do is cache values that are derived from an object with the object itself, so that
to meta data unaware code, the meta data enriched object will look the same as the original object w/o meta
code that needs the derived values can get it out of the meta-data if already cached
the cache will get garbage collected alongside the object
Another way would be to store a hash table with the caches somewhere, but you'd never know when the object gets garbage collected. Every object instance would have to be taken care of manually, so that the caches don't leak.
(btw clojure has this feature: http://clojure.org/metadata)
You can use ECMA5's new object properties API to store properties on objects that will not show up in enumeration but are nonetheless retrievable.
var myObj = {};
myObj.real_property = 'hello';
Object.defineProperty(myObj, 'meta_property', {value: 'some meta value'});
for (var i in myObj)
alert(i+' = '+myObj[i]); //only one property - #real_property
alert(myObj.meta_property); //"some meta value"
More information here: link
However you're not going to be able to do this on primitive types such as strings or numbers, only on complex types.
[EDIT]
Another approach might be to utilise a data type's prototype to store meta. (Warning, hack ahead). So for strings:
String.prototype.meta = {};
String.prototype.addMeta = function(name, val) { this.meta[name] = val; }
String.prototype.getMeta = function(name) { return this.meta[name]; };
var str = 'some string value';
str.addMeta('meta', 'val');
alert(str.getMeta('meta'));
However this is clearly not ideal. For one thing, if the string was collected or aliased (since simple data types are copied by value, not reference) you would lose this meta. Only the first approach has any mileage in a real-world environment, to be honest.
ES6 spec introduces Map and WeakMap. You can enable these in node by running node --harmony and by enabling the experimental javascript flag in Chrome, (it's also in Firefox by default). Maps and WeakMaps allow objects to be used as keys which can be be used to store metadata about objects that isn't visible to anyone without access to the specific map/weakmap. This is a pattern I now use a lot:
function createStorage(creator){
creator = creator || Object.create.bind(null, null, {});
var map = new Map;
return function storage(o, v){
if (1 in arguments) {
map.set(o, v);
} else {
v = map.get(o);
if (v == null) {
v = creator(o);
map.set(o, v);
}
}
return v;
};
}
Use is simple and powerful:
var _ = createStorage();
_(someObject).meta= 'secret';
_(5).meta = [5];
var five = new Number(5);
_(five).meta = 'five';
console.log(_(someObject).name);
console.log(_(5).meta);
console.log(_(five).meta);
It also facilitates some interesting uses for separating implementation from interface:
var _ = createStorage(function(o){ return new Backing(o) });
function Backing(o){
this.facade = o;
}
Backing.prototype.doesStuff = function(){
return 'real value';
}
function Facade(){
_(this);
}
Facade.prototype.doSomething = function doSomething(){
return _(this).doesStuff();
}
There is no "comment" system in JSON. The best you can hope for is to add a property with an unlikely name, and add that key contaning the metadata. You can then read the metadata back out if you know it's metadata, but other setups will just see it as another property. And if someone uses for..in...
You could just add the Metadata as a "private" variable!?
var Obj = function (meta) {
var meta = meta;
this.getMetaData = function (key) {
//do something with the meta object
return meta;
};
};
var ins_ob = new Obj({meta:'meta'});
var ins_ob2 = new Obj();
if(JSON.stringify(ins_ob) === JSON.stringify(ins_ob2)) {
console.log('hoorai');
};
If you want object-level metadata, you could create a class that extends Object. Getters and setters are not enumerable and, obviously, neither are private fields.
class MetadataObject extends Object {
#metadata = undefined;
get metadata() { return this.#metadata; }
set metadata(value) { this.#metadata; }
}
var obj = new MetadataObject();
obj.a = 1;
obj.b = 2;
obj.metadata = { test: 123 };
console.log(obj); // { a: 1, b: 2 }
console.log(obj.metadata); // { test: 123 }
console.log(JSON.stringify(obj)); // '{"a":1,"b":2}'
You can even simplify the implementation using a Map. Without a setter on metadata, you have to use Map methods to modify it.
class MetadataObject extends Object {
#metadata = new Map();
get metadata() { return this.#metadata; }
}
var obj = new MetadataObject();
obj.a = 1;
obj.b = 2;
obj.metadata.set('test', 123);
console.log(obj); // { a: 1, b: 2 }
console.log(obj.metadata.get('test')); // 123
console.log(JSON.stringify(obj)); // '{"a":1,"b":2}'
I ran into a situation where I needed property level metadata, and used the latter implementation.
obj.id = 1;
obj.metadata.set('id', 'metadata for the id property');

How can I define a default getter and setter using ECMAScript 5?

How can I specify a default getter for a prototype?
With default getter I mean a function that is called if obj.undefinedProperty123 is called.
I tried Object.prototype.get = function(property) {..} but this is not called in this case.
In ECMAScript 5, you can only intercept get/set operations on specific named properties (not universally all properties) via Object.defineProperty:
Object.defineProperty(someObj, "someProp", {
get: function() {
console.log("you tried to get someObj.someProp");
return "foo";
}
});
Here, the get function will run any time code tries to read someObj.someProp.
In the upcoming ECMAScript 6 draft, this will be possible via proxies. A proxy has an underlying target object and set/get functions. Any time a set or get operation happens on any of a proxy's properties, the appropriate function runs, taking as arguments the proxy's target object, property name used, and the value used in a set attempt.
var proxyHandler = {
get: function(obj, name){
console.log("you're getting property " + name);
return target[name];
},
set: function(obj, name, value) {
console.log("you're setting property " + name);
target[name] = value;
}
}
var underlyingObj = {};
// use prox instead of underlyingObj to use get/set interceptor functions
var prox = new Proxy(underlyingObj, proxyHandler);
Here, setting to getting property values on prox will cause the set/get functions to run.
What Gareth said, except it's __noSuchMethod__.
Or maybe you were thinking of PHP?
Here's a very good article on the recently standardized property getters/setters, highlighting some previous non-standard incarnations.
http://whereswalden.com/2010/04/16/more-spidermonkey-changes-ancient-esoteric-very-rarely-used-syntax-for-creating-getters-and-setters-is-being-removed/
summary: there's no standard 'catch-all' getter / setter (yet), but Object.defineProperty is the future.
You need to wait for the implementation of the ECMA6 "Proxy" system, designed to do exactly this. See http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies.
You want to create a Proxy:
const data = {};
const proxy = new Proxy(data, {
get: (target, prop) => {
console.log({ target, prop });
return "My Value";
},
set: (target, prop, value) => {
console.log({ target, prop, value });
return true;
},
});
proxy["foo"] = "bar";
const bar = proxy["foo"];
Firefox it's possible with non-standard noSuchMethod:-
({__noSuchMethod__:function(){alert(1);}}).a();
I am not sure about what you are asking. But If you want a method to be called when the user attempts to Access object.nonExistingProperty . I dont think there is any way to do that.
maybe late to ther party, let just add simple ES5 friendly "class creation": both string props and getters - i needed it for some ancient rewrite, to temporarily support IE (yes, that hurts, still found someone relying on ActiveX)
var MyObj = function () {
var obj = {
url: 'aabbcc',
a: function(){ return this.url;}
}
Object.defineProperty(obj, "urltoo", { get: function () { return this.url; } })
return obj;
}
var X = new MyObj();
x.url // aabbcc
x.urltoo // aabbcc
x.urltoo() // error - not a function
x.a() // aabbcc
x.a // ƒ (){ return this.url;}
I ran into this question because I wanted this behavior: if object property is undefined, return some default value instead.
const options = {
foo: 'foo',
bar: 'bar',
baz: 'baz'
};
function useOptionValue(optionName) {
// I want `options` to return a default value if `optionName` does not exist
const value = options[optionName];
// etc...
}
The simple way to do this (without Proxy or Object.defineProperty overkill for this use case) is like so:
function useOptionValue(optionName) {
const value = options[optionName] || defaultValue;
}
Or, if you want to get fancy, you could use a Symbol:
const default = Symbol.for('default');
const options = {
foo: 'foo',
bar: 'bar',
baz: 'baz',
[default]: 'foobarbaz'
};
function useOptionValue(optionName) {
const value = options[optionName] || options[default];
}

Categories

Resources