Related
What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.
What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.
Is it possible to create private properties in ES6 classes?
Here's an example.
How can I prevent access to instance.property?
class Something {
constructor(){
this.property = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
Private class features is now supported by the majority of browsers.
class Something {
#property;
constructor(){
this.#property = "test";
}
#privateMethod() {
return 'hello world';
}
getPrivateMessage() {
return this.#property;
}
}
const instance = new Something();
console.log(instance.property); //=> undefined
console.log(instance.privateMethod); //=> undefined
console.log(instance.getPrivateMessage()); //=> test
console.log(instance.#property); //=> Syntax error
Update: See others answer, this is outdated.
Short answer, no, there is no native support for private properties with ES6 classes.
But you could mimic that behaviour by not attaching the new properties to the object, but keeping them inside a class constructor, and use getters and setters to reach the hidden properties. Note that the getters and setters gets redefine on each new instance of the class.
ES6
class Person {
constructor(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
}
ES5
function Person(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
Yes, prefix the name with # and include it in the class definition, not just the constructor.
MDN Docs
Real private properties were finally added in ES2022. As of 2023-01-01, private properties (fields and methods) have been supported in all major browsers for at least a year, but 5-10% of users are still on older browsers [Can I Use].
Example:
class Person {
#age
constructor(name) {
this.name = name; // this is public
this.#age = 20; // this is private
}
greet() {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${this.#age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Following are methods for keeping properties private in pre-ES2022 environments, with various tradeoffs.
Scoped variables
The approach here is to use the scope of the constructor function, which is private, to store private data. For methods to have access to this private data they must be created within the constructor as well, meaning you're recreating them with every instance. This is a performance and memory penalty, but it may be acceptable. The penalty can be avoided for methods that do not need access to private data by declaring them in the normal way.
Example:
class Person {
constructor(name) {
let age = 20; // this is private
this.name = name; // this is public
this.greet = () => {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${age}`);
};
}
anotherMethod() {
// here we can access name but not age
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Scoped WeakMap
A WeakMap can be used to improve the performance of the above approach, in exchange for even more clutter. WeakMaps associate data with Objects (here, class instances) in such a way that it can only be accessed using that WeakMap. So, we use the scoped variables method to create a private WeakMap, then use that WeakMap to retrieve private data associated with this. This is faster than the scoped variables method because all your instances can share a single WeakMap, so you don't need to recreate methods just to make them access their own WeakMaps.
Example:
let Person = (function () {
let privateProps = new WeakMap();
return class Person {
constructor(name) {
this.name = name; // this is public
privateProps.set(this, {age: 20}); // this is private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${privateProps.get(this).age}`);
}
};
})();
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
This example uses a WeakMap with Object keys to use one WeakMap for multiple private properties; you could also use multiple WeakMaps and use them like privateAge.set(this, 20), or write a small wrapper and use it another way, like privateProps.set(this, 'age', 0).
The privacy of this approach could theoretically be breached by tampering with the global WeakMap object. That said, all JavaScript can be broken by mangled globals.
(This method could also be done with Map, but WeakMap is better because Map will create memory leaks unless you're very careful, and for this purpose the two aren't otherwise different.)
Half-Answer: Scoped Symbols
A Symbol is a type of primitive value that can serve as a property name instead of a string. You can use the scoped variable method to create a private Symbol, then store private data at this[mySymbol].
The privacy of this method can be breached using Object.getOwnPropertySymbols, but is somewhat awkward to do.
Example:
let Person = (() => {
let ageKey = Symbol();
return class Person {
constructor(name) {
this.name = name; // this is public
this[ageKey] = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this[ageKey]}`);
}
}
})();
let joe = new Person('Joe');
joe.greet();
// Here we can access joe's name and, with a little effort, age. We can’t
// access ageKey directly, but we can obtain it by listing all Symbol
// properties on `joe` with `Object.getOwnPropertySymbols(joe)`.
Note that making a property non-enumerable using Object.defineProperty does not prevent it from being included in Object.getOwnPropertySymbols.
Half-Answer: Underscores
The old convention is to just use a public property with an underscore prefix. This does not keep it private, but it does do a good job of communicating to readers that they should treat it as private, which often gets the job done. In exchange for this, we get an approach that's easier to read, easier to type, and faster than the other workarounds.
Example:
class Person {
constructor(name) {
this.name = name; // this is public
this._age = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this._age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// Here we can access both joe's name and age. But we know we aren't
// supposed to access his age, which just might stop us.
Summary
ES2022: great but not yet supported by all visitors
Scoped variables: private, slower, awkward
Scoped WeakMaps: hackable, awkward
Scoped Symbols: enumerable and hackable, somewhat awkward
Underscores: just a request for privacy, no other downsides
Update: A proposal with nicer syntax is on its way. Contributions are welcome.
Yes, there is - for scoped access in objects - ES6 introduces Symbols.
Symbols are unique, you can't gain access to one from the outside except with reflection (like privates in Java/C#) but anyone who has access to a symbol on the inside can use it for key access:
var property = Symbol();
class Something {
constructor(){
this[property] = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> undefined, can only access with access to the Symbol
The answer is "No". But you can create private access to properties like this:
Use modules. Everything in a module is private unless it's made public by using the export keyword.
Inside modules, use function closure: http://www.kirupa.com/html5/closures_in_javascript.htm
(The suggestion that Symbols could be used to ensure privacy was true in an earlier version of the ES6 spec but is no longer the case:https://mail.mozilla.org/pipermail/es-discuss/2014-January/035604.html and https://stackoverflow.com/a/22280202/1282216. For a longer discussion about Symbols and privacy see: https://curiosity-driven.org/private-properties-in-javascript)
The only way to get true privacy in JS is through scoping, so there is no way to have a property that is a member of this that will be accessible only inside the component. The best way to store truly private data in ES6 is with a WeakMap.
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
privateProp1.set(this, "I am Private1");
privateProp2.set(this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(privateProp1.get(this), privateProp2.get(this))
};
}
printPrivate() {
console.log(privateProp1.get(this));
}
}
Obviously this is a probably slow, and definitely ugly, but it does provide privacy.
Keep in mind that EVEN THIS isn't perfect, because Javascript is so dynamic. Someone could still do
var oldSet = WeakMap.prototype.set;
WeakMap.prototype.set = function(key, value){
// Store 'this', 'key', and 'value'
return oldSet.call(this, key, value);
};
to catch values as they are stored, so if you wanted to be extra careful, you'd need to capture a local reference to .set and .get to use explicitly instead of relying on the overridable prototype.
const {set: WMSet, get: WMGet} = WeakMap.prototype;
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
WMSet.call(privateProp1, this, "I am Private1");
WMSet.call(privateProp2, this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(WMGet.call(privateProp1, this), WMGet.call(privateProp2, this))
};
}
printPrivate() {
console.log(WMGet.call(privateProp1, this));
}
}
For future reference of other on lookers, I'm hearing now that the recommendation is to use WeakMaps to hold private data.
Here is a more clear, working example:
function storePrivateProperties(a, b, c, d) {
let privateData = new WeakMap;
// unique object as key, weak map can only accept object as key, when key is no longer referened, garbage collector claims the key-value
let keyA = {}, keyB = {}, keyC = {}, keyD = {};
privateData.set(keyA, a);
privateData.set(keyB, b);
privateData.set(keyC, c);
privateData.set(keyD, d);
return {
logPrivateKey(key) {
switch(key) {
case "a":
console.log(privateData.get(keyA));
break;
case "b":
console.log(privateData.get(keyB));
break;
case "c":
console.log(privateData.get(keyC));
break;
case "d":
console.log(privateData.set(keyD));
break;
default:
console.log(`There is no value for ${key}`)
}
}
}
}
Depends on whom you ask :-)
No private property modifier is included in the Maximally minimal classes proposal which seems to have made it into the current draft.
However, there might be support for private names, which does allow private properties - and they probably could be used in class definitions as well.
Using ES6 modules (initially proposed by #d13) works well for me. It doesn't mimic private properties perfectly, but at least you can be confident that properties that should be private won't leak outside of your class. Here's an example:
something.js
let _message = null;
const _greet = name => {
console.log('Hello ' + name);
};
export default class Something {
constructor(message) {
_message = message;
}
say() {
console.log(_message);
_greet('Bob');
}
};
Then the consuming code can look like this:
import Something from './something.js';
const something = new Something('Sunny day!');
something.say();
something._message; // undefined
something._greet(); // exception
Update (Important):
As #DanyalAytekin outlined in the comments, these private properties are static, so therefore global in scope. They will work well when working with Singletons, but care must be taken for Transient objects. Extending the example above:
import Something from './something.js';
import Something2 from './something.js';
const a = new Something('a');
a.say(); // a
const b = new Something('b');
b.say(); // b
const c = new Something2('c');
c.say(); // c
a.say(); // c
b.say(); // c
c.say(); // c
Yes - you can create encapsulated property, but it's not been done with access modifiers (public|private) at least not with ES6.
Here is a simple example how it can be done with ES6:
1 Create class using class word
2 Inside it's constructor declare block-scoped variable using let OR const reserved words -> since they are block-scope they cannot be accessed from outside (encapsulated)
3 To allow some access control (setters|getters) to those variables you can declare instance method inside it's constructor using: this.methodName=function(){} syntax
"use strict";
class Something{
constructor(){
//private property
let property="test";
//private final (immutable) property
const property2="test2";
//public getter
this.getProperty2=function(){
return property2;
}
//public getter
this.getProperty=function(){
return property;
}
//public setter
this.setProperty=function(prop){
property=prop;
}
}
}
Now lets check it:
var s=new Something();
console.log(typeof s.property);//undefined
s.setProperty("another");//set to encapsulated `property`
console.log(s.getProperty());//get encapsulated `property` value
console.log(s.getProperty2());//get encapsulated immutable `property2` value
Completing #d13 and the comments by #johnny-oshika and #DanyalAytekin:
I guess in the example provided by #johnny-oshika we could use normal functions instead of arrow functions and then .bind them with the current object plus a _privates object as a curried parameter:
something.js
function _greet(_privates) {
return 'Hello ' + _privates.message;
}
function _updateMessage(_privates, newMessage) {
_privates.message = newMessage;
}
export default class Something {
constructor(message) {
const _privates = {
message
};
this.say = _greet.bind(this, _privates);
this.updateMessage = _updateMessage.bind(this, _privates);
}
}
main.js
import Something from './something.js';
const something = new Something('Sunny day!');
const message1 = something.say();
something.updateMessage('Cloudy day!');
const message2 = something.say();
console.log(message1 === 'Hello Sunny day!'); // true
console.log(message2 === 'Hello Cloudy day!'); // true
// the followings are not public
console.log(something._greet === undefined); // true
console.log(something._privates === undefined); // true
console.log(something._updateMessage === undefined); // true
// another instance which doesn't share the _privates
const something2 = new Something('another Sunny day!');
const message3 = something2.say();
console.log(message3 === 'Hello another Sunny day!'); // true
Benefits I can think of:
we can have private methods (_greet and _updateMessage act like private methods as long as we don't export the references)
although they're not on the prototype, the above mentioned methods will save memory because the instances are created once, outside the class (as opposed to defining them in the constructor)
we don't leak any globals since we're inside a module
we can also have private properties using the binded _privates object
Some drawbacks I can think of:
less intuitive
mixed usage of class syntax and old school patterns (object bindings, module/function scoped variables)
hard bindings - we can't rebind the public methods (although we can improve this by using soft bindings (https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md#softening-binding))
A running snippet can be found here: http://www.webpackbin.com/NJgI5J8lZ
A different approach to "private"
Instead of fighting against the fact that private visibility is currently unavailable in ES6, I decided to take a more practical approach that does just fine if your IDE supports JSDoc (e.g., Webstorm). The idea is to use the #private tag. As far as development goes, the IDE will prevent you from accessing any private member from outside its class. Works pretty well for me and it's been really useful for hiding internal methods so the auto-complete feature shows me just what the class really meant to expose. Here's an example:
Oh, so many exotic solutions! I usually don't care about privacy so I use "pseudo privacy" as it's said here. But if do care (if there are some special requirements for that) I use something like in this example:
class jobImpl{
// public
constructor(name){
this.name = name;
}
// public
do(time){
console.log(`${this.name} started at ${time}`);
this.prepare();
this.execute();
}
//public
stop(time){
this.finish();
console.log(`${this.name} finished at ${time}`);
}
// private
prepare(){ console.log('prepare..'); }
// private
execute(){ console.log('execute..'); }
// private
finish(){ console.log('finish..'); }
}
function Job(name){
var impl = new jobImpl(name);
return {
do: time => impl.do(time),
stop: time => impl.stop(time)
};
}
// Test:
// create class "Job"
var j = new Job("Digging a ditch");
// call public members..
j.do("08:00am");
j.stop("06:00pm");
// try to call private members or fields..
console.log(j.name); // undefined
j.execute(); // error
Another possible implementation of function (constructor) Job:
function Job(name){
var impl = new jobImpl(name);
this.do = time => impl.do(time),
this.stop = time => impl.stop(time)
}
WeakMap
supported in IE11 (Symbols are not)
hard-private (props using Symbols are soft-private due to Object.getOwnPropertySymbols)
can look really clean (unlike closures which require all props and methods in the constructor)
First, define a function to wrap WeakMap:
function Private() {
const map = new WeakMap();
return obj => {
let props = map.get(obj);
if (!props) {
props = {};
map.set(obj, props);
}
return props;
};
}
Then, construct a reference outside your class:
const p = new Private();
class Person {
constructor(name, age) {
this.name = name;
p(this).age = age; // it's easy to set a private variable
}
getAge() {
return p(this).age; // and get a private variable
}
}
Note: class isn't supported by IE11, but it looks cleaner in the example.
I came across this post when looking for the best practice for "private data for classes". It was mentioned that a few of the patterns would have performance issues.
I put together a few jsperf tests based on the 4 main patterns from the online book "Exploring ES6":
http://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes
The tests can be found here:
https://jsperf.com/private-data-for-classes
In Chrome 63.0.3239 / Mac OS X 10.11.6, the best performing patterns were "Private data via constructor environments" and "Private data via a naming convention". For me Safari performed well for WeakMap but Chrome not so well.
I don't know the memory impact, but the pattern for "constructor environments" which some had warned would be a performance issue was very performant.
The 4 basic patterns are:
Private data via constructor environments
class Countdown {
constructor(counter, action) {
Object.assign(this, {
dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
});
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via constructor environments 2
class Countdown {
constructor(counter, action) {
this.dec = function dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via a naming convention
class Countdown {
constructor(counter, action) {
this._counter = counter;
this._action = action;
}
dec() {
if (this._counter < 1) return;
this._counter--;
if (this._counter === 0) {
this._action();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via WeakMaps
const _counter = new WeakMap();
const _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
let counter = _counter.get(this);
if (counter < 1) return;
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via symbols
const _counter = Symbol('counter');
const _action = Symbol('action');
class Countdown {
constructor(counter, action) {
this[_counter] = counter;
this[_action] = action;
}
dec() {
if (this[_counter] < 1) return;
this[_counter]--;
if (this[_counter] === 0) {
this[_action]();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Personally I like the proposal of the bind operator :: and would then combine it with the solution #d13 mentioned but for now stick with #d13 's answer where you use the export keyword for your class and put the private functions in the module.
there is one more solution tough which hasn't been mentioned here that follows are more functional approach and would allow it to have all the private props/methods within the class.
Private.js
export const get = state => key => state[key];
export const set = state => (key,value) => { state[key] = value; }
Test.js
import { get, set } from './utils/Private'
export default class Test {
constructor(initialState = {}) {
const _set = this.set = set(initialState);
const _get = this.get = get(initialState);
this.set('privateMethod', () => _get('propValue'));
}
showProp() {
return this.get('privateMethod')();
}
}
let one = new Test({ propValue: 5});
let two = new Test({ propValue: 8});
two.showProp(); // 8
one.showProp(); // 5
comments on it would be appreciated.
I think Benjamin's answer is probably the best for most cases until the language natively supports explicitly private variables.
However, if for some reason you need to prevent access with Object.getOwnPropertySymbols(), a method I've considered using is attaching a unique, non-configurable, non-enumerable, non-writable property that can be used as a property identifier to each object on construction (such as a unique Symbol, if you don't already have some other unique property like an id). Then just keep a map of each object's 'private' variables using that identifier.
const privateVars = {};
class Something {
constructor(){
Object.defineProperty(this, '_sym', {
configurable: false,
enumerable: false,
writable: false,
value: Symbol()
});
var myPrivateVars = {
privateProperty: "I'm hidden"
};
privateVars[this._sym] = myPrivateVars;
this.property = "I'm public";
}
getPrivateProperty() {
return privateVars[this._sym].privateProperty;
}
// A clean up method of some kind is necessary since the
// variables won't be cleaned up from memory automatically
// when the object is garbage collected
destroy() {
delete privateVars[this._sym];
}
}
var instance = new Something();
console.log(instance.property); //=> "I'm public"
console.log(instance.privateProperty); //=> undefined
console.log(instance.getPrivateProperty()); //=> "I'm hidden"
The potential advantage of this approach over using a WeakMap is faster access time if performance becomes a concern.
I believe it is possible to get 'best of both worlds' using closures inside constructors. There are two variations:
All data members are private
function myFunc() {
console.log('Value of x: ' + this.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
console.log('Enhanced value of x: ' + (this.x + 1));
}
class Test {
constructor() {
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(internal);
this.myFunc = myFunc.bind(internal);
}
};
Some members are private
NOTE: This is admittedly ugly. If you know a better solution, please edit this response.
function myFunc(priv, pub) {
pub.y = 3; // The Test object now gets a member 'y' with value 3.
console.log('Value of x: ' + priv.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
pub.z = 5; // The Test object now gets a member 'z' with value 3.
console.log('Enhanced value of x: ' + (priv.x + 1));
}
class Test {
constructor() {
let self = this;
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(null, internal, self);
this.myFunc = myFunc.bind(null, internal, self);
}
};
In fact it is possible using Symbols and Proxies. You use the symbols in the class scope and set two traps in a proxy: one for the class prototype so that the Reflect.ownKeys(instance) or Object.getOwnPropertySymbols doesn't give your symbols away, the other one is for the constructor itself so when new ClassName(attrs) is called, the instance returned will be intercepted and have the own properties symbols blocked.
Here's the code:
const Human = (function() {
const pet = Symbol();
const greet = Symbol();
const Human = privatizeSymbolsInFn(function(name) {
this.name = name; // public
this[pet] = 'dog'; // private
});
Human.prototype = privatizeSymbolsInObj({
[greet]() { // private
return 'Hi there!';
},
revealSecrets() {
console.log(this[greet]() + ` The pet is a ${this[pet]}`);
}
});
return Human;
})();
const bob = new Human('Bob');
console.assert(bob instanceof Human);
console.assert(Reflect.ownKeys(bob).length === 1) // only ['name']
console.assert(Reflect.ownKeys(Human.prototype).length === 1 ) // only ['revealSecrets']
// Setting up the traps inside proxies:
function privatizeSymbolsInObj(target) {
return new Proxy(target, { ownKeys: Object.getOwnPropertyNames });
}
function privatizeSymbolsInFn(Class) {
function construct(TargetClass, argsList) {
const instance = new TargetClass(...argsList);
return privatizeSymbolsInObj(instance);
}
return new Proxy(Class, { construct });
}
Reflect.ownKeys() works like so: Object.getOwnPropertyNames(myObj).concat(Object.getOwnPropertySymbols(myObj)) that's why we need a trap for these objects.
Even Typescript can't do it. From their documentation:
When a member is marked private, it cannot be accessed from outside of its containing class. For example:
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
new Animal("Cat").name; // Error: 'name' is private;
But transpiled on their playground this gives:
var Animal = (function () {
function Animal(theName) {
this.name = theName;
}
return Animal;
}());
console.log(new Animal("Cat").name);
So their "private" keyword is ineffective.
Coming very late to this party but I hit the OP question in a search so...
Yes, you can have private properties by wrapping the class declaration in a closure
There is an example of how I have private methods in this codepen. In the snippet below, the Subscribable class has two 'private' functions process and processCallbacks. Any properties can be added in this manner and they are kept private through the use of the closure. IMO Privacy is a rare need if concerns are well separated and Javascript does not need to become bloated by adding more syntax when a closure neatly does the job.
const Subscribable = (function(){
const process = (self, eventName, args) => {
self.processing.set(eventName, setTimeout(() => processCallbacks(self, eventName, args)))};
const processCallbacks = (self, eventName, args) => {
if (self.callingBack.get(eventName).length > 0){
const [nextCallback, ...callingBack] = self.callingBack.get(eventName);
self.callingBack.set(eventName, callingBack);
process(self, eventName, args);
nextCallback(...args)}
else {
delete self.processing.delete(eventName)}};
return class {
constructor(){
this.callingBack = new Map();
this.processing = new Map();
this.toCallbacks = new Map()}
subscribe(eventName, callback){
const callbacks = this.unsubscribe(eventName, callback);
this.toCallbacks.set(eventName, [...callbacks, callback]);
return () => this.unsubscribe(eventName, callback)} // callable to unsubscribe for convenience
unsubscribe(eventName, callback){
let callbacks = this.toCallbacks.get(eventName) || [];
callbacks = callbacks.filter(subscribedCallback => subscribedCallback !== callback);
if (callbacks.length > 0) {
this.toCallbacks.set(eventName, callbacks)}
else {
this.toCallbacks.delete(eventName)}
return callbacks}
emit(eventName, ...args){
this.callingBack.set(eventName, this.toCallbacks.get(eventName) || []);
if (!this.processing.has(eventName)){
process(this, eventName, args)}}}})();
I like this approach because it separates concerns nicely and keeps things truly private. The only downside is the need to use 'self' (or something similar) to refer to 'this' in the private content.
Yes totally can, and pretty easily too. This is done by exposing your private variables and functions by returning the prototype object graph in the constructor. This is nothing new, but take a bit of js foo to understand the elegance of it. This way does not use global scoped, or weakmaps. It is a form of reflection built into the language. Depending on how you leverage this; one can either force an exception which interrupts the call stack, or bury the exception as an undefined. This is demonstarted below, and can read more about these features here
class Clazz {
constructor() {
var _level = 1
function _private(x) {
return _level * x;
}
return {
level: _level,
public: this.private,
public2: function(x) {
return _private(x);
},
public3: function(x) {
return _private(x) * this.public(x);
},
};
}
private(x) {
return x * x;
}
}
var clazz = new Clazz();
console.log(clazz._level); //undefined
console.log(clazz._private); // undefined
console.log(clazz.level); // 1
console.log(clazz.public(1)); //1
console.log(clazz.public2(2)); //2
console.log(clazz.public3(3)); //27
console.log(clazz.private(0)); //error
class Something {
constructor(){
var _property = "test";
Object.defineProperty(this, "property", {
get: function(){ return _property}
});
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
instance.property = "can read from outside, but can't write";
console.log(instance.property); //=> "test"
Another way similar to the last two posted
class Example {
constructor(foo) {
// privates
const self = this;
this.foo = foo;
// public interface
return self.public;
}
public = {
// empty data
nodata: { data: [] },
// noop
noop: () => {},
}
// everything else private
bar = 10
}
const test = new Example('FOO');
console.log(test.foo); // undefined
console.log(test.noop); // { data: [] }
console.log(test.bar); // undefined
I found a very simple solution, just use Object.freeze(). Of course the problem is you can't add nothing to the object later.
class Cat {
constructor(name ,age) {
this.name = name
this.age = age
Object.freeze(this)
}
}
let cat = new Cat('Garfield', 5)
cat.age = 6 // doesn't work, even throws an error in strict mode
This code demonstrates private and public, static and non-static, instance and class-level, variables, methods, and properties.
https://codesandbox.io/s/class-demo-837bj
class Animal {
static count = 0 // class static public
static #ClassPriVar = 3 // class static private
constructor(kind) {
this.kind = kind // instance public property
Animal.count++
let InstancePriVar = 'InstancePriVar: ' + kind // instance private constructor-var
log(InstancePriVar)
Animal.#ClassPriVar += 3
this.adhoc = 'adhoc' // instance public property w/out constructor- parameter
}
#PawCount = 4 // instance private var
set Paws(newPawCount) {
// instance public prop
this.#PawCount = newPawCount
}
get Paws() {
// instance public prop
return this.#PawCount
}
get GetPriVar() {
// instance public prop
return Animal.#ClassPriVar
}
static get GetPriVarStat() {
// class public prop
return Animal.#ClassPriVar
}
PrintKind() {
// instance public method
log('kind: ' + this.kind)
}
ReturnKind() {
// instance public function
return this.kind
}
/* May be unsupported
get #PrivMeth(){ // instance private prop
return Animal.#ClassPriVar + ' Private Method'
}
static get #PrivMeth(){ // class private prop
return Animal.#ClassPriVar + ' Private Method'
}
*/
}
function log(str) {
console.log(str)
}
// TESTING
log(Animal.count) // static, avail w/out instance
log(Animal.GetPriVarStat) // static, avail w/out instance
let A = new Animal('Cat')
log(Animal.count + ': ' + A.kind)
log(A.GetPriVar)
A.PrintKind()
A.Paws = 6
log('Paws: ' + A.Paws)
log('ReturnKind: ' + A.ReturnKind())
log(A.adhoc)
let B = new Animal('Dog')
log(Animal.count + ': ' + B.kind)
log(B.GetPriVar)
log(A.GetPriVar) // returns same as B.GetPriVar. Acts like a class-level property, but called like an instance-level property. It's cuz non-stat fx requires instance.
log('class: ' + Animal.GetPriVarStat)
// undefined
log('instance: ' + B.GetPriVarStat) // static class fx
log(Animal.GetPriVar) // non-stat instance fx
log(A.InstancePriVar) // private
log(Animal.InstancePriVar) // private instance var
log('PawCount: ' + A.PawCount) // private. Use getter
/* log('PawCount: ' + A.#PawCount) // private. Use getter
log('PawCount: ' + Animal.#PawCount) // Instance and private. Use getter */
Reading the previous answer i thought that this example can summarise the above solutions
const friend = Symbol('friend');
const ClassName = ((hidden, hiddenShared = 0) => {
class ClassName {
constructor(hiddenPropertyValue, prop){
this[hidden] = hiddenPropertyValue * ++hiddenShared;
this.prop = prop
}
get hidden(){
console.log('getting hidden');
return this[hidden];
}
set [friend](v){
console.log('setting hiddenShared');
hiddenShared = v;
}
get counter(){
console.log('getting hiddenShared');
return hiddenShared;
}
get privileged(){
console.log('calling privileged method');
return privileged.bind(this);
}
}
function privileged(value){
return this[hidden] + value;
}
return ClassName;
})(Symbol('hidden'), 0);
const OtherClass = (() => class OtherClass extends ClassName {
constructor(v){
super(v, 100);
this[friend] = this.counter - 1;
}
})();
UPDATE
now is it possible to make true private properties and methods (at least on chrome based browsers for now).
The syntax is pretty neat
class MyClass {
#privateProperty = 1
#privateMethod() { return 2 }
static #privateStatic = 3
static #privateStaticMethod(){return 4}
static get #privateStaticGetter(){return 5}
// also using is quite straightforward
method(){
return (
this.#privateMethod() +
this.#privateProperty +
MyClass.#privateStatic +
MyClass.#privateStaticMethod() +
MyClass.#privateStaticGetter
)
}
}
new MyClass().method()
// returns 15
Note that for retrieving static references you wouldn't use this.constructor.#private, because it would brake its subclasses. You must use a reference to the proper class in order to retrieve its static private references (that are available only inside the methods of that class), ie MyClass.#private.
Most answers either say it's impossible, or require you to use a WeakMap or Symbol, which are ES6 features that would probably require polyfills. There's however another way! Check out this out:
// 1. Create closure
var SomeClass = function() {
// 2. Create `key` inside a closure
var key = {};
// Function to create private storage
var private = function() {
var obj = {};
// return Function to access private storage using `key`
return function(testkey) {
if(key === testkey) return obj;
// If `key` is wrong, then storage cannot be accessed
console.error('Cannot access private properties');
return undefined;
};
};
var SomeClass = function() {
// 3. Create private storage
this._ = private();
// 4. Access private storage using the `key`
this._(key).priv_prop = 200;
};
SomeClass.prototype.test = function() {
console.log(this._(key).priv_prop); // Using property from prototype
};
return SomeClass;
}();
// Can access private property from within prototype
var instance = new SomeClass();
instance.test(); // `200` logged
// Cannot access private property from outside of the closure
var wrong_key = {};
instance._(wrong_key); // undefined; error logged
I call this method accessor pattern. The essential idea is that we have a closure, a key inside the closure, and we create a private object (in the constructor) that can only be accessed if you have the key.
If you are interested, you can read more about this in my article. Using this method, you can create per object properties that cannot be accessed outside of the closure. Therefore, you can use them in constructor or prototype, but not anywhere else. I haven't seen this method used anywhere, but I think it's really powerful.
See this answer for a a clean & simple 'class' solution with a private and public interface and support for composition
I use this pattern and it's always worked for me
class Test {
constructor(data) {
class Public {
constructor(prv) {
// public function (must be in constructor on order to access "prv" variable)
connectToDb(ip) {
prv._db(ip, prv._err);
}
}
// public function w/o access to "prv" variable
log() {
console.log("I'm logging");
}
}
// private variables
this._data = data;
this._err = function(ip) {
console.log("could not connect to "+ip);
}
}
// private function
_db(ip, err) {
if(!!ip) {
console.log("connected to "+ip+", sending data '"+this.data+"'");
return true;
}
else err(ip);
}
}
var test = new Test(10),
ip = "185.167.210.49";
test.connectToDb(ip); // true
test.log(); // I'm logging
test._err(ip); // undefined
test._db(ip, function() { console.log("You have got hacked!"); }); // undefined
Is it possible to create private properties in ES6 classes?
Here's an example.
How can I prevent access to instance.property?
class Something {
constructor(){
this.property = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
Private class features is now supported by the majority of browsers.
class Something {
#property;
constructor(){
this.#property = "test";
}
#privateMethod() {
return 'hello world';
}
getPrivateMessage() {
return this.#property;
}
}
const instance = new Something();
console.log(instance.property); //=> undefined
console.log(instance.privateMethod); //=> undefined
console.log(instance.getPrivateMessage()); //=> test
console.log(instance.#property); //=> Syntax error
Update: See others answer, this is outdated.
Short answer, no, there is no native support for private properties with ES6 classes.
But you could mimic that behaviour by not attaching the new properties to the object, but keeping them inside a class constructor, and use getters and setters to reach the hidden properties. Note that the getters and setters gets redefine on each new instance of the class.
ES6
class Person {
constructor(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
}
ES5
function Person(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
Yes, prefix the name with # and include it in the class definition, not just the constructor.
MDN Docs
Real private properties were finally added in ES2022. As of 2023-01-01, private properties (fields and methods) have been supported in all major browsers for at least a year, but 5-10% of users are still on older browsers [Can I Use].
Example:
class Person {
#age
constructor(name) {
this.name = name; // this is public
this.#age = 20; // this is private
}
greet() {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${this.#age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Following are methods for keeping properties private in pre-ES2022 environments, with various tradeoffs.
Scoped variables
The approach here is to use the scope of the constructor function, which is private, to store private data. For methods to have access to this private data they must be created within the constructor as well, meaning you're recreating them with every instance. This is a performance and memory penalty, but it may be acceptable. The penalty can be avoided for methods that do not need access to private data by declaring them in the normal way.
Example:
class Person {
constructor(name) {
let age = 20; // this is private
this.name = name; // this is public
this.greet = () => {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${age}`);
};
}
anotherMethod() {
// here we can access name but not age
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Scoped WeakMap
A WeakMap can be used to improve the performance of the above approach, in exchange for even more clutter. WeakMaps associate data with Objects (here, class instances) in such a way that it can only be accessed using that WeakMap. So, we use the scoped variables method to create a private WeakMap, then use that WeakMap to retrieve private data associated with this. This is faster than the scoped variables method because all your instances can share a single WeakMap, so you don't need to recreate methods just to make them access their own WeakMaps.
Example:
let Person = (function () {
let privateProps = new WeakMap();
return class Person {
constructor(name) {
this.name = name; // this is public
privateProps.set(this, {age: 20}); // this is private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${privateProps.get(this).age}`);
}
};
})();
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
This example uses a WeakMap with Object keys to use one WeakMap for multiple private properties; you could also use multiple WeakMaps and use them like privateAge.set(this, 20), or write a small wrapper and use it another way, like privateProps.set(this, 'age', 0).
The privacy of this approach could theoretically be breached by tampering with the global WeakMap object. That said, all JavaScript can be broken by mangled globals.
(This method could also be done with Map, but WeakMap is better because Map will create memory leaks unless you're very careful, and for this purpose the two aren't otherwise different.)
Half-Answer: Scoped Symbols
A Symbol is a type of primitive value that can serve as a property name instead of a string. You can use the scoped variable method to create a private Symbol, then store private data at this[mySymbol].
The privacy of this method can be breached using Object.getOwnPropertySymbols, but is somewhat awkward to do.
Example:
let Person = (() => {
let ageKey = Symbol();
return class Person {
constructor(name) {
this.name = name; // this is public
this[ageKey] = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this[ageKey]}`);
}
}
})();
let joe = new Person('Joe');
joe.greet();
// Here we can access joe's name and, with a little effort, age. We can’t
// access ageKey directly, but we can obtain it by listing all Symbol
// properties on `joe` with `Object.getOwnPropertySymbols(joe)`.
Note that making a property non-enumerable using Object.defineProperty does not prevent it from being included in Object.getOwnPropertySymbols.
Half-Answer: Underscores
The old convention is to just use a public property with an underscore prefix. This does not keep it private, but it does do a good job of communicating to readers that they should treat it as private, which often gets the job done. In exchange for this, we get an approach that's easier to read, easier to type, and faster than the other workarounds.
Example:
class Person {
constructor(name) {
this.name = name; // this is public
this._age = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this._age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// Here we can access both joe's name and age. But we know we aren't
// supposed to access his age, which just might stop us.
Summary
ES2022: great but not yet supported by all visitors
Scoped variables: private, slower, awkward
Scoped WeakMaps: hackable, awkward
Scoped Symbols: enumerable and hackable, somewhat awkward
Underscores: just a request for privacy, no other downsides
Update: A proposal with nicer syntax is on its way. Contributions are welcome.
Yes, there is - for scoped access in objects - ES6 introduces Symbols.
Symbols are unique, you can't gain access to one from the outside except with reflection (like privates in Java/C#) but anyone who has access to a symbol on the inside can use it for key access:
var property = Symbol();
class Something {
constructor(){
this[property] = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> undefined, can only access with access to the Symbol
The answer is "No". But you can create private access to properties like this:
Use modules. Everything in a module is private unless it's made public by using the export keyword.
Inside modules, use function closure: http://www.kirupa.com/html5/closures_in_javascript.htm
(The suggestion that Symbols could be used to ensure privacy was true in an earlier version of the ES6 spec but is no longer the case:https://mail.mozilla.org/pipermail/es-discuss/2014-January/035604.html and https://stackoverflow.com/a/22280202/1282216. For a longer discussion about Symbols and privacy see: https://curiosity-driven.org/private-properties-in-javascript)
The only way to get true privacy in JS is through scoping, so there is no way to have a property that is a member of this that will be accessible only inside the component. The best way to store truly private data in ES6 is with a WeakMap.
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
privateProp1.set(this, "I am Private1");
privateProp2.set(this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(privateProp1.get(this), privateProp2.get(this))
};
}
printPrivate() {
console.log(privateProp1.get(this));
}
}
Obviously this is a probably slow, and definitely ugly, but it does provide privacy.
Keep in mind that EVEN THIS isn't perfect, because Javascript is so dynamic. Someone could still do
var oldSet = WeakMap.prototype.set;
WeakMap.prototype.set = function(key, value){
// Store 'this', 'key', and 'value'
return oldSet.call(this, key, value);
};
to catch values as they are stored, so if you wanted to be extra careful, you'd need to capture a local reference to .set and .get to use explicitly instead of relying on the overridable prototype.
const {set: WMSet, get: WMGet} = WeakMap.prototype;
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
WMSet.call(privateProp1, this, "I am Private1");
WMSet.call(privateProp2, this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(WMGet.call(privateProp1, this), WMGet.call(privateProp2, this))
};
}
printPrivate() {
console.log(WMGet.call(privateProp1, this));
}
}
For future reference of other on lookers, I'm hearing now that the recommendation is to use WeakMaps to hold private data.
Here is a more clear, working example:
function storePrivateProperties(a, b, c, d) {
let privateData = new WeakMap;
// unique object as key, weak map can only accept object as key, when key is no longer referened, garbage collector claims the key-value
let keyA = {}, keyB = {}, keyC = {}, keyD = {};
privateData.set(keyA, a);
privateData.set(keyB, b);
privateData.set(keyC, c);
privateData.set(keyD, d);
return {
logPrivateKey(key) {
switch(key) {
case "a":
console.log(privateData.get(keyA));
break;
case "b":
console.log(privateData.get(keyB));
break;
case "c":
console.log(privateData.get(keyC));
break;
case "d":
console.log(privateData.set(keyD));
break;
default:
console.log(`There is no value for ${key}`)
}
}
}
}
Depends on whom you ask :-)
No private property modifier is included in the Maximally minimal classes proposal which seems to have made it into the current draft.
However, there might be support for private names, which does allow private properties - and they probably could be used in class definitions as well.
Using ES6 modules (initially proposed by #d13) works well for me. It doesn't mimic private properties perfectly, but at least you can be confident that properties that should be private won't leak outside of your class. Here's an example:
something.js
let _message = null;
const _greet = name => {
console.log('Hello ' + name);
};
export default class Something {
constructor(message) {
_message = message;
}
say() {
console.log(_message);
_greet('Bob');
}
};
Then the consuming code can look like this:
import Something from './something.js';
const something = new Something('Sunny day!');
something.say();
something._message; // undefined
something._greet(); // exception
Update (Important):
As #DanyalAytekin outlined in the comments, these private properties are static, so therefore global in scope. They will work well when working with Singletons, but care must be taken for Transient objects. Extending the example above:
import Something from './something.js';
import Something2 from './something.js';
const a = new Something('a');
a.say(); // a
const b = new Something('b');
b.say(); // b
const c = new Something2('c');
c.say(); // c
a.say(); // c
b.say(); // c
c.say(); // c
Yes - you can create encapsulated property, but it's not been done with access modifiers (public|private) at least not with ES6.
Here is a simple example how it can be done with ES6:
1 Create class using class word
2 Inside it's constructor declare block-scoped variable using let OR const reserved words -> since they are block-scope they cannot be accessed from outside (encapsulated)
3 To allow some access control (setters|getters) to those variables you can declare instance method inside it's constructor using: this.methodName=function(){} syntax
"use strict";
class Something{
constructor(){
//private property
let property="test";
//private final (immutable) property
const property2="test2";
//public getter
this.getProperty2=function(){
return property2;
}
//public getter
this.getProperty=function(){
return property;
}
//public setter
this.setProperty=function(prop){
property=prop;
}
}
}
Now lets check it:
var s=new Something();
console.log(typeof s.property);//undefined
s.setProperty("another");//set to encapsulated `property`
console.log(s.getProperty());//get encapsulated `property` value
console.log(s.getProperty2());//get encapsulated immutable `property2` value
Completing #d13 and the comments by #johnny-oshika and #DanyalAytekin:
I guess in the example provided by #johnny-oshika we could use normal functions instead of arrow functions and then .bind them with the current object plus a _privates object as a curried parameter:
something.js
function _greet(_privates) {
return 'Hello ' + _privates.message;
}
function _updateMessage(_privates, newMessage) {
_privates.message = newMessage;
}
export default class Something {
constructor(message) {
const _privates = {
message
};
this.say = _greet.bind(this, _privates);
this.updateMessage = _updateMessage.bind(this, _privates);
}
}
main.js
import Something from './something.js';
const something = new Something('Sunny day!');
const message1 = something.say();
something.updateMessage('Cloudy day!');
const message2 = something.say();
console.log(message1 === 'Hello Sunny day!'); // true
console.log(message2 === 'Hello Cloudy day!'); // true
// the followings are not public
console.log(something._greet === undefined); // true
console.log(something._privates === undefined); // true
console.log(something._updateMessage === undefined); // true
// another instance which doesn't share the _privates
const something2 = new Something('another Sunny day!');
const message3 = something2.say();
console.log(message3 === 'Hello another Sunny day!'); // true
Benefits I can think of:
we can have private methods (_greet and _updateMessage act like private methods as long as we don't export the references)
although they're not on the prototype, the above mentioned methods will save memory because the instances are created once, outside the class (as opposed to defining them in the constructor)
we don't leak any globals since we're inside a module
we can also have private properties using the binded _privates object
Some drawbacks I can think of:
less intuitive
mixed usage of class syntax and old school patterns (object bindings, module/function scoped variables)
hard bindings - we can't rebind the public methods (although we can improve this by using soft bindings (https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md#softening-binding))
A running snippet can be found here: http://www.webpackbin.com/NJgI5J8lZ
A different approach to "private"
Instead of fighting against the fact that private visibility is currently unavailable in ES6, I decided to take a more practical approach that does just fine if your IDE supports JSDoc (e.g., Webstorm). The idea is to use the #private tag. As far as development goes, the IDE will prevent you from accessing any private member from outside its class. Works pretty well for me and it's been really useful for hiding internal methods so the auto-complete feature shows me just what the class really meant to expose. Here's an example:
Oh, so many exotic solutions! I usually don't care about privacy so I use "pseudo privacy" as it's said here. But if do care (if there are some special requirements for that) I use something like in this example:
class jobImpl{
// public
constructor(name){
this.name = name;
}
// public
do(time){
console.log(`${this.name} started at ${time}`);
this.prepare();
this.execute();
}
//public
stop(time){
this.finish();
console.log(`${this.name} finished at ${time}`);
}
// private
prepare(){ console.log('prepare..'); }
// private
execute(){ console.log('execute..'); }
// private
finish(){ console.log('finish..'); }
}
function Job(name){
var impl = new jobImpl(name);
return {
do: time => impl.do(time),
stop: time => impl.stop(time)
};
}
// Test:
// create class "Job"
var j = new Job("Digging a ditch");
// call public members..
j.do("08:00am");
j.stop("06:00pm");
// try to call private members or fields..
console.log(j.name); // undefined
j.execute(); // error
Another possible implementation of function (constructor) Job:
function Job(name){
var impl = new jobImpl(name);
this.do = time => impl.do(time),
this.stop = time => impl.stop(time)
}
WeakMap
supported in IE11 (Symbols are not)
hard-private (props using Symbols are soft-private due to Object.getOwnPropertySymbols)
can look really clean (unlike closures which require all props and methods in the constructor)
First, define a function to wrap WeakMap:
function Private() {
const map = new WeakMap();
return obj => {
let props = map.get(obj);
if (!props) {
props = {};
map.set(obj, props);
}
return props;
};
}
Then, construct a reference outside your class:
const p = new Private();
class Person {
constructor(name, age) {
this.name = name;
p(this).age = age; // it's easy to set a private variable
}
getAge() {
return p(this).age; // and get a private variable
}
}
Note: class isn't supported by IE11, but it looks cleaner in the example.
I came across this post when looking for the best practice for "private data for classes". It was mentioned that a few of the patterns would have performance issues.
I put together a few jsperf tests based on the 4 main patterns from the online book "Exploring ES6":
http://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes
The tests can be found here:
https://jsperf.com/private-data-for-classes
In Chrome 63.0.3239 / Mac OS X 10.11.6, the best performing patterns were "Private data via constructor environments" and "Private data via a naming convention". For me Safari performed well for WeakMap but Chrome not so well.
I don't know the memory impact, but the pattern for "constructor environments" which some had warned would be a performance issue was very performant.
The 4 basic patterns are:
Private data via constructor environments
class Countdown {
constructor(counter, action) {
Object.assign(this, {
dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
});
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via constructor environments 2
class Countdown {
constructor(counter, action) {
this.dec = function dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via a naming convention
class Countdown {
constructor(counter, action) {
this._counter = counter;
this._action = action;
}
dec() {
if (this._counter < 1) return;
this._counter--;
if (this._counter === 0) {
this._action();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via WeakMaps
const _counter = new WeakMap();
const _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
let counter = _counter.get(this);
if (counter < 1) return;
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via symbols
const _counter = Symbol('counter');
const _action = Symbol('action');
class Countdown {
constructor(counter, action) {
this[_counter] = counter;
this[_action] = action;
}
dec() {
if (this[_counter] < 1) return;
this[_counter]--;
if (this[_counter] === 0) {
this[_action]();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Personally I like the proposal of the bind operator :: and would then combine it with the solution #d13 mentioned but for now stick with #d13 's answer where you use the export keyword for your class and put the private functions in the module.
there is one more solution tough which hasn't been mentioned here that follows are more functional approach and would allow it to have all the private props/methods within the class.
Private.js
export const get = state => key => state[key];
export const set = state => (key,value) => { state[key] = value; }
Test.js
import { get, set } from './utils/Private'
export default class Test {
constructor(initialState = {}) {
const _set = this.set = set(initialState);
const _get = this.get = get(initialState);
this.set('privateMethod', () => _get('propValue'));
}
showProp() {
return this.get('privateMethod')();
}
}
let one = new Test({ propValue: 5});
let two = new Test({ propValue: 8});
two.showProp(); // 8
one.showProp(); // 5
comments on it would be appreciated.
I think Benjamin's answer is probably the best for most cases until the language natively supports explicitly private variables.
However, if for some reason you need to prevent access with Object.getOwnPropertySymbols(), a method I've considered using is attaching a unique, non-configurable, non-enumerable, non-writable property that can be used as a property identifier to each object on construction (such as a unique Symbol, if you don't already have some other unique property like an id). Then just keep a map of each object's 'private' variables using that identifier.
const privateVars = {};
class Something {
constructor(){
Object.defineProperty(this, '_sym', {
configurable: false,
enumerable: false,
writable: false,
value: Symbol()
});
var myPrivateVars = {
privateProperty: "I'm hidden"
};
privateVars[this._sym] = myPrivateVars;
this.property = "I'm public";
}
getPrivateProperty() {
return privateVars[this._sym].privateProperty;
}
// A clean up method of some kind is necessary since the
// variables won't be cleaned up from memory automatically
// when the object is garbage collected
destroy() {
delete privateVars[this._sym];
}
}
var instance = new Something();
console.log(instance.property); //=> "I'm public"
console.log(instance.privateProperty); //=> undefined
console.log(instance.getPrivateProperty()); //=> "I'm hidden"
The potential advantage of this approach over using a WeakMap is faster access time if performance becomes a concern.
I believe it is possible to get 'best of both worlds' using closures inside constructors. There are two variations:
All data members are private
function myFunc() {
console.log('Value of x: ' + this.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
console.log('Enhanced value of x: ' + (this.x + 1));
}
class Test {
constructor() {
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(internal);
this.myFunc = myFunc.bind(internal);
}
};
Some members are private
NOTE: This is admittedly ugly. If you know a better solution, please edit this response.
function myFunc(priv, pub) {
pub.y = 3; // The Test object now gets a member 'y' with value 3.
console.log('Value of x: ' + priv.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
pub.z = 5; // The Test object now gets a member 'z' with value 3.
console.log('Enhanced value of x: ' + (priv.x + 1));
}
class Test {
constructor() {
let self = this;
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(null, internal, self);
this.myFunc = myFunc.bind(null, internal, self);
}
};
In fact it is possible using Symbols and Proxies. You use the symbols in the class scope and set two traps in a proxy: one for the class prototype so that the Reflect.ownKeys(instance) or Object.getOwnPropertySymbols doesn't give your symbols away, the other one is for the constructor itself so when new ClassName(attrs) is called, the instance returned will be intercepted and have the own properties symbols blocked.
Here's the code:
const Human = (function() {
const pet = Symbol();
const greet = Symbol();
const Human = privatizeSymbolsInFn(function(name) {
this.name = name; // public
this[pet] = 'dog'; // private
});
Human.prototype = privatizeSymbolsInObj({
[greet]() { // private
return 'Hi there!';
},
revealSecrets() {
console.log(this[greet]() + ` The pet is a ${this[pet]}`);
}
});
return Human;
})();
const bob = new Human('Bob');
console.assert(bob instanceof Human);
console.assert(Reflect.ownKeys(bob).length === 1) // only ['name']
console.assert(Reflect.ownKeys(Human.prototype).length === 1 ) // only ['revealSecrets']
// Setting up the traps inside proxies:
function privatizeSymbolsInObj(target) {
return new Proxy(target, { ownKeys: Object.getOwnPropertyNames });
}
function privatizeSymbolsInFn(Class) {
function construct(TargetClass, argsList) {
const instance = new TargetClass(...argsList);
return privatizeSymbolsInObj(instance);
}
return new Proxy(Class, { construct });
}
Reflect.ownKeys() works like so: Object.getOwnPropertyNames(myObj).concat(Object.getOwnPropertySymbols(myObj)) that's why we need a trap for these objects.
Even Typescript can't do it. From their documentation:
When a member is marked private, it cannot be accessed from outside of its containing class. For example:
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
new Animal("Cat").name; // Error: 'name' is private;
But transpiled on their playground this gives:
var Animal = (function () {
function Animal(theName) {
this.name = theName;
}
return Animal;
}());
console.log(new Animal("Cat").name);
So their "private" keyword is ineffective.
Coming very late to this party but I hit the OP question in a search so...
Yes, you can have private properties by wrapping the class declaration in a closure
There is an example of how I have private methods in this codepen. In the snippet below, the Subscribable class has two 'private' functions process and processCallbacks. Any properties can be added in this manner and they are kept private through the use of the closure. IMO Privacy is a rare need if concerns are well separated and Javascript does not need to become bloated by adding more syntax when a closure neatly does the job.
const Subscribable = (function(){
const process = (self, eventName, args) => {
self.processing.set(eventName, setTimeout(() => processCallbacks(self, eventName, args)))};
const processCallbacks = (self, eventName, args) => {
if (self.callingBack.get(eventName).length > 0){
const [nextCallback, ...callingBack] = self.callingBack.get(eventName);
self.callingBack.set(eventName, callingBack);
process(self, eventName, args);
nextCallback(...args)}
else {
delete self.processing.delete(eventName)}};
return class {
constructor(){
this.callingBack = new Map();
this.processing = new Map();
this.toCallbacks = new Map()}
subscribe(eventName, callback){
const callbacks = this.unsubscribe(eventName, callback);
this.toCallbacks.set(eventName, [...callbacks, callback]);
return () => this.unsubscribe(eventName, callback)} // callable to unsubscribe for convenience
unsubscribe(eventName, callback){
let callbacks = this.toCallbacks.get(eventName) || [];
callbacks = callbacks.filter(subscribedCallback => subscribedCallback !== callback);
if (callbacks.length > 0) {
this.toCallbacks.set(eventName, callbacks)}
else {
this.toCallbacks.delete(eventName)}
return callbacks}
emit(eventName, ...args){
this.callingBack.set(eventName, this.toCallbacks.get(eventName) || []);
if (!this.processing.has(eventName)){
process(this, eventName, args)}}}})();
I like this approach because it separates concerns nicely and keeps things truly private. The only downside is the need to use 'self' (or something similar) to refer to 'this' in the private content.
Yes totally can, and pretty easily too. This is done by exposing your private variables and functions by returning the prototype object graph in the constructor. This is nothing new, but take a bit of js foo to understand the elegance of it. This way does not use global scoped, or weakmaps. It is a form of reflection built into the language. Depending on how you leverage this; one can either force an exception which interrupts the call stack, or bury the exception as an undefined. This is demonstarted below, and can read more about these features here
class Clazz {
constructor() {
var _level = 1
function _private(x) {
return _level * x;
}
return {
level: _level,
public: this.private,
public2: function(x) {
return _private(x);
},
public3: function(x) {
return _private(x) * this.public(x);
},
};
}
private(x) {
return x * x;
}
}
var clazz = new Clazz();
console.log(clazz._level); //undefined
console.log(clazz._private); // undefined
console.log(clazz.level); // 1
console.log(clazz.public(1)); //1
console.log(clazz.public2(2)); //2
console.log(clazz.public3(3)); //27
console.log(clazz.private(0)); //error
class Something {
constructor(){
var _property = "test";
Object.defineProperty(this, "property", {
get: function(){ return _property}
});
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
instance.property = "can read from outside, but can't write";
console.log(instance.property); //=> "test"
Another way similar to the last two posted
class Example {
constructor(foo) {
// privates
const self = this;
this.foo = foo;
// public interface
return self.public;
}
public = {
// empty data
nodata: { data: [] },
// noop
noop: () => {},
}
// everything else private
bar = 10
}
const test = new Example('FOO');
console.log(test.foo); // undefined
console.log(test.noop); // { data: [] }
console.log(test.bar); // undefined
I found a very simple solution, just use Object.freeze(). Of course the problem is you can't add nothing to the object later.
class Cat {
constructor(name ,age) {
this.name = name
this.age = age
Object.freeze(this)
}
}
let cat = new Cat('Garfield', 5)
cat.age = 6 // doesn't work, even throws an error in strict mode
This code demonstrates private and public, static and non-static, instance and class-level, variables, methods, and properties.
https://codesandbox.io/s/class-demo-837bj
class Animal {
static count = 0 // class static public
static #ClassPriVar = 3 // class static private
constructor(kind) {
this.kind = kind // instance public property
Animal.count++
let InstancePriVar = 'InstancePriVar: ' + kind // instance private constructor-var
log(InstancePriVar)
Animal.#ClassPriVar += 3
this.adhoc = 'adhoc' // instance public property w/out constructor- parameter
}
#PawCount = 4 // instance private var
set Paws(newPawCount) {
// instance public prop
this.#PawCount = newPawCount
}
get Paws() {
// instance public prop
return this.#PawCount
}
get GetPriVar() {
// instance public prop
return Animal.#ClassPriVar
}
static get GetPriVarStat() {
// class public prop
return Animal.#ClassPriVar
}
PrintKind() {
// instance public method
log('kind: ' + this.kind)
}
ReturnKind() {
// instance public function
return this.kind
}
/* May be unsupported
get #PrivMeth(){ // instance private prop
return Animal.#ClassPriVar + ' Private Method'
}
static get #PrivMeth(){ // class private prop
return Animal.#ClassPriVar + ' Private Method'
}
*/
}
function log(str) {
console.log(str)
}
// TESTING
log(Animal.count) // static, avail w/out instance
log(Animal.GetPriVarStat) // static, avail w/out instance
let A = new Animal('Cat')
log(Animal.count + ': ' + A.kind)
log(A.GetPriVar)
A.PrintKind()
A.Paws = 6
log('Paws: ' + A.Paws)
log('ReturnKind: ' + A.ReturnKind())
log(A.adhoc)
let B = new Animal('Dog')
log(Animal.count + ': ' + B.kind)
log(B.GetPriVar)
log(A.GetPriVar) // returns same as B.GetPriVar. Acts like a class-level property, but called like an instance-level property. It's cuz non-stat fx requires instance.
log('class: ' + Animal.GetPriVarStat)
// undefined
log('instance: ' + B.GetPriVarStat) // static class fx
log(Animal.GetPriVar) // non-stat instance fx
log(A.InstancePriVar) // private
log(Animal.InstancePriVar) // private instance var
log('PawCount: ' + A.PawCount) // private. Use getter
/* log('PawCount: ' + A.#PawCount) // private. Use getter
log('PawCount: ' + Animal.#PawCount) // Instance and private. Use getter */
Reading the previous answer i thought that this example can summarise the above solutions
const friend = Symbol('friend');
const ClassName = ((hidden, hiddenShared = 0) => {
class ClassName {
constructor(hiddenPropertyValue, prop){
this[hidden] = hiddenPropertyValue * ++hiddenShared;
this.prop = prop
}
get hidden(){
console.log('getting hidden');
return this[hidden];
}
set [friend](v){
console.log('setting hiddenShared');
hiddenShared = v;
}
get counter(){
console.log('getting hiddenShared');
return hiddenShared;
}
get privileged(){
console.log('calling privileged method');
return privileged.bind(this);
}
}
function privileged(value){
return this[hidden] + value;
}
return ClassName;
})(Symbol('hidden'), 0);
const OtherClass = (() => class OtherClass extends ClassName {
constructor(v){
super(v, 100);
this[friend] = this.counter - 1;
}
})();
UPDATE
now is it possible to make true private properties and methods (at least on chrome based browsers for now).
The syntax is pretty neat
class MyClass {
#privateProperty = 1
#privateMethod() { return 2 }
static #privateStatic = 3
static #privateStaticMethod(){return 4}
static get #privateStaticGetter(){return 5}
// also using is quite straightforward
method(){
return (
this.#privateMethod() +
this.#privateProperty +
MyClass.#privateStatic +
MyClass.#privateStaticMethod() +
MyClass.#privateStaticGetter
)
}
}
new MyClass().method()
// returns 15
Note that for retrieving static references you wouldn't use this.constructor.#private, because it would brake its subclasses. You must use a reference to the proper class in order to retrieve its static private references (that are available only inside the methods of that class), ie MyClass.#private.
Most answers either say it's impossible, or require you to use a WeakMap or Symbol, which are ES6 features that would probably require polyfills. There's however another way! Check out this out:
// 1. Create closure
var SomeClass = function() {
// 2. Create `key` inside a closure
var key = {};
// Function to create private storage
var private = function() {
var obj = {};
// return Function to access private storage using `key`
return function(testkey) {
if(key === testkey) return obj;
// If `key` is wrong, then storage cannot be accessed
console.error('Cannot access private properties');
return undefined;
};
};
var SomeClass = function() {
// 3. Create private storage
this._ = private();
// 4. Access private storage using the `key`
this._(key).priv_prop = 200;
};
SomeClass.prototype.test = function() {
console.log(this._(key).priv_prop); // Using property from prototype
};
return SomeClass;
}();
// Can access private property from within prototype
var instance = new SomeClass();
instance.test(); // `200` logged
// Cannot access private property from outside of the closure
var wrong_key = {};
instance._(wrong_key); // undefined; error logged
I call this method accessor pattern. The essential idea is that we have a closure, a key inside the closure, and we create a private object (in the constructor) that can only be accessed if you have the key.
If you are interested, you can read more about this in my article. Using this method, you can create per object properties that cannot be accessed outside of the closure. Therefore, you can use them in constructor or prototype, but not anywhere else. I haven't seen this method used anywhere, but I think it's really powerful.
See this answer for a a clean & simple 'class' solution with a private and public interface and support for composition
I use this pattern and it's always worked for me
class Test {
constructor(data) {
class Public {
constructor(prv) {
// public function (must be in constructor on order to access "prv" variable)
connectToDb(ip) {
prv._db(ip, prv._err);
}
}
// public function w/o access to "prv" variable
log() {
console.log("I'm logging");
}
}
// private variables
this._data = data;
this._err = function(ip) {
console.log("could not connect to "+ip);
}
}
// private function
_db(ip, err) {
if(!!ip) {
console.log("connected to "+ip+", sending data '"+this.data+"'");
return true;
}
else err(ip);
}
}
var test = new Test(10),
ip = "185.167.210.49";
test.connectToDb(ip); // true
test.log(); // I'm logging
test._err(ip); // undefined
test._db(ip, function() { console.log("You have got hacked!"); }); // undefined
Is it possible to create private properties in ES6 classes?
Here's an example.
How can I prevent access to instance.property?
class Something {
constructor(){
this.property = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
Private class features is now supported by the majority of browsers.
class Something {
#property;
constructor(){
this.#property = "test";
}
#privateMethod() {
return 'hello world';
}
getPrivateMessage() {
return this.#property;
}
}
const instance = new Something();
console.log(instance.property); //=> undefined
console.log(instance.privateMethod); //=> undefined
console.log(instance.getPrivateMessage()); //=> test
console.log(instance.#property); //=> Syntax error
Update: See others answer, this is outdated.
Short answer, no, there is no native support for private properties with ES6 classes.
But you could mimic that behaviour by not attaching the new properties to the object, but keeping them inside a class constructor, and use getters and setters to reach the hidden properties. Note that the getters and setters gets redefine on each new instance of the class.
ES6
class Person {
constructor(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
}
ES5
function Person(name) {
var _name = name
this.setName = function(name) { _name = name; }
this.getName = function() { return _name; }
}
Yes, prefix the name with # and include it in the class definition, not just the constructor.
MDN Docs
Real private properties were finally added in ES2022. As of 2023-01-01, private properties (fields and methods) have been supported in all major browsers for at least a year, but 5-10% of users are still on older browsers [Can I Use].
Example:
class Person {
#age
constructor(name) {
this.name = name; // this is public
this.#age = 20; // this is private
}
greet() {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${this.#age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Following are methods for keeping properties private in pre-ES2022 environments, with various tradeoffs.
Scoped variables
The approach here is to use the scope of the constructor function, which is private, to store private data. For methods to have access to this private data they must be created within the constructor as well, meaning you're recreating them with every instance. This is a performance and memory penalty, but it may be acceptable. The penalty can be avoided for methods that do not need access to private data by declaring them in the normal way.
Example:
class Person {
constructor(name) {
let age = 20; // this is private
this.name = name; // this is public
this.greet = () => {
// here we can access both name and age
console.log(`name: ${this.name}, age: ${age}`);
};
}
anotherMethod() {
// here we can access name but not age
}
}
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
Scoped WeakMap
A WeakMap can be used to improve the performance of the above approach, in exchange for even more clutter. WeakMaps associate data with Objects (here, class instances) in such a way that it can only be accessed using that WeakMap. So, we use the scoped variables method to create a private WeakMap, then use that WeakMap to retrieve private data associated with this. This is faster than the scoped variables method because all your instances can share a single WeakMap, so you don't need to recreate methods just to make them access their own WeakMaps.
Example:
let Person = (function () {
let privateProps = new WeakMap();
return class Person {
constructor(name) {
this.name = name; // this is public
privateProps.set(this, {age: 20}); // this is private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${privateProps.get(this).age}`);
}
};
})();
let joe = new Person('Joe');
joe.greet();
// here we can access name but not age
This example uses a WeakMap with Object keys to use one WeakMap for multiple private properties; you could also use multiple WeakMaps and use them like privateAge.set(this, 20), or write a small wrapper and use it another way, like privateProps.set(this, 'age', 0).
The privacy of this approach could theoretically be breached by tampering with the global WeakMap object. That said, all JavaScript can be broken by mangled globals.
(This method could also be done with Map, but WeakMap is better because Map will create memory leaks unless you're very careful, and for this purpose the two aren't otherwise different.)
Half-Answer: Scoped Symbols
A Symbol is a type of primitive value that can serve as a property name instead of a string. You can use the scoped variable method to create a private Symbol, then store private data at this[mySymbol].
The privacy of this method can be breached using Object.getOwnPropertySymbols, but is somewhat awkward to do.
Example:
let Person = (() => {
let ageKey = Symbol();
return class Person {
constructor(name) {
this.name = name; // this is public
this[ageKey] = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this[ageKey]}`);
}
}
})();
let joe = new Person('Joe');
joe.greet();
// Here we can access joe's name and, with a little effort, age. We can’t
// access ageKey directly, but we can obtain it by listing all Symbol
// properties on `joe` with `Object.getOwnPropertySymbols(joe)`.
Note that making a property non-enumerable using Object.defineProperty does not prevent it from being included in Object.getOwnPropertySymbols.
Half-Answer: Underscores
The old convention is to just use a public property with an underscore prefix. This does not keep it private, but it does do a good job of communicating to readers that they should treat it as private, which often gets the job done. In exchange for this, we get an approach that's easier to read, easier to type, and faster than the other workarounds.
Example:
class Person {
constructor(name) {
this.name = name; // this is public
this._age = 20; // this is intended to be private
}
greet() {
// Here we can access both name and age
console.log(`name: ${this.name}, age: ${this._age}`);
}
}
let joe = new Person('Joe');
joe.greet();
// Here we can access both joe's name and age. But we know we aren't
// supposed to access his age, which just might stop us.
Summary
ES2022: great but not yet supported by all visitors
Scoped variables: private, slower, awkward
Scoped WeakMaps: hackable, awkward
Scoped Symbols: enumerable and hackable, somewhat awkward
Underscores: just a request for privacy, no other downsides
Update: A proposal with nicer syntax is on its way. Contributions are welcome.
Yes, there is - for scoped access in objects - ES6 introduces Symbols.
Symbols are unique, you can't gain access to one from the outside except with reflection (like privates in Java/C#) but anyone who has access to a symbol on the inside can use it for key access:
var property = Symbol();
class Something {
constructor(){
this[property] = "test";
}
}
var instance = new Something();
console.log(instance.property); //=> undefined, can only access with access to the Symbol
The answer is "No". But you can create private access to properties like this:
Use modules. Everything in a module is private unless it's made public by using the export keyword.
Inside modules, use function closure: http://www.kirupa.com/html5/closures_in_javascript.htm
(The suggestion that Symbols could be used to ensure privacy was true in an earlier version of the ES6 spec but is no longer the case:https://mail.mozilla.org/pipermail/es-discuss/2014-January/035604.html and https://stackoverflow.com/a/22280202/1282216. For a longer discussion about Symbols and privacy see: https://curiosity-driven.org/private-properties-in-javascript)
The only way to get true privacy in JS is through scoping, so there is no way to have a property that is a member of this that will be accessible only inside the component. The best way to store truly private data in ES6 is with a WeakMap.
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
privateProp1.set(this, "I am Private1");
privateProp2.set(this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(privateProp1.get(this), privateProp2.get(this))
};
}
printPrivate() {
console.log(privateProp1.get(this));
}
}
Obviously this is a probably slow, and definitely ugly, but it does provide privacy.
Keep in mind that EVEN THIS isn't perfect, because Javascript is so dynamic. Someone could still do
var oldSet = WeakMap.prototype.set;
WeakMap.prototype.set = function(key, value){
// Store 'this', 'key', and 'value'
return oldSet.call(this, key, value);
};
to catch values as they are stored, so if you wanted to be extra careful, you'd need to capture a local reference to .set and .get to use explicitly instead of relying on the overridable prototype.
const {set: WMSet, get: WMGet} = WeakMap.prototype;
const privateProp1 = new WeakMap();
const privateProp2 = new WeakMap();
class SomeClass {
constructor() {
WMSet.call(privateProp1, this, "I am Private1");
WMSet.call(privateProp2, this, "I am Private2");
this.publicVar = "I am public";
this.publicMethod = () => {
console.log(WMGet.call(privateProp1, this), WMGet.call(privateProp2, this))
};
}
printPrivate() {
console.log(WMGet.call(privateProp1, this));
}
}
For future reference of other on lookers, I'm hearing now that the recommendation is to use WeakMaps to hold private data.
Here is a more clear, working example:
function storePrivateProperties(a, b, c, d) {
let privateData = new WeakMap;
// unique object as key, weak map can only accept object as key, when key is no longer referened, garbage collector claims the key-value
let keyA = {}, keyB = {}, keyC = {}, keyD = {};
privateData.set(keyA, a);
privateData.set(keyB, b);
privateData.set(keyC, c);
privateData.set(keyD, d);
return {
logPrivateKey(key) {
switch(key) {
case "a":
console.log(privateData.get(keyA));
break;
case "b":
console.log(privateData.get(keyB));
break;
case "c":
console.log(privateData.get(keyC));
break;
case "d":
console.log(privateData.set(keyD));
break;
default:
console.log(`There is no value for ${key}`)
}
}
}
}
Depends on whom you ask :-)
No private property modifier is included in the Maximally minimal classes proposal which seems to have made it into the current draft.
However, there might be support for private names, which does allow private properties - and they probably could be used in class definitions as well.
Using ES6 modules (initially proposed by #d13) works well for me. It doesn't mimic private properties perfectly, but at least you can be confident that properties that should be private won't leak outside of your class. Here's an example:
something.js
let _message = null;
const _greet = name => {
console.log('Hello ' + name);
};
export default class Something {
constructor(message) {
_message = message;
}
say() {
console.log(_message);
_greet('Bob');
}
};
Then the consuming code can look like this:
import Something from './something.js';
const something = new Something('Sunny day!');
something.say();
something._message; // undefined
something._greet(); // exception
Update (Important):
As #DanyalAytekin outlined in the comments, these private properties are static, so therefore global in scope. They will work well when working with Singletons, but care must be taken for Transient objects. Extending the example above:
import Something from './something.js';
import Something2 from './something.js';
const a = new Something('a');
a.say(); // a
const b = new Something('b');
b.say(); // b
const c = new Something2('c');
c.say(); // c
a.say(); // c
b.say(); // c
c.say(); // c
Yes - you can create encapsulated property, but it's not been done with access modifiers (public|private) at least not with ES6.
Here is a simple example how it can be done with ES6:
1 Create class using class word
2 Inside it's constructor declare block-scoped variable using let OR const reserved words -> since they are block-scope they cannot be accessed from outside (encapsulated)
3 To allow some access control (setters|getters) to those variables you can declare instance method inside it's constructor using: this.methodName=function(){} syntax
"use strict";
class Something{
constructor(){
//private property
let property="test";
//private final (immutable) property
const property2="test2";
//public getter
this.getProperty2=function(){
return property2;
}
//public getter
this.getProperty=function(){
return property;
}
//public setter
this.setProperty=function(prop){
property=prop;
}
}
}
Now lets check it:
var s=new Something();
console.log(typeof s.property);//undefined
s.setProperty("another");//set to encapsulated `property`
console.log(s.getProperty());//get encapsulated `property` value
console.log(s.getProperty2());//get encapsulated immutable `property2` value
Completing #d13 and the comments by #johnny-oshika and #DanyalAytekin:
I guess in the example provided by #johnny-oshika we could use normal functions instead of arrow functions and then .bind them with the current object plus a _privates object as a curried parameter:
something.js
function _greet(_privates) {
return 'Hello ' + _privates.message;
}
function _updateMessage(_privates, newMessage) {
_privates.message = newMessage;
}
export default class Something {
constructor(message) {
const _privates = {
message
};
this.say = _greet.bind(this, _privates);
this.updateMessage = _updateMessage.bind(this, _privates);
}
}
main.js
import Something from './something.js';
const something = new Something('Sunny day!');
const message1 = something.say();
something.updateMessage('Cloudy day!');
const message2 = something.say();
console.log(message1 === 'Hello Sunny day!'); // true
console.log(message2 === 'Hello Cloudy day!'); // true
// the followings are not public
console.log(something._greet === undefined); // true
console.log(something._privates === undefined); // true
console.log(something._updateMessage === undefined); // true
// another instance which doesn't share the _privates
const something2 = new Something('another Sunny day!');
const message3 = something2.say();
console.log(message3 === 'Hello another Sunny day!'); // true
Benefits I can think of:
we can have private methods (_greet and _updateMessage act like private methods as long as we don't export the references)
although they're not on the prototype, the above mentioned methods will save memory because the instances are created once, outside the class (as opposed to defining them in the constructor)
we don't leak any globals since we're inside a module
we can also have private properties using the binded _privates object
Some drawbacks I can think of:
less intuitive
mixed usage of class syntax and old school patterns (object bindings, module/function scoped variables)
hard bindings - we can't rebind the public methods (although we can improve this by using soft bindings (https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md#softening-binding))
A running snippet can be found here: http://www.webpackbin.com/NJgI5J8lZ
A different approach to "private"
Instead of fighting against the fact that private visibility is currently unavailable in ES6, I decided to take a more practical approach that does just fine if your IDE supports JSDoc (e.g., Webstorm). The idea is to use the #private tag. As far as development goes, the IDE will prevent you from accessing any private member from outside its class. Works pretty well for me and it's been really useful for hiding internal methods so the auto-complete feature shows me just what the class really meant to expose. Here's an example:
Oh, so many exotic solutions! I usually don't care about privacy so I use "pseudo privacy" as it's said here. But if do care (if there are some special requirements for that) I use something like in this example:
class jobImpl{
// public
constructor(name){
this.name = name;
}
// public
do(time){
console.log(`${this.name} started at ${time}`);
this.prepare();
this.execute();
}
//public
stop(time){
this.finish();
console.log(`${this.name} finished at ${time}`);
}
// private
prepare(){ console.log('prepare..'); }
// private
execute(){ console.log('execute..'); }
// private
finish(){ console.log('finish..'); }
}
function Job(name){
var impl = new jobImpl(name);
return {
do: time => impl.do(time),
stop: time => impl.stop(time)
};
}
// Test:
// create class "Job"
var j = new Job("Digging a ditch");
// call public members..
j.do("08:00am");
j.stop("06:00pm");
// try to call private members or fields..
console.log(j.name); // undefined
j.execute(); // error
Another possible implementation of function (constructor) Job:
function Job(name){
var impl = new jobImpl(name);
this.do = time => impl.do(time),
this.stop = time => impl.stop(time)
}
WeakMap
supported in IE11 (Symbols are not)
hard-private (props using Symbols are soft-private due to Object.getOwnPropertySymbols)
can look really clean (unlike closures which require all props and methods in the constructor)
First, define a function to wrap WeakMap:
function Private() {
const map = new WeakMap();
return obj => {
let props = map.get(obj);
if (!props) {
props = {};
map.set(obj, props);
}
return props;
};
}
Then, construct a reference outside your class:
const p = new Private();
class Person {
constructor(name, age) {
this.name = name;
p(this).age = age; // it's easy to set a private variable
}
getAge() {
return p(this).age; // and get a private variable
}
}
Note: class isn't supported by IE11, but it looks cleaner in the example.
I came across this post when looking for the best practice for "private data for classes". It was mentioned that a few of the patterns would have performance issues.
I put together a few jsperf tests based on the 4 main patterns from the online book "Exploring ES6":
http://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes
The tests can be found here:
https://jsperf.com/private-data-for-classes
In Chrome 63.0.3239 / Mac OS X 10.11.6, the best performing patterns were "Private data via constructor environments" and "Private data via a naming convention". For me Safari performed well for WeakMap but Chrome not so well.
I don't know the memory impact, but the pattern for "constructor environments" which some had warned would be a performance issue was very performant.
The 4 basic patterns are:
Private data via constructor environments
class Countdown {
constructor(counter, action) {
Object.assign(this, {
dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
});
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via constructor environments 2
class Countdown {
constructor(counter, action) {
this.dec = function dec() {
if (counter < 1) return;
counter--;
if (counter === 0) {
action();
}
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via a naming convention
class Countdown {
constructor(counter, action) {
this._counter = counter;
this._action = action;
}
dec() {
if (this._counter < 1) return;
this._counter--;
if (this._counter === 0) {
this._action();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via WeakMaps
const _counter = new WeakMap();
const _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
let counter = _counter.get(this);
if (counter < 1) return;
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Private data via symbols
const _counter = Symbol('counter');
const _action = Symbol('action');
class Countdown {
constructor(counter, action) {
this[_counter] = counter;
this[_action] = action;
}
dec() {
if (this[_counter] < 1) return;
this[_counter]--;
if (this[_counter] === 0) {
this[_action]();
}
}
}
const c = new Countdown(2, () => {});
c.dec();
c.dec();
Personally I like the proposal of the bind operator :: and would then combine it with the solution #d13 mentioned but for now stick with #d13 's answer where you use the export keyword for your class and put the private functions in the module.
there is one more solution tough which hasn't been mentioned here that follows are more functional approach and would allow it to have all the private props/methods within the class.
Private.js
export const get = state => key => state[key];
export const set = state => (key,value) => { state[key] = value; }
Test.js
import { get, set } from './utils/Private'
export default class Test {
constructor(initialState = {}) {
const _set = this.set = set(initialState);
const _get = this.get = get(initialState);
this.set('privateMethod', () => _get('propValue'));
}
showProp() {
return this.get('privateMethod')();
}
}
let one = new Test({ propValue: 5});
let two = new Test({ propValue: 8});
two.showProp(); // 8
one.showProp(); // 5
comments on it would be appreciated.
I think Benjamin's answer is probably the best for most cases until the language natively supports explicitly private variables.
However, if for some reason you need to prevent access with Object.getOwnPropertySymbols(), a method I've considered using is attaching a unique, non-configurable, non-enumerable, non-writable property that can be used as a property identifier to each object on construction (such as a unique Symbol, if you don't already have some other unique property like an id). Then just keep a map of each object's 'private' variables using that identifier.
const privateVars = {};
class Something {
constructor(){
Object.defineProperty(this, '_sym', {
configurable: false,
enumerable: false,
writable: false,
value: Symbol()
});
var myPrivateVars = {
privateProperty: "I'm hidden"
};
privateVars[this._sym] = myPrivateVars;
this.property = "I'm public";
}
getPrivateProperty() {
return privateVars[this._sym].privateProperty;
}
// A clean up method of some kind is necessary since the
// variables won't be cleaned up from memory automatically
// when the object is garbage collected
destroy() {
delete privateVars[this._sym];
}
}
var instance = new Something();
console.log(instance.property); //=> "I'm public"
console.log(instance.privateProperty); //=> undefined
console.log(instance.getPrivateProperty()); //=> "I'm hidden"
The potential advantage of this approach over using a WeakMap is faster access time if performance becomes a concern.
I believe it is possible to get 'best of both worlds' using closures inside constructors. There are two variations:
All data members are private
function myFunc() {
console.log('Value of x: ' + this.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
console.log('Enhanced value of x: ' + (this.x + 1));
}
class Test {
constructor() {
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(internal);
this.myFunc = myFunc.bind(internal);
}
};
Some members are private
NOTE: This is admittedly ugly. If you know a better solution, please edit this response.
function myFunc(priv, pub) {
pub.y = 3; // The Test object now gets a member 'y' with value 3.
console.log('Value of x: ' + priv.x);
this.myPrivateFunc();
}
function myPrivateFunc() {
pub.z = 5; // The Test object now gets a member 'z' with value 3.
console.log('Enhanced value of x: ' + (priv.x + 1));
}
class Test {
constructor() {
let self = this;
let internal = {
x : 2,
};
internal.myPrivateFunc = myPrivateFunc.bind(null, internal, self);
this.myFunc = myFunc.bind(null, internal, self);
}
};
In fact it is possible using Symbols and Proxies. You use the symbols in the class scope and set two traps in a proxy: one for the class prototype so that the Reflect.ownKeys(instance) or Object.getOwnPropertySymbols doesn't give your symbols away, the other one is for the constructor itself so when new ClassName(attrs) is called, the instance returned will be intercepted and have the own properties symbols blocked.
Here's the code:
const Human = (function() {
const pet = Symbol();
const greet = Symbol();
const Human = privatizeSymbolsInFn(function(name) {
this.name = name; // public
this[pet] = 'dog'; // private
});
Human.prototype = privatizeSymbolsInObj({
[greet]() { // private
return 'Hi there!';
},
revealSecrets() {
console.log(this[greet]() + ` The pet is a ${this[pet]}`);
}
});
return Human;
})();
const bob = new Human('Bob');
console.assert(bob instanceof Human);
console.assert(Reflect.ownKeys(bob).length === 1) // only ['name']
console.assert(Reflect.ownKeys(Human.prototype).length === 1 ) // only ['revealSecrets']
// Setting up the traps inside proxies:
function privatizeSymbolsInObj(target) {
return new Proxy(target, { ownKeys: Object.getOwnPropertyNames });
}
function privatizeSymbolsInFn(Class) {
function construct(TargetClass, argsList) {
const instance = new TargetClass(...argsList);
return privatizeSymbolsInObj(instance);
}
return new Proxy(Class, { construct });
}
Reflect.ownKeys() works like so: Object.getOwnPropertyNames(myObj).concat(Object.getOwnPropertySymbols(myObj)) that's why we need a trap for these objects.
Even Typescript can't do it. From their documentation:
When a member is marked private, it cannot be accessed from outside of its containing class. For example:
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
new Animal("Cat").name; // Error: 'name' is private;
But transpiled on their playground this gives:
var Animal = (function () {
function Animal(theName) {
this.name = theName;
}
return Animal;
}());
console.log(new Animal("Cat").name);
So their "private" keyword is ineffective.
Coming very late to this party but I hit the OP question in a search so...
Yes, you can have private properties by wrapping the class declaration in a closure
There is an example of how I have private methods in this codepen. In the snippet below, the Subscribable class has two 'private' functions process and processCallbacks. Any properties can be added in this manner and they are kept private through the use of the closure. IMO Privacy is a rare need if concerns are well separated and Javascript does not need to become bloated by adding more syntax when a closure neatly does the job.
const Subscribable = (function(){
const process = (self, eventName, args) => {
self.processing.set(eventName, setTimeout(() => processCallbacks(self, eventName, args)))};
const processCallbacks = (self, eventName, args) => {
if (self.callingBack.get(eventName).length > 0){
const [nextCallback, ...callingBack] = self.callingBack.get(eventName);
self.callingBack.set(eventName, callingBack);
process(self, eventName, args);
nextCallback(...args)}
else {
delete self.processing.delete(eventName)}};
return class {
constructor(){
this.callingBack = new Map();
this.processing = new Map();
this.toCallbacks = new Map()}
subscribe(eventName, callback){
const callbacks = this.unsubscribe(eventName, callback);
this.toCallbacks.set(eventName, [...callbacks, callback]);
return () => this.unsubscribe(eventName, callback)} // callable to unsubscribe for convenience
unsubscribe(eventName, callback){
let callbacks = this.toCallbacks.get(eventName) || [];
callbacks = callbacks.filter(subscribedCallback => subscribedCallback !== callback);
if (callbacks.length > 0) {
this.toCallbacks.set(eventName, callbacks)}
else {
this.toCallbacks.delete(eventName)}
return callbacks}
emit(eventName, ...args){
this.callingBack.set(eventName, this.toCallbacks.get(eventName) || []);
if (!this.processing.has(eventName)){
process(this, eventName, args)}}}})();
I like this approach because it separates concerns nicely and keeps things truly private. The only downside is the need to use 'self' (or something similar) to refer to 'this' in the private content.
Yes totally can, and pretty easily too. This is done by exposing your private variables and functions by returning the prototype object graph in the constructor. This is nothing new, but take a bit of js foo to understand the elegance of it. This way does not use global scoped, or weakmaps. It is a form of reflection built into the language. Depending on how you leverage this; one can either force an exception which interrupts the call stack, or bury the exception as an undefined. This is demonstarted below, and can read more about these features here
class Clazz {
constructor() {
var _level = 1
function _private(x) {
return _level * x;
}
return {
level: _level,
public: this.private,
public2: function(x) {
return _private(x);
},
public3: function(x) {
return _private(x) * this.public(x);
},
};
}
private(x) {
return x * x;
}
}
var clazz = new Clazz();
console.log(clazz._level); //undefined
console.log(clazz._private); // undefined
console.log(clazz.level); // 1
console.log(clazz.public(1)); //1
console.log(clazz.public2(2)); //2
console.log(clazz.public3(3)); //27
console.log(clazz.private(0)); //error
class Something {
constructor(){
var _property = "test";
Object.defineProperty(this, "property", {
get: function(){ return _property}
});
}
}
var instance = new Something();
console.log(instance.property); //=> "test"
instance.property = "can read from outside, but can't write";
console.log(instance.property); //=> "test"
Another way similar to the last two posted
class Example {
constructor(foo) {
// privates
const self = this;
this.foo = foo;
// public interface
return self.public;
}
public = {
// empty data
nodata: { data: [] },
// noop
noop: () => {},
}
// everything else private
bar = 10
}
const test = new Example('FOO');
console.log(test.foo); // undefined
console.log(test.noop); // { data: [] }
console.log(test.bar); // undefined
I found a very simple solution, just use Object.freeze(). Of course the problem is you can't add nothing to the object later.
class Cat {
constructor(name ,age) {
this.name = name
this.age = age
Object.freeze(this)
}
}
let cat = new Cat('Garfield', 5)
cat.age = 6 // doesn't work, even throws an error in strict mode
This code demonstrates private and public, static and non-static, instance and class-level, variables, methods, and properties.
https://codesandbox.io/s/class-demo-837bj
class Animal {
static count = 0 // class static public
static #ClassPriVar = 3 // class static private
constructor(kind) {
this.kind = kind // instance public property
Animal.count++
let InstancePriVar = 'InstancePriVar: ' + kind // instance private constructor-var
log(InstancePriVar)
Animal.#ClassPriVar += 3
this.adhoc = 'adhoc' // instance public property w/out constructor- parameter
}
#PawCount = 4 // instance private var
set Paws(newPawCount) {
// instance public prop
this.#PawCount = newPawCount
}
get Paws() {
// instance public prop
return this.#PawCount
}
get GetPriVar() {
// instance public prop
return Animal.#ClassPriVar
}
static get GetPriVarStat() {
// class public prop
return Animal.#ClassPriVar
}
PrintKind() {
// instance public method
log('kind: ' + this.kind)
}
ReturnKind() {
// instance public function
return this.kind
}
/* May be unsupported
get #PrivMeth(){ // instance private prop
return Animal.#ClassPriVar + ' Private Method'
}
static get #PrivMeth(){ // class private prop
return Animal.#ClassPriVar + ' Private Method'
}
*/
}
function log(str) {
console.log(str)
}
// TESTING
log(Animal.count) // static, avail w/out instance
log(Animal.GetPriVarStat) // static, avail w/out instance
let A = new Animal('Cat')
log(Animal.count + ': ' + A.kind)
log(A.GetPriVar)
A.PrintKind()
A.Paws = 6
log('Paws: ' + A.Paws)
log('ReturnKind: ' + A.ReturnKind())
log(A.adhoc)
let B = new Animal('Dog')
log(Animal.count + ': ' + B.kind)
log(B.GetPriVar)
log(A.GetPriVar) // returns same as B.GetPriVar. Acts like a class-level property, but called like an instance-level property. It's cuz non-stat fx requires instance.
log('class: ' + Animal.GetPriVarStat)
// undefined
log('instance: ' + B.GetPriVarStat) // static class fx
log(Animal.GetPriVar) // non-stat instance fx
log(A.InstancePriVar) // private
log(Animal.InstancePriVar) // private instance var
log('PawCount: ' + A.PawCount) // private. Use getter
/* log('PawCount: ' + A.#PawCount) // private. Use getter
log('PawCount: ' + Animal.#PawCount) // Instance and private. Use getter */
Reading the previous answer i thought that this example can summarise the above solutions
const friend = Symbol('friend');
const ClassName = ((hidden, hiddenShared = 0) => {
class ClassName {
constructor(hiddenPropertyValue, prop){
this[hidden] = hiddenPropertyValue * ++hiddenShared;
this.prop = prop
}
get hidden(){
console.log('getting hidden');
return this[hidden];
}
set [friend](v){
console.log('setting hiddenShared');
hiddenShared = v;
}
get counter(){
console.log('getting hiddenShared');
return hiddenShared;
}
get privileged(){
console.log('calling privileged method');
return privileged.bind(this);
}
}
function privileged(value){
return this[hidden] + value;
}
return ClassName;
})(Symbol('hidden'), 0);
const OtherClass = (() => class OtherClass extends ClassName {
constructor(v){
super(v, 100);
this[friend] = this.counter - 1;
}
})();
UPDATE
now is it possible to make true private properties and methods (at least on chrome based browsers for now).
The syntax is pretty neat
class MyClass {
#privateProperty = 1
#privateMethod() { return 2 }
static #privateStatic = 3
static #privateStaticMethod(){return 4}
static get #privateStaticGetter(){return 5}
// also using is quite straightforward
method(){
return (
this.#privateMethod() +
this.#privateProperty +
MyClass.#privateStatic +
MyClass.#privateStaticMethod() +
MyClass.#privateStaticGetter
)
}
}
new MyClass().method()
// returns 15
Note that for retrieving static references you wouldn't use this.constructor.#private, because it would brake its subclasses. You must use a reference to the proper class in order to retrieve its static private references (that are available only inside the methods of that class), ie MyClass.#private.
Most answers either say it's impossible, or require you to use a WeakMap or Symbol, which are ES6 features that would probably require polyfills. There's however another way! Check out this out:
// 1. Create closure
var SomeClass = function() {
// 2. Create `key` inside a closure
var key = {};
// Function to create private storage
var private = function() {
var obj = {};
// return Function to access private storage using `key`
return function(testkey) {
if(key === testkey) return obj;
// If `key` is wrong, then storage cannot be accessed
console.error('Cannot access private properties');
return undefined;
};
};
var SomeClass = function() {
// 3. Create private storage
this._ = private();
// 4. Access private storage using the `key`
this._(key).priv_prop = 200;
};
SomeClass.prototype.test = function() {
console.log(this._(key).priv_prop); // Using property from prototype
};
return SomeClass;
}();
// Can access private property from within prototype
var instance = new SomeClass();
instance.test(); // `200` logged
// Cannot access private property from outside of the closure
var wrong_key = {};
instance._(wrong_key); // undefined; error logged
I call this method accessor pattern. The essential idea is that we have a closure, a key inside the closure, and we create a private object (in the constructor) that can only be accessed if you have the key.
If you are interested, you can read more about this in my article. Using this method, you can create per object properties that cannot be accessed outside of the closure. Therefore, you can use them in constructor or prototype, but not anywhere else. I haven't seen this method used anywhere, but I think it's really powerful.
See this answer for a a clean & simple 'class' solution with a private and public interface and support for composition
I use this pattern and it's always worked for me
class Test {
constructor(data) {
class Public {
constructor(prv) {
// public function (must be in constructor on order to access "prv" variable)
connectToDb(ip) {
prv._db(ip, prv._err);
}
}
// public function w/o access to "prv" variable
log() {
console.log("I'm logging");
}
}
// private variables
this._data = data;
this._err = function(ip) {
console.log("could not connect to "+ip);
}
}
// private function
_db(ip, err) {
if(!!ip) {
console.log("connected to "+ip+", sending data '"+this.data+"'");
return true;
}
else err(ip);
}
}
var test = new Test(10),
ip = "185.167.210.49";
test.connectToDb(ip); // true
test.log(); // I'm logging
test._err(ip); // undefined
test._db(ip, function() { console.log("You have got hacked!"); }); // undefined