Javascript - assign function to variable (reference/value) - javascript

I am trying to change the definition of a function:
var a = function(){alert('a');};
var b = a;
b = function(){alert('b');};
This results in the variable a keeping it's original assignment i.e. the function producing alert('a').
Is there any way of passing around a reference to a javascript function so that I can alter it later?

Would you expect the value of a to change after the following snippet? Snippet in question:
var a = 10;
var b = a;
var b = 20;
No, right? So why would you expect reassigning b to also affect a?
After line 1, you have a pointing to a function instance:
After line 2, you have a new variable b, also pointing to the same function instance. So now you have two variables, both pointing to the same instance:
After line 3, you have reassigned b to something else (a new function), but a is still pointing to the original function:
You can do what you want by doing something like this:
var func = function() { alert("a"); };
var a = function() { func(); };
var b = a;
func = function() { alert("b"); };
Now calling a() or b() will alert the string b.

Is there any way of passing around a reference to a javascript function so that I can alter it later?
There is no way to do this. Javascript does not have "pointers". It has reference values, and as such, a is a reference to the value of a, not to the memory location of a.
So, for this set of instructions
var a = function(){alert('a');};
var b = a;
b = function(){alert('b');};
this is the progression
//a is stored at some memory location
var a;
//b is stored at some memory location
var b;
//the memory location where a is stored has its value updated
a = function(){alert('a');};
//the memory location where b is stored has its value updated
//from the value stored at a's memory location
b = a;
//the memory location where b is stored has its value updated
b = function(){alert('b');};

You could produce the result you're looking for like this:
var fn = function() { alert('a'); };
var a = function() { fn(); };
var b = a;
fn = function(){ alert('b'); };
This code would produce the desired effect you're looking for because they'll both call fn() and you're changing the common underlying reference.

Related

Is it possible to change a reference that is passed into a function? [duplicate]

How do I pass variables by reference in JavaScript?
I have three variables that I want to perform several operations to, so I want to put them in a for loop and perform the operations to each one.
Pseudocode:
myArray = new Array(var1, var2, var3);
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
makePretty(myArray[x]);
}
// Now do stuff to the updated variables
What is the best way to do this?
There is no "pass by reference" available in JavaScript. You can pass an object (which is to say, you can pass-by-value a reference to an object) and then have a function modify the object contents:
function alterObject(obj) {
obj.foo = "goodbye";
}
var myObj = { foo: "hello world" };
alterObject(myObj);
alert(myObj.foo); // "goodbye" instead of "hello world"
You can iterate over the properties of an array with a numeric index and modify each cell of the array, if you want.
var arr = [1, 2, 3];
for (var i = 0; i < arr.length; i++) {
arr[i] = arr[i] + 1;
}
It's important to note that "pass-by-reference" is a very specific term. It does not mean simply that it's possible to pass a reference to a modifiable object. Instead, it means that it's possible to pass a simple variable in such a way as to allow a function to modify that value in the calling context. So:
function swap(a, b) {
var tmp = a;
a = b;
b = tmp; //assign tmp to b
}
var x = 1, y = 2;
swap(x, y);
alert("x is " + x + ", y is " + y); // "x is 1, y is 2"
In a language like C++, it's possible to do that because that language does (sort-of) have pass-by-reference.
edit — this recently (March 2015) blew up on Reddit again over a blog post similar to mine mentioned below, though in this case about Java. It occurred to me while reading the back-and-forth in the Reddit comments that a big part of the confusion stems from the unfortunate collision involving the word "reference". The terminology "pass by reference" and "pass by value" predates the concept of having "objects" to work with in programming languages. It's really not about objects at all; it's about function parameters, and specifically how function parameters are "connected" (or not) to the calling environment. In particular, note that in a true pass-by-reference language — one that does involve objects — one would still have the ability to modify object contents, and it would look pretty much exactly like it does in JavaScript. However, one would also be able to modify the object reference in the calling environment, and that's the key thing that you can't do in JavaScript. A pass-by-reference language would pass not the reference itself, but a reference to the reference.
edit — here is a blog post on the topic. (Note the comment to that post that explains that C++ doesn't really have pass-by-reference. That is true. What C++ does have, however, is the ability to create references to plain variables, either explicitly at the point of function invocation to create a pointer, or implicitly when calling functions whose argument type signature calls for that to be done. Those are the key things JavaScript doesn't support.)
Primitive type variables like strings and numbers are always passed by value.
Arrays and Objects are passed by reference or by value based on these conditions:
if you are setting the value of an object or array it is Pass by Value.
object1 = { prop: "car" };
array1 = [1,2,3];
if you are changing a property value of an object or array then it is Pass by Reference.
object1.prop = "car";
array1[0] = 9;
Code
function passVar(obj1, obj2, num) {
obj1.prop = "laptop"; // will CHANGE original
obj2 = { prop: "computer" }; //will NOT affect original
num = num + 1; // will NOT affect original
}
var object1 = {
prop: "car"
};
var object2 = {
prop: "bike"
};
var number1 = 10;
passVar(object1, object2, number1);
console.log(object1); // output: Object { prop: "laptop" }
console.log(object2); // output: Object { prop: "bike" }
console.log(number1); // ouput: 10
Workaround to pass variable like by reference:
var a = 1;
inc = function(variableName) {
window[variableName] += 1;
};
inc('a');
alert(a); // 2
And yup, actually you can do it without access a global variable:
inc = (function () {
var variableName = 0;
var init = function () {
variableName += 1;
alert(variableName);
}
return init;
})();
inc();
Simple Object
function foo(x) {
// Function with other context
// Modify `x` property, increasing the value
x.value++;
}
// Initialize `ref` as object
var ref = {
// The `value` is inside `ref` variable object
// The initial value is `1`
value: 1
};
// Call function with object value
foo(ref);
// Call function with object value again
foo(ref);
console.log(ref.value); // Prints "3"
Custom Object
Object rvar
/**
* Aux function to create by-references variables
*/
function rvar(name, value, context) {
// If `this` is a `rvar` instance
if (this instanceof rvar) {
// Inside `rvar` context...
// Internal object value
this.value = value;
// Object `name` property
Object.defineProperty(this, 'name', { value: name });
// Object `hasValue` property
Object.defineProperty(this, 'hasValue', {
get: function () {
// If the internal object value is not `undefined`
return this.value !== undefined;
}
});
// Copy value constructor for type-check
if ((value !== undefined) && (value !== null)) {
this.constructor = value.constructor;
}
// To String method
this.toString = function () {
// Convert the internal value to string
return this.value + '';
};
} else {
// Outside `rvar` context...
// Initialice `rvar` object
if (!rvar.refs) {
rvar.refs = {};
}
// Initialize context if it is not defined
if (!context) {
context = this;
}
// Store variable
rvar.refs[name] = new rvar(name, value, context);
// Define variable at context
Object.defineProperty(context, name, {
// Getter
get: function () { return rvar.refs[name]; },
// Setter
set: function (v) { rvar.refs[name].value = v; },
// Can be overrided?
configurable: true
});
// Return object reference
return context[name];
}
}
// Variable Declaration
// Declare `test_ref` variable
rvar('test_ref_1');
// Assign value `5`
test_ref_1 = 5;
// Or
test_ref_1.value = 5;
// Or declare and initialize with `5`:
rvar('test_ref_2', 5);
// ------------------------------
// Test Code
// Test Function
function Fn1(v) { v.value = 100; }
// Test
function test(fn) { console.log(fn.toString()); console.info(fn()); }
// Declare
rvar('test_ref_number');
// First assign
test_ref_number = 5;
test(() => test_ref_number.value === 5);
// Call function with reference
Fn1(test_ref_number);
test(() => test_ref_number.value === 100);
// Increase value
test_ref_number++;
test(() => test_ref_number.value === 101);
// Update value
test_ref_number = test_ref_number - 10;
test(() => test_ref_number.value === 91);
Yet another approach to pass any (local, primitive) variables by reference is by wrapping variable with closure "on the fly" by eval. This also works with "use strict". (Note: be aware that eval is not friendly to JavaScript optimizers, and also missing quotes around variable name may cause unpredictive results)
"use strict"
// Return text that will reference variable by name (by capturing that variable to closure)
function byRef(varName){
return "({get value(){return "+varName+";}, set value(v){"+varName+"=v;}})";
}
// Demo
// Assign argument by reference
function modifyArgument(argRef, multiplier){
argRef.value = argRef.value * multiplier;
}
(function(){
var x = 10;
alert("x before: " + x);
modifyArgument(eval(byRef("x")), 42);
alert("x after: " + x);
})()
Live sample: https://jsfiddle.net/t3k4403w/
There's actually a pretty sollution:
function updateArray(context, targetName, callback) {
context[targetName] = context[targetName].map(callback);
}
var myArray = ['a', 'b', 'c'];
updateArray(this, 'myArray', item => {return '_' + item});
console.log(myArray); //(3) ["_a", "_b", "_c"]
I personally dislike the "pass by reference" functionality offered by various programming languages. Perhaps that's because I am just discovering the concepts of functional programming, but I always get goosebumps when I see functions that cause side effects (like manipulating parameters passed by reference). I personally strongly embrace the "single responsibility" principle.
IMHO, a function should return just one result/value using the return keyword. Instead of modifying a parameter/argument, I would just return the modified parameter/argument value and leave any desired reassignments up to the calling code.
But sometimes (hopefully very rarely), it is necessary to return two or more result values from the same function. In that case, I would opt to include all those resulting values in a single structure or object. Again, processing any reassignments should be up to the calling code.
Example:
Suppose passing parameters would be supported by using a special keyword like 'ref' in the argument list. My code might look something like this:
//The Function
function doSomething(ref value) {
value = "Bar";
}
//The Calling Code
var value = "Foo";
doSomething(value);
console.log(value); //Bar
Instead, I would actually prefer to do something like this:
//The Function
function doSomething(value) {
value = "Bar";
return value;
}
//The Calling Code:
var value = "Foo";
value = doSomething(value); //Reassignment
console.log(value); //Bar
When I would need to write a function that returns multiple values, I would not use parameters passed by reference either. So I would avoid code like this:
//The Function
function doSomething(ref value) {
value = "Bar";
//Do other work
var otherValue = "Something else";
return otherValue;
}
//The Calling Code
var value = "Foo";
var otherValue = doSomething(value);
console.log(value); //Bar
console.log(otherValue); //Something else
Instead, I would actually prefer to return both new values inside an object, like this:
//The Function
function doSomething(value) {
value = "Bar";
//Do more work
var otherValue = "Something else";
return {
value: value,
otherValue: otherValue
};
}
//The Calling Code:
var value = "Foo";
var result = doSomething(value);
value = result.value; //Reassignment
console.log(value); //Bar
console.log(result.otherValue);
These code examples are quite simplified, but it roughly demonstrates how I personally would handle such stuff. It helps me to keep various responsibilities in the correct place.
Happy coding. :)
I've been playing around with syntax to do this sort of thing, but it requires some helpers that are a little unusual. It starts with not using 'var' at all, but a simple 'DECLARE' helper that creates a local variable and defines a scope for it via an anonymous callback. By controlling how variables are declared, we can choose to wrap them into objects so that they can always be passed by reference, essentially. This is similar to one of the Eduardo Cuomo's answer above, but the solution below does not require using strings as variable identifiers. Here's some minimal code to show the concept.
function Wrapper(val){
this.VAL = val;
}
Wrapper.prototype.toString = function(){
return this.VAL.toString();
}
function DECLARE(val, callback){
var valWrapped = new Wrapper(val);
callback(valWrapped);
}
function INC(ref){
if(ref && ref.hasOwnProperty('VAL')){
ref.VAL++;
}
else{
ref++;//or maybe throw here instead?
}
return ref;
}
DECLARE(5, function(five){ //consider this line the same as 'let five = 5'
console.log("five is now " + five);
INC(five); // increment
console.log("five is incremented to " + five);
});
Actually it is really easy. The problem is understanding that once passing classic arguments, you are scoped into another, read-only zone.
The solution is to pass the arguments using JavaScript's object-oriented design. It is the same as putting the arguments in a global/scoped variable, but better...
function action(){
/* Process this.arg, modification allowed */
}
action.arg = [["empty-array"], "some string", 0x100, "last argument"];
action();
You can also promise stuff up to enjoy the well-known chain:
Here is the whole thing, with promise-like structure
function action(){
/* Process this.arg, modification allowed */
this.arg = ["a", "b"];
}
action.setArg = function(){this.arg = arguments; return this;}
action.setArg(["empty-array"], "some string", 0x100, "last argument")()
Or better yet...
action.setArg(["empty-array"],"some string",0x100,"last argument").call()
JavaScript can modify array items inside a function (it is passed as a reference to the object/array).
function makeAllPretty(items) {
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
items[x] = makePretty(items[x]);
}
}
myArray = new Array(var1, var2, var3);
makeAllPretty(myArray);
Here's another example:
function inc(items) {
for (let i=0; i < items.length; i++) {
items[i]++;
}
}
let values = [1,2,3];
inc(values);
console.log(values);
// Prints [2,3,4]
Putting aside the pass-by-reference discussion, those still looking for a solution to the stated question could use:
const myArray = new Array(var1, var2, var3);
myArray.forEach(var => var = makePretty(var));
As we don't have javascript pass by reference functionality, the only way to do this is to make the function return the value and let the caller assign it:
So
"makePretty(myArray[x]);"
should be
"myArray[x] = makePretty(myArray[x]);"
This is in case you need assignment inside the function, if only mutation is necessary, then passing the object and mutating it should be enough
I know exactly what you mean. The same thing in Swift will be no problem. The bottom line is use let, not var.
The fact that primitives are passed by value, but the fact that the value of var i at the point of iteration is not copied into the anonymous function is quite surprising to say the least.
for (let i = 0; i < boxArray.length; i++) {
boxArray[i].onclick = function() { console.log(i) }; // Correctly prints the index
}
If you want to pass variables by reference, a better way to do that is by passing your arguments in an object and then start changing the value by using window:
window["varName"] = value;
Example:
// Variables with first values
var x = 1, b = 0, f = 15;
function asByReference (
argumentHasVars = {}, // Passing variables in object
newValues = []) // Pass new values in array
{
let VarsNames = [];
// Getting variables names one by one
for(let name in argumentHasVars)
VarsNames.push(name);
// Accessing variables by using window one by one
for(let i = 0; i < VarsNames.length; i += 1)
window[VarsNames[i]] = newValues[i]; // Set new value
}
console.log(x, b, f); // Output with first values
asByReference({x, b, f}, [5, 5, 5]); // Passing as by reference
console.log(x, b, f); // Output after changing values
I like to solve the lack of by reference in JavaScript like this example shows.
The essence of this is that you don't try to create a by reference. You instead use the return functionality and make it able to return multiple values. So there isn't any need to insert your values in arrays or objects.
var x = "First";
var y = "Second";
var z = "Third";
log('Before call:',x,y,z);
with (myFunc(x, y, z)) {x = a; y = b; z = c;} // <-- Way to call it
log('After call :',x,y,z);
function myFunc(a, b, c) {
a = "Changed first parameter";
b = "Changed second parameter";
c = "Changed third parameter";
return {a:a, b:b, c:c}; // <-- Return multiple values
}
function log(txt,p1,p2,p3) {
document.getElementById('msg').innerHTML += txt + '<br>' + p1 + '<br>' + p2 + '<br>' + p3 + '<br><br>'
}
<div id='msg'></div>
Using Destructuring here is an example where I have 3 variables, and on each I do the multiple operations:
If value is less than 0 then change to 0,
If greater than 255 then change to 1,
Otherwise dived the number by 255 to convert from a range of 0-255 to a range of 0-1.
let a = 52.4, b = -25.1, c = 534.5;
[a, b, c] = [a, b, c].map(n => n < 0 ? 0 : n > 255 ? 1 : n / 255);
console.log(a, b, c); // 0.20549019607843136 0 1

How can you assign a var to a function and duplicate it?

Since the assignment operator can essentially assign variables to values/objects why cant you assign a variable to a function.
For example: When I assign var b = 5; b turns into 5, same for Objects when I create an instance. var b = c;
However when I assign var b = func(); it gives me the result or the return. Why does it do this and how do you make a duplicate function without the use of a closure or factory?
The () characters are the syntax that means "call the function".
Remove them and you'll get the reference to the function object instead of calling it and getting the return value.
function func () {
alert(1);
}
var b = func;
b();
setTimeout(func, 2000);

how to declare a global variable assign value in one function and use in another function in javascript

I just write a test html file to learn about object in javascript. The code is as follows
in script tag
<script type="text/javascript">
var obj = new ParentFn();
var obj2 = new AnotherParentFn();
var temp;
function initer()
{
temp = obj.Adding();
obj2.caller();
}
function ParentFn()
{
this.a = 10;
this.b = 20;
}
function AnotherParentFn()
{
this.a = 30;
this.b = 50;
}
AnotherParentFn.prototype.caller = function()
{
var self = this;
temp();
}
ParentFn.prototype.Adding = function()
{
var self = this;
document.getElementById("id_div1").innerHTML = " Method Called and Result of a+b is " + (self.a + self.b);
}
</script>
In body i use
<button onclick="initer()"> Click here to test </button>
<div id="id_div1"></div>
Problem is when AnotherParentFn.prototype.caller is called from initer() function temp variable is still undefined. What is wrong with the code??
My task is to assign the function ParentFn.prototype.Adding in a global variable and call the global variable from AnotherParentFn.prototype.caller function. How to achieve it?
You don't need to save it as a global variable. It's already saved in ParentFn.prototype. All you need to do is invoke it with .call and pass in your desired receiver. You can implement AnotherParentFn.prototype.caller like this:
AnotherParentFn.prototype.caller = function()
{
ParentFn.prototype.Adding.call(this);
}
This way you can get rid of temp completely. You also don't need to assign this to a local var self everywhere.
Parentheses are used to execute a function.
When you assign the value to temp, you are calling the function and assigning the result (undefined) to temp. To store a reference to the function in temp, omit the parentheses.
temp = obj.Adding;
By writing temp = obj.Adding(); it stores the return value. not function pointer in temp. Use this
function initer()
{
temp = obj.Adding;
obj2.caller();
}
First of all, the reference to obj.Adding is not assigned properly; it should be this (without parentheses):
function initer()
{
temp = obj.Adding;
obj2.caller();
}
Then, inside AnotherParentFn.prototype.caller itself, you must pass the current object as this explicitly during the invocation by using .call():
AnotherParentFn.prototype.caller = function()
{
temp.call(this);
}

Scope in javascript to access a private variable

a = function (){
var b = 10;
var k = function(){
console.log(b);
}();
}();
The above code will print 10.
var k = function(){
console.log(b);
}
var a = function (){
var b = 10;
k();
}();
This code will print undefined.
Is it possible to print 10 instead? Like binding the scope to k before calling it.
As #Derek answered, you can obviously pass an argument.
Aside from that, you can't transfer or change variable scope, but you can directly manipulate calling context.
As such, you can set b as the property of an object, and set that object as the calling context of whatever function you're calling.
var k = function(){
console.log(this.b);
}
var a = function (){
var obj = {b:10};
k.call(obj);
}();
The .call() method invokes the k function, but sets the first argument you provide as the calling context of the called function.
In fact, you don't technically need to use an object. You could directly set the number as the value to use...
var k = function(){
console.log(this);
}
var a = function (){
var b = 10;
k.call(b);
}();
In strict mode, you'll get the number, but in non-strict, you'll get the Number as its object wrapper.
Really? What have you tried?
var k = function(b){
console.log(b);
}
var a = function (){
var b = 10;
k(b); //Done.
}();
Why does it give you undefined in your second example is because b is not defined. You have to define it first before using the variable b.
var k = function(b){ //<--There, defined. Mission accomplished.
Access into the scope can be granted through eval.
var a = (function() {
var b = 10;
return {
eval: function(s) {
return eval(s);
}
};
})();
var k = function() {
console.log(a.eval("b"));
};
k();
​

How do I determine object that function is a method of?

var A = {
x : function () { }
};
var b = function (method) {
//want to know method's "parent" here
};
b(A.x);
I want to know that x is defined in A when I call the b(A.x). Is this possible?
There's no nice built-in way to do this, because actually there are no methods in Javascript. They are independent Function objects that just happen to be assigned somewhere.
If you create new instance of function every time (e.g. closure) [thanks Matthew Crumley for pointing that out], then you can modify the function object to explicitly associate it with its parent:
x.parent = A;
and then you can call it properly as if it was a method:
x.call(x.parent);
Otherwise you will have to pass both function and its parent object.
This question makes little sense from the perspective of the language as a function may exist on many objects.
var a = { name : 'a' },
b = { name : 'b' },
c = { name : 'c' };
a.x = function () { alert( this.name ); };
c.x = b.x = a.x; // a, b, and c all reference the same function
You may call the x function with any context you want:
a.x(); // alerts "a" because "this" is object a
b.x(); // alerts "b" because "this" is object b
a.x.call( b ); // alerts "b" because "this" is object b (via parameter)
You can manipulate this behavior to work for you:
var b = function ( method ) {
// parent = this;
};
b.call( A, A.x );
There isn't however any way of knowing from inside a function what object it is assigned to as this isn't necessarily a single place.
Even adding a parent property won't work in all cases, because if the function is in the object's prototype, there is only one copy of the function object, so there's no way to tell which instance it came from. Here's an example to show the problem:
function MyClass() {
// Create a MyClass object
}
MyClass.prototype.x = function() { return 42; };
var a = new MyClass();
a.x.parent = a; // Set the parent to a
var b = new MyClass();
b.x.parent = b; // b.x and a.x both reference the same function from MyClass.prototype
Now, a.x.parent and b.x.parent are both set to b.
#porneL's method will work as long as each object gets its own copy of the function.
It's probably better to modify the function to take a parent object and a method so it will work with any function.
Every function in JavaScript is actually a Function object.
<html>
<body>
<script>
var A = {
x: function (a_a, a_b) { alert(a_a + a_b); }
};
var b = function (a_method) {
alert(a_method.toString());
a_method.call(this, 1, 2);
};
b(A.x);
</script>

Categories

Resources