I just recently started delving into ThreeJS. Currently I'm trying to plot a point on a sphere but it appears to be plotting in the southern hemispehre instead of the northern hemisphere. Vertically, it looks to be in the correct spot just on the bottom of the sphere instead of the top. I grabbed some code from this answer: https://stackoverflow.com/a/8982005/738201
In the image the yellow line with the red box is my plotted point. It should be in the upstate NY region instead of where it is now.
And lastly, the code.
function xyz(lat, lon){
var cosLat = Math.cos(lat*Math.PI/180.00);
var sinLat = Math.sin(lat*Math.PI/180.00);
var cosLon = Math.cos(lon*Math.PI/180.00);
var sinLon = Math.sin(lon*Math.PI/180.00);
var r = sphere.geometry.radius; //50
var coords = {};
coords.x = r * cosLat * cosLon;
coords.y = r * cosLat * sinLon;
coords.z = r * sinLat;
console.log(coords);
return coords;
}
// Lat/Lon from GoogleMaps
var coords = xyz(42.654162, -73.699830);
// returns {x: 10.321018160637124, y: -35.29474079777381, z: 33.878575178802286}
I suspect that the issue may be using 2D coords on a 3D sphere but if so, I'm not quite sure how to rectify that.
Try this, It will help to use directly lat and long on the map
function calcPosFromLatLon(phi, theta){
let lat = (90 - phi) * (Math.PI/180);
let lon = (theta + 180) * (Math.PI/180);
const x = -(Math.sin(lat)* Math.cos(lon))
const z = Math.sin(lat) * Math.sin(lon)
const y = Math.cos(lat)
}
calcPosFromLatLon(//coordinates here//)
Related
I have been trying to convert the 360 degree camera, single fish eye image, to equirectangular viewer in node js for the past two days. In stackoverflow, the same question is asked and answered in pseudo code. I have been trying to convert pseudo code to node js and cleared some errors. Now the project runs without error but the output image is blank.
From that pseudo, I dont know the polar_w, polar_h and geo_w, geo_h, geo and polar value, so, it gave static value to show the output. Here is a link which i followed to convert pseudo code to node js.
How to convert spherical coordinates to equirectangular projection coordinates?.
Here is the code I tried for converting spherical image to equirectangular viewer:
exports.sphereImage=(request, response)=>{
var Jimp = require('jimp');
// Photo resolution
var img_w_px = 1280;
var img_h_px = 720;
var polar_w = 1280;
var polar_h = 720;
var geo_w = 1280;
var geo_h = 720;
var img_h_deg = 70;
var img_w_deg = 30;
// Camera field-of-view angles
var img_ha_deg = 70;
var img_va_deg = 40;
// Camera rotation angles
var hcam_deg = 230;
var vcam_deg = 60;
// Camera rotation angles in radians
var hcam_rad = hcam_deg/180.0*Math.PI;
var vcam_rad = vcam_rad/180.0*Math.PI;
// Rotation around y-axis for vertical rotation of camera
var rot_y = [
[Math.cos(vcam_rad), 0, Math.sin(vcam_rad)],
[0, 1, 0],
[-Math.sin(vcam_rad), 0, Math.cos(vcam_rad)]
];
// Rotation around z-axis for horizontal rotation of camera
var rot_z = [
[Math.cos(hcam_rad), -Math.sin(hcam_rad), 0],
[Math.sin(hcam_rad), Math.cos(hcam_rad), 0],
[0, 0, 1]
];
Jimp.read('./public/images/4-18-2-42.jpg', (err, lenna) => {
polar = new Jimp(img_w_px, img_h_px);
geo = new Jimp(img_w_px, img_h_px);
for(var i=0; i<img_h_px; ++i)
{
for(var j=0; j<img_w_px; ++j)
{
// var p = img.getPixelAt(i, j);
var p = lenna.getPixelColor(i, j)
// var p = getPixels(img, { x: i, y: j })
// Calculate relative position to center in degrees
var p_theta = (j - img_w_px / 2.0) / img_w_px * img_w_deg / 180.0 * Math.PI;
var p_phi = -(i - img_h_px / 2.0) / img_h_px * img_h_deg / 180.0 *Math. PI;
// Transform into cartesian coordinates
var p_x = Math.cos(p_phi) * Math.cos(p_theta);
var p_y = Math.cos(p_phi) * Math.sin(p_theta);
var p_z = Math.sin(p_phi);
var p0 = {p_x, p_y, p_z};
// Apply rotation matrices (note, z-axis is the vertical one)
// First vertically
var p1 = rot_y[1][2][3] * p0;
var p2 = rot_z[1][2][3] * p1;
// Transform back into spherical coordinates
var theta = Math.atan2(p2[1], p2[0]);
var phi = Math.asin(p2[2]);
// Retrieve longitude,latitude
var longitude = theta / Math.PI * 180.0;
var latitude = phi / Math.PI * 180.0;
// Now we can use longitude,latitude coordinates in many different
projections, such as:
// Polar projection
{
var polar_x_px = (0.5*Math.PI + phi)*0.5 * Math.cos(theta)
/Math.PI*180.0 * polar_w;
var polar_y_px = (0.5*Math.PI + phi)*0.5 * Math.sin(theta)
/Math.PI*180.0 * polar_h;
polar.setPixelColor(p, polar_x_px, polar_y_px);
}
// Geographical (=equirectangular) projection
{
var geo_x_px = (longitude + 180) * geo_w;
var geo_y_px = (latitude + 90) * geo_h;
// geo.setPixel(geo_x_px, geo_y_px, p.getRGB());
geo.setPixelColor(p, geo_x_px, geo_y_px);
}
// ...
}
}
geo.write('./public/images/4-18-2-42-00001.jpg');
polar.write('./public/images/4-18-2-42-00002.jpg');
});
}
And tried another method by slicing image into four parts to detect car. Sliced image into four parts using image-slice module and to read and write jimp module is used. But unfortunately cars not detected properly.
Here is the code i used for slicing image:
exports.sliceImage=(request, response)=>{
var imageToSlices = require('image-to-slices');
var lineXArray = [540, 540];
var lineYArray = [960, 960];
var source = './public/images/4-18-2-42.jpg'; // width: 300, height: 300
imageToSlices(source, lineXArray, lineYArray, {
saveToDir: './public/images/',
clipperOptions: {
canvas: require('canvas')
}
}, function() {
console.log('the source image has been sliced into 9 sections!');
});
}//sliceImage
And for detect car from image i used opencv4nodejs. Cars are not detected properly. here is the code i used for detect car:
function runDetectCarExample(img=null){
if(img==null){
img = cv.imread('./public/images/section-1.jpg');
}else
{
img=cv.imread(img);
}
const minConfidence = 0.06;
const predictions = classifyImg(img).filter(res => res.confidence > minConfidence && res.className=='car');
const drawClassDetections = makeDrawClassDetections(predictions);
const getRandomColor = () => new cv.Vec(Math.random() * 255, Math.random() * 255, 255);
drawClassDetections(img, 'car', getRandomColor);
cv.imwrite('./public/images/section-'+Math.random()+'.jpg', img);
var name="distanceFromCamera";
var focalLen= 1.6 ;//Focal length in mm
var realObjHeight=254 ;//Real Height of Object in mm
var cameraFrameHeight=960;//Height of Image in pxl
var imgHeight=960;//Image Height in pxl
var sensorHeight=10;//Sensor height in mm
var R = 6378.1 //#Radius of the Earth
var brng = 1.57 //#Bearing is 90 degrees converted to radians.
var hc=(200/100);//Camera height in m
predictions
.forEach((data)=> {
// imgHeight=img.rows;//Image Height in pxl
// realObjHeight=data.rect.height;
// data.rect[name]=((focalLen)*(realObjHeight)*
(cameraFrameHeight))/((imgHeight)*(sensorHeight));
var dc=(((data.rect.width * focalLen) / img.cols)*2.54)*100; // meters
console.log(Math.floor(parseInt(data.rect.width)));
// var dc=((Math.floor(parseInt(data.rect.width)* 0.264583) * focalLen) / img.cols); // mm
var lat1=13.0002855;//13.000356;
var lon1=80.2046441;//80.204632;
// Gate 13.0002855,80.2046441
// Brazil Polsec : -19.860566, -43.969436
// var d=Math.sqrt((dc*dc)+(hc*hc));
// d=(data.rect[name])/1000;
data.rect[name]=d=dc/1000;
lat1 =toRadians(lat1);
lon1 = toRadians(lon1);
brng =toRadians(90);
// lat2 = Math.asin( Math.sin(lat1)*Math.cos(d/R) +
// Math.cos(lat1)*Math.sin(d/R)*Math.cos(brng));
// lon2 = lon1 +
Math.atan2(Math.sin(brng)*Math.sin(d/R)*Math.cos(lat1),
// Math.cos(d/R)-Math.sin(lat1)*Math.sin(lat2));
var lat2 = Math.asin(Math.sin(lat1) * Math.cos(d/6371) +
Math.cos(lat1) * Math.sin(d/6371) * Math.cos(brng));
var lon2 = lon1 + Math.atan2(Math.sin(brng) * Math.sin(d/6371) * Math.cos(lat1),
Math.cos(d/6371) - Math.sin(lat1) * Math.sin(lat2));
lat2 = toDegrees(lat2);
lon2 = toDegrees(lon2);
data.rect['latLong']=lat2+','+lon2;
// console.log(brng);
});
response.send(predictions);
cv.imshowWait('img', img);
};
here is the fish eye image which need to be converted to equirectangular.
Any help much appreciated pls....
You are asking how to convert a 360deg fish-eye projection to an equirectangular projection.
In order to do this, for every pixel on the fish-eye image you need to know where to place in onto the output image.
Your input image is 1920x1080, let us assume you want to output it to an equirectangular projection of the same size.
The input circle mapping is defined as:
cx = 960; // center of circle on X-axis
cy = 540; // center of circle on Y-axis
radius = 540; // radius of circle
If you have a pixel at (x,y) in the input image, then we can calculate the spherical coordinates using:
dx = (x - cx) * 1.0 / radius;
dy = (y - cy) * 1.0 / radius;
theta_deg = atan2(dy, dx) / MATH_PI * 180;
phi_deg = acos(sqrt(dx*dx + dy*dy)) / MATH_PI * 180;
outputx = (theta_deg + 180) / 360.0 * outputwidth_px;
outputy = (phi_deg + 90) / 180.0 * outputheight_px;
So there we translated (x,y) from the fish-eye image to the (outputx,outputy) in the equirectangular image. In order to not leave the implementation as the dreaded "exercise to the reader", here is some sample Javascript-code using the Jimp-library as used by the OP:
var jimp = require('jimp');
var inputfile = 'input.png';
jimp.read(inputfile, function(err, inputimage)
{
var cx = 960;
var cy = 540;
var radius = 540;
var inputwidth = 1920;
var inputheight = 1080;
var outputwidth = 1920;
var outputheight = 1080;
new jimp(outputwidth, outputheight, 0x000000ff, function(err, outputimage)
{
for(var y=0;y<inputheight;++y)
{
for(var x=0;x<inputwidth;++x)
{
var color = inputimage.getPixelColor(x, y);
var dx = (x - cx) * 1.0 / radius;
var dy = (y - cy) * 1.0 / radius;
var theta_deg = Math.atan2(dy, dx) / Math.PI * 180;
var phi_deg = Math.acos(Math.sqrt(dx*dx + dy*dy)) / Math.PI * 180;
var outputx = Math.round((theta_deg + 180) / 360.0 * outputwidth);
var outputy = Math.round((phi_deg + 90) / 180.0 * outputheight);
outputimage.setPixelColor(color, outputx, outputy);
}
}
outputimage.write('output.png');
});
});
Note that you will still need to do blending of the pixel with neighbouring pixels (for the same reason as when you're resizing the image).
Additionally, in your case, you only have half of the sphere (you can't see the sun in the sky). So you would need to use var outputy = Math.round(phi_deg / 90.0 * outputheight). In order to keep the right aspect ratio, you might want to change the height to 540.
Also note that the given implementation may not be efficient at all, it's better to use the buffer directly.
Anyway, without blending I came up with the result as demonstrated here:
So in order to do blending, you could use the simplest method which is the nearest neighbour approach. In that case, you should invert the formulas in the above example. Instead of moving the pixels from the input image to the right place in the output image, you can go through every pixel in the output image and ask which input pixel we can use for that. This will avoid the black pixels, but may still show artifacts:
var jimp = require('jimp');
var inputfile = 'input.png';
jimp.read(inputfile, function(err, inputimage)
{
var cx = 960;
var cy = 540;
var radius = 540;
var inputwidth = 1920;
var inputheight = 1080;
var outputwidth = 1920;
var outputheight = 1080/2;
var blendmap = {};
new jimp(outputwidth, outputheight, 0x000000ff, function(err, outputimage)
{
for(var y=0;y<outputheight;++y)
{
for(var x=0;x<outputwidth;++x)
{
var theta_deg = 360 - x * 360.0 / outputwidth - 180;
var phi_deg = 90 - y * 90.0 / outputheight;
var r = Math.sin(phi_deg * Math.PI / 180)
var dx = Math.cos(theta_deg * Math.PI / 180) * r;
var dy = Math.sin(theta_deg * Math.PI / 180) * r;
var inputx = Math.round(dx * radius + cx);
var inputy = Math.round(dy * radius + cy);
outputimage.setPixelColor(inputimage.getPixelColor(inputx, inputy), x, y);
}
}
outputimage.write('output.png');
});
});
For reference, in order to convert between Cartesian and Spherical coordinate systems. These are the formulas (taken from here). Note that the z is in your case just 1, a so-called "unit" sphere, so you can just leave it out of the equations. You should also understand that since the camera is actually taking a picture in three dimensions, you also need formulas to work in three dimensions.
Here is the generated output image:
Since I don't see your original input image in your question anymore, in order for anyone to test the code from this answer, you can use the following image:
Run the code with:
mkdir /tmp/test
cd /tmp/test
npm install --permanent jimp
cat <<EOF >/tmp/test/main.js
... paste the javascript code from above ...
EOF
curl https://i.stack.imgur.com/0zWt6.png > input.png
node main.js
Note: In order to further improve the blending, you should remove the Math.round. So for instance, if you need to grab a pixel at x is 0.75, and the pixel on the left at x = 0 is white, and the pixel on the right at x = 1 is black. Then you want to mix both colors into a dark grey color (using ratio 0.75). You would have to do this for both dimensions simultaneously, if you want a nice result. But this should really be in a new question imho.
I have an issue, in my leaflet map I've created a triangle from polygon:
var polygon = L.polygon([
[parseFloat(decimal_lat),parseFloat(decimal_lon)],
[parseFloat(decimal_lat) + 1, parseFloat(decimal_lon) - 1],
[parseFloat(decimal_lat) + 1, parseFloat(decimal_lon) + 1] ],
{
color:'green'
});
polygon.addTo(map);
and I want to rotate this polygon around Point[decimal_lon, decimal_lat]. But I'm not able to solve it..
I've created DEMO, where I'm rotating polynom the same I want to rotate my triangle (polygon) to show you my problem.
One way to do it is through matrix rotation. https://en.wikipedia.org/wiki/Rotation_matrix.
You want to translate the point to the center then apply the rotation, then translate it back.
This is what the end of your code would look like.
//changing polyline with slider but I want to change polygon there
range_yaw.onchange = function() {
var yawAngle = (parseFloat(range_yaw.value) / (819 / 360) + 90)
// line
var center = [decimal_lat, decimal_lon]
var end = [decimal_lat + 2, decimal_lon + 2]
var pointListRotated = rotatePoints(center, [center, end], yawAngle)
polyline.setLatLngs(pointListRotated);
// polygon
var polygonPoints = [
center,
[center[0] + 1, center[1] - 1],
[center[0] + 1, center[1] + 1]
]
polygonRotated = rotatePoints(center, polygonPoints, yawAngle)
polygon.setLatLngs(polygonRotated)
};
//
// rotate a list of points in [lat, lng] format about the center.
//
function rotatePoints(center, points, yaw) {
var res = []
var angle = yaw * (Math.PI / 180)
for(var i=0; i<points.length; i++) {
var p = points[i]
// translate to center
var p2 = [ p[0]-center[0], p[1]-center[1] ]
// rotate using matrix rotation
var p3 = [ Math.cos(angle)*p2[0] - Math.sin(angle)*p2[1], Math.sin(angle)*p2[0] + Math.cos(angle)*p2[1]]
// translate back to center
var p4 = [ p3[0]+center[0], p3[1]+center[1]]
// done with that point
res.push(p4)
}
return res
}
Here is a DEMO
I adapted #dooderson and #MBo from this question answers, the final code is something like this, it works perfectly!
rotatePoints (center, points, yaw) {
const res = []
const centerPoint = map.latLngToLayerPoint(center)
const angle = yaw * (Math.PI / 180)
for (let i = 0; i < points.length; i++) {
const p = map.latLngToLayerPoint(points[i])
// translate to center
const p2 = new Point(p.x - centerPoint.x, p.y - centerPoint.y)
// rotate using matrix rotation
const p3 = new Point(Math.cos(angle) * p2.x - Math.sin(angle) * p2.y, Math.sin(angle) * p2.x + Math.cos(angle) * p2.y)
// translate back to center
let p4 = new Point(p3.x + centerPoint.x, p3.y + centerPoint.y)
// done with that point
p4 = map.layerPointToLatLng(p4)
res.push(p4)
}
return res
}
You can approach it a couple ways. Here is one...
FIRST: calculate the bearing and distance to the two 'outer' points from the anchor point. Here are a couple helper functions:
https://github.com/gregallensworth/Leaflet/blob/master/LatLng_Bearings.js
SECOND: adjust those bearings however you want...keep the original distances.
THIRD: Using the new bearings and the distances, calculate the new LatLngs using the accepted answer here: How to calculate the latlng of a point a certain distance away from another? (This uses google maps instead of leaflet, but its easy to port to leaflet)
Let me know if you have any problems implementing...
I am working on an application where I have the center of a circle and the radius and I am plotting the circle with the help of Leaflet.
I placed a marker on the north most end of the circumference and made it draggable.
var circle = L.circle(coords, radius).addTo(map);
convertRadiusToLatitude = parseInt(response.radius)/111111;
var coordsOnRadius = [parseFloat(response.lat) + convertRadiusToLatitude, parseFloat(response.long)];
var markerOnRadius = L.marker(coordsOnRadius, {draggable: true}).addTo(map);
Now, this adds the marker to the circumference and now I wanted it to be draggable only on the circumference itself for which I used the parametric equation.
Parametric equation
x = Xc + R * cos(theta)
y = Yc + R * sin(theta)
Code for dragging
markerOnRadius.on('drag', function(e){
bearing = marker.getLatLng().bearingTo(markerOnRadius.getLatLng());
var markerOnRadiusX = parseFloat(response.lat) + ((0.000009 * parseFloat(response.radius)) * Math.cos( toRad(bearing) ));
var markerOnRadiusY = parseFloat(response.long) + ((0.000009 * parseFloat(response.radius)) * Math.sin( toRad(bearing) ));
markerOnRadius.setLatLng([markerOnRadiusX, markerOnRadiusY]);
});
The bearingTo method:
L.LatLng.prototype.bearingTo = function(other) {
var d2r = L.LatLng.DEG_TO_RAD;
var r2d = L.LatLng.RAD_TO_DEG;
var lat1 = this.lat * d2r;
var lat2 = other.lat * d2r;
var dLon = (other.lng-this.lng) * d2r;
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) - Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
brng = parseInt( brng * r2d );
brng = (brng + 360) % 360;
return brng;
};
Issue
When I start dragging the marker, this code is working fine and brings it back to the circumference at the bearing at which the marker is dragged to. But there is one problem, the coords on the circumference are slightly off and in terms of longitude. When the bearing is 0 (north), the coords are perfect, but when it is 90 (east), the longitude is slightly less that it should for the marker to be at the circumference.
Again at 180 (south), coords are perfect, but at 270 (west), the longitude calculated is slightly less and the marker tends towards the radius again.
So basically if you visualize the marker being dragged, it starts perfectly on the north end and starts coming inside the circle slightly increasing with the bearing till it reacher 90 and then starts going towards the circumference again till 180 when it is perfect again.
It forms more like a ellipse if you get the gist of it.
Could anyone tell me why is longitude coming a little off and why the marker moves in an elliptical path. Has it something to do with the world coordinates and window coordinates. Or are my equations slightly off somewhere?
It does look like a projection issue. In your dragging code you are basically doing
lat = a + r cos(baring)
long = b + r sin(baring)
giving a circle in the Lat-Long coordinates. This would work fine if you were at the equator with Mercator projection. You will get more distortion as you move further towards the polls.
Assume you are using the defaults for Leaflet reference doc You have the EPSG3857 Web Mercator coordinates.
If you want to ensure you have a exact circle it will be better to work using screen coordinates. You can get these using methods on the ICRS objects. First get the coordinate system L.CRS.EPSG3857 and use the latLngToPoint and pointToLatLng methods.
var crs = L.CRS.EPSG3857;
var zoom = ...; // how you calculate your zoom factor
markerOnRadius.on('drag', function(e){
var markerLL = marker.getLatLng()
var morLL = markerOnRadius.getLatLng();
var markerP = crs.latLngToPoint(markerLL,zoom);
var morP = crs.latLngToPoint(morLL,zoom);
// get the distance between the two points
var dist = markerP.distanceTo(morP);
// Get the vector from center to point
var A = morP.subtract(markerP);
// scale so its of the desired length
var B = A. multiplyBy( factor / dist);
// Add on the center
var C = markerP.add(B);
// Convert back to LatLong
var D = crs.pointToLatLng(C,zoom);
markerOnRadius.setLatLong(D);
});
I'm currently creating a custom 3D paraboloid mesh by warping a 2D plane with the following algorithm applied to each vertex:
function transformVertex(v) {
var lat = toRad(v.y - height/2),
lon = toRad(v.x - width/2)/cos(lat);
lat = lat*cos(lon/1.5);
v.x = radius * cos(lat) * cos(lon);
v.y = radius * cos(lat) * sin(lon);
v.z = radius * sin(lat);
}
My question is, how can I reverse this process? I need to take a 3D point on the paraboloid and convert it to 2D coordinates relative to that plane PRE warping.
There are some changes in variables during calculation, so let's version the variables and determine their functional relationships:
1- lat_0 = f(v_0.y)
2- lon_0 = f(v_0.x, lat_0)
3- lat_1 = f(lat_0, lon_0)
4- v_1.x = f(lat_1, lon_0)
5- v_1.y = f(lat_1, lon_0)
6- v_1.z = f(lat_1)
Now going from 6 back to 1,
lat_1 = asin(v_1.z / radius)
lon_0 = asin(v_1.y / radius / cos(lat_1)) OR lon_0 = acos(v_1.x / radius / cos(lat_1))
At this point, lon_0 depends on v_0.x and lat_0, and lat_0 depends on v_0.y, which locks up the whole thing. It looks irreversible.
Is there an easy way to get the lat/lng of the intersection points (if available) of two circles in Google Maps API V3? Or should I go with the hard way?
EDIT : In my problem, circles always have the same radius, in case that makes the solution easier.
Yes, for equal circles rather simple solution could be elaborated:
Let's first circle center is A point, second circle center is F, midpoint is C, and intersection points are B,D. ABC is right-angle spherical triangle with right angle C.
We want to find angle A - this is deviation angle from A-F direction. Spherical trigonometry (Napier's rules for right spherical triangles) gives us formula:
cos(A)= tg(AC) * ctg(AB)
where one symbol denote spherical angle, double symbols denote great circle arcs' angles (AB, AC). We can see that AB = circle radius (in radians, of course), AC = half-distance between A and F on the great circle arc.
To find AC (and other values) - I'll use code from this excellent page
var R = 6371; // km
var dLat = (lat2-lat1).toRad();
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
and our
AC = c/2
If circle radius Rd is given is kilometers, then
AB = Rd / R = Rd / 6371
Now we can find angle
A = arccos(tg(AC) * ctg(AB))
Starting bearing (AF direction):
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
Intersection points' bearings:
B_bearing = brng - A
D_bearing = brng + A
Intersection points' coordinates:
var latB = Math.asin( Math.sin(lat1)*Math.cos(Rd/R) +
Math.cos(lat1)*Math.sin(Rd/R)*Math.cos(B_bearing) );
var lonB = lon1.toRad() + Math.atan2(Math.sin(B_bearing)*Math.sin(Rd/R)*Math.cos(lat1),
Math.cos(Rd/R)-Math.sin(lat1)*Math.sin(lat2));
and the same for D_bearing
latB, lonB are in radians
The computation the "hard" way can be simplified for the case r1 = r2 =: r. We still first have to convert the circle centers P1,P2 from (lat,lng) to Cartesian coordinates (x,y,z).
var DEG2RAD = Math.PI/180;
function LatLng2Cartesian(lat_deg,lng_deg)
{
var lat_rad = lat_deg*DEG2RAD;
var lng_rad = lng_deg*DEG2RAD;
var cos_lat = Math.cos(lat_rad);
return {x: Math.cos(lng_rad)*cos_lat,
y: Math.sin(lng_rad)*cos_lat,
z: Math.sin(lat_rad)};
}
var P1 = LatLng2Cartesian(lat1, lng1);
var P2 = LatLng2Cartesian(lat2, lng2);
But the intersection line of the planes holding the circles can be computed more easily. Let d be the distance of the actual circle center (in the plane) to the corresponding point P1 or P2 on the surface. A simple derivation shows (with R the earth's radius):
var R = 6371; // earth radius in km
var r = 100; // the direct distance (in km) of the given points to the intersections points
// if the value rs for the distance along the surface is known, it has to be converted:
// var r = 2*R*Math.sin(rs/(2*R*Math.PI));
var d = r*r/(2*R);
Now let S1 and S2 be the intersections points and S their mid-point. With s = |OS| and t = |SS1| = |SS2| (where O = (0,0,0) is the earth's center) we get from simple derivations:
var a = Math.acos(P1.x*P2.x + P1.y*P2.y + P1.z*P2.z); // the angle P1OP2
var s = (R-d)/Math.cos(a/2);
var t = Math.sqrt(R*R - s*s);
Now since r1 = r2 the points S, S1, S2 are in the mid-plane between P1 and P2. For v_s = OS we get:
function vecLen(v)
{ return Math.sqrt(v.x*v.x + v.y*v.y + v.z*v.z); }
function vecScale(scale,v)
{ return {x: scale*v.x, y: scale*v.y, z: scale*v.z}; }
var v = {x: P1.x+P2.x, y: P1.y+P2.y, z:P1.z+P2.z}; // P1+P2 is in the middle of OP1 and OP2
var S = vecScale(s/vecLen(v), v);
function crossProd(v1,v2)
{
return {x: v1.y*v2.z - v1.z*v2.y,
y: v1.z*v2.x - v1.x*v2.z,
z: v1.x*v2.y - v1.y*v2.x};
}
var n = crossProd(P1,P2); // normal vector to plane OP1P2 = vector along S1S2
var SS1 = vecScale(t/vecLen(n),n);
var S1 = {x: S.x+SS1.x, y: S.y+SS1.y, z: S.z+SS1.z}; // S + SS1
var S2 = {x: S.x-SS1.x, y: S.y-SS2.y, z: S.z-SS1.z}; // S - SS1
Finally we have to convert back to (lat,lng):
function Cartesian2LatLng(P)
{
var P_xy = {x: P.x, y:P.y, z:0}
return {lat: Math.atan2(P.y,P.x)/DEG2RAD, lng: Math.atan2(P.z,vecLen(P_xy))/DEG2RAD};
}
var S1_latlng = Cartesian2LatLng(S1);
var S2_latlng = Cartesian2LatLng(S2);
Yazanpro, sorry for the late response on this.
You may be interested in a concise variant of MBo's approach, which simplifies in two respects :
firstly by exploiting some of the built in features of the google.maps API to avoid much of the hard math.
secondly by using a 2D model for the calculation of the included angle, in place of MBo's spherical model. I was initially uncertain about the validity of this simplification but satisfied myself with tests in a fork of MBo's fiddle that the errors are minor at all but the largest of circles with respect to the size of the Earth (eg at low zoom levels).
Here's the function :
function getIntersections(circleA, circleB) {
/*
* Find the points of intersection of two google maps circles or equal radius
* circleA: a google.maps.Circle object
* circleB: a google.maps.Circle object
* returns: null if
* the two radii are not equal
* the two circles are coincident
* the two circles don't intersect
* otherwise returns: array containing the two points of intersection of circleA and circleB
*/
var R, centerA, centerB, D, h, h_;
try {
R = circleA.getRadius();
centerA = circleA.getCenter();
centerB = circleB.getCenter();
if(R !== circleB.getRadius()) {
throw( new Error("Radii are not equal.") );
}
if(centerA.equals(centerB)) {
throw( new Error("Circle centres are coincident.") );
}
D = google.maps.geometry.spherical.computeDistanceBetween(centerA, centerB); //Distance between the two centres (in meters)
// Check that the two circles intersect
if(D > (2 * R)) {
throw( new Error("Circles do not intersect.") );
}
h = google.maps.geometry.spherical.computeHeading(centerA, centerB); //Heading from centre of circle A to centre of circle B. (in degrees)
h_ = Math.acos(D / 2 / R) * 180 / Math.PI; //Included angle between the intersections (for either of the two circles) (in degrees). This is trivial only because the two radii are equal.
//Return an array containing the two points of intersection as google.maps.latLng objects
return [
google.maps.geometry.spherical.computeOffset(centerA, R, h + h_),
google.maps.geometry.spherical.computeOffset(centerA, R, h - h_)
];
}
catch(e) {
console.error("getIntersections() :: " + e.message);
return null;
}
}
No disrespect to MBo by the way - it's an excellent answer.