Adding float values in javascript - javascript

I have had problems with the conditional 0.1 + 0.2 !== 0.3. I tried 0.0001 + 0.0002 and this not equal 0.03. As I know, we can use toFixed to solve this problem. But is there any solution to resolve this problem dynamically? Because with 0.1 + 0.2 we use toFixed(2) and 0.0001 + 0.0002 uses toFixed(4).

You could extend Math to include a function to do the math. The below takes two floats, determines the greatest number of decimal places and then based on that does the math then does a toFixed using the greatest number of decimal places.
Math.addFloats = function (f1,f2){
//Helper function to find the number of decimal places
function findDec(dec){
var count = 0;
while(dec%1){
dec*=10;
count++;
}
return count;
}
//Determine the greatest number of decimal places
var dec1 = findDec(f1);
var dec2 = findDec(f2);
var fixed = dec1>dec2 ? dec1 : dec2;
//do the math then do a toFixed, could do a toPrecision also
var n = (f1+f2).toFixed(fixed);
return +n;
}
console.log( Math.addFloats(0.1,0.2) == 0.3 ); //evaluates to true
console.log( Math.addFloats(1/3,1/7) ); //prints 0.47619047619047616
console.log( 1/3 + 1/7 ); //prints 0.47619047619047616
Havent fully tested it but doing some preliminary tests shows it works dynamically, could probably modify it to do other maths, but would probably have to change the decimal count check when doing divides/multiples etc
NOTE: this does not seem to count decimal places well for e notation, ie 2e-14 results in like 30, when it should be 14
EDIT: changing the findDec function to this answers version of finding decimals places seems to be better at determining the correct number of decimal places for different types of numbers
function findDec(f1){
function isInt(n){
return typeof n === 'number' &&
parseFloat(n) == parseInt(n, 10) && !isNaN(n);
}
var a = Math.abs(f1);
f1 = a, count = 1;
while(!isInt(f1) && isFinite(f1)){
f1 = a * Math.pow(10,count++);
}
return count-1;
}

(a) if you are dealing with (say) dollars, the best sol'n is to do everything in cents, using ints. (This only works if you never deal with fractions of a penny.)
(b) in any language, treat doubles/floats as "a good approximation of the actual value", and never compare with ==. Instead write a helper
double nearlyEqual(x,y,tolerance=0.00001) {
return abs(x-y) < tolerance*max(abs(x),abs(y)); }
(warning: untested code).

Thank #Patrick so much. I have create a new code to add multiple float numbers based on your code. It's:
/**
* Find the number of decimal places
* #method findDec
* #param {Float|Number} dec
* #return {Number}
*/
var findDec = function (dec) {
var count = 0;
while (dec % 1) {
dec *= 10;
count++;
}
return count;
};
/**
* Find the greatest number of decimal places
* #method findFixed
* #param {Float|Number} dec
* #return {Number}
*/
var findFixed = function () {
var fixed = [];
for (var i = 0, arg; arg = arguments[i]; i++) {
fixed.push(findDec(arg));
}
return Math.max.apply(this, fixed)
};
/**
* Calculate total
* #method findFixed
* #param {Float|Number}
* #return {Float|Number}
*/
var calculate = function () {
var total = 0;
for (var i = 0, arg; arg = arguments[i]; i++) {
total += arg;
}
return total;
}
/**
* Add float number
* #method addNumber
* #param {Float|Number}
* #return {Float|Number}
*/
Math.addNumber = function() {
//Determine the greatest number of decimal places
var fixed = findFixed.apply(this, arguments);
var total = calculate.apply(this, arguments);
//do the math then do a toFixed, could do a toPrecision also
return +total.toFixed(fixed);
}

use Number.prototype with custom like this :
Number.prototype.lenDecimalPoint = function(val){
var decStr = val.toString().match(/\.\d*/);
if(decStr && decStr.length > 0) {
return decStr[0].replace().replace('.','').length;
} else {
return 0;
}
}
Number.prototype.getVal = function(val, stdDec10Val){
var dec10ValLog = Math.log10(stdDec10Val);
var thisValDecPoint = this.lenDecimalPoint(val);
var thisValStr = val.toString();
thisValStr = thisValStr.replace('/^0\./','');
thisValStr = thisValStr.replace('.','');
thisValStr += Math.pow(10 ,dec10ValLog - thisValDecPoint).toString().replace('1','');
return Number(thisValStr);
}
Number.prototype.getDec10Val = function(val1, val2){
var thisDecPoint = this.lenDecimalPoint(val1);
var newNumValDecPoint = this.lenDecimalPoint(val2);
var decPoint = thisDecPoint > newNumValDecPoint ? thisDecPoint : newNumValDecPoint;
return Math.pow(10,decPoint);
}
Number.prototype.add = function(newVal) {
newVal = Number(newVal)
var dec10Val = this.getDec10Val(this, newVal);
var thisIntVal = this.getVal(this, dec10Val);
var newIntVal = this.getVal(newVal,dec10Val);
return Number(((thisIntVal) + (newIntVal))/dec10Val);
}
Number.prototype.sub = function(newVal) {
newVal = Number(newVal)
var dec10Val = this.getDec10Val(this, newVal);
var thisIntVal = this.getVal(this, dec10Val);
var newIntVal = this.getVal(newVal,dec10Val);
return Number(((thisIntVal) - (newIntVal))/dec10Val);
}
Number.prototype.div = function(newVal) {
newVal = Number(newVal)
var dec10Val = this.getDec10Val(this, newVal);
var thisIntVal = this.getVal(this, dec10Val);
var newIntVal = this.getVal(newVal,dec10Val);
return Number(((thisIntVal) / (newIntVal)));
}
Number.prototype.mul = function(newVal) {
newVal = Number(newVal)
var dec10Val = this.getDec10Val(this, newVal);
var thisIntVal = this.getVal(this, dec10Val);
var newIntVal = this.getVal(newVal,dec10Val);
return Number((thisIntVal * newIntVal)/Math.pow(dec10Val,2));
}
usage:
(0.1).add(0.3)

Related

Add Two Number leetcode algo

I was doing following leetCode Problem: https://leetcode.com/problems/add-two-numbers/
And I am not sure why one of my test case is failing
So the question is
You are given two non-empty linked lists representing two non-negative
integers. The digits are stored in reverse order and each of their
nodes contain a single digit. Add the two numbers and return it as a
linked list.
You may assume the two numbers do not contain any leading zero, except
the number 0 itself.
For which I have written following algo
/**
* Definition for singly-linked list.
* function ListNode(val) {
* this.val = val;
* this.next = null;
* }
*/
/**
* #param {ListNode} l1
* #param {ListNode} l2
* #return {ListNode}
*/
const makeLinkedList = (inArr, i) => {
if (i < 0) return null
return { val:inArr[i], next:makeLinkedList(inArr, i-1)}
}
var addTwoNumbers = function(l1, l2) {
let sum = 0
let i = 1
while(l1 || l2) {
if (l1 && l2) {
sum = sum + l1.val*i + l2.val*i
l1 = l1.next
l2 = l2.next
} else {
if (l1) {
sum = l1.val*i + sum
l1 = l1.next
}
if (l2) {
sum = l2.val*i + sum
l2 = l2.next
}
}
i = i*10
}
const sumToString = sum.toLocaleString('fullwide', {useGrouping:false});
return makeLinkedList(sumToString, sumToString.length-1)
};
The reason in the above code I have used while loop instead of recursively calling functions is mainly to make it more optimized.
anyway, For the following input, my test case is failing
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
[5,6,4]
i.e my output is coming to be [0,3,NaN,NaN,1] instead of [6,6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
As a note, leetCode compiler will convert array to linkedlist on input. Can someone help me in figuring out why my input might be failing?
When JavaScript stringifies a number in scientific notation, there will be a + sign for positive exponents. That sequence you see is 1E+30, the NaNs are standing for + and E (because of the reverted order). In fact you could have put a console.log(sum) or console.log(sumToString) and catch the issue without knowing this, just simply seeing what is there.
Not all languages tell you the maximum value they can store without loss in precision, but JavaScript in particular does, Number.MAX_SAFE_INTEGER contains the value 9 007 199 254 740 991 so it is a bit more than 9E+15, far less than 1 + 1E+30 (the longer number).
What you are expected to do is to add the numbers like you have learned in elementary school: add two digits, write one digit, and see if there is an 1 to carry to the next digit-pair you are going to add.
Iterative version:
function makeLinkedList(arr,i){
i=i || 0;
return i<arr.length?{val:arr[i], next:makeLinkedList(arr,i+1)}:null;
}
var addTwoNumbers = function(l1, l2) {
var snt={next:null};
var cur=snt;
var carry=0;
while(l1 || l2 || carry){
cur.next={next:null};
cur=cur.next;
var sum=(l1?l1.val:0)+(l2?l2.val:0)+carry;
if(sum<10){
cur.val=sum;
carry=0;
} else {
cur.val=sum-10;
carry=1;
}
l1=l1?l1.next:null;
l2=l2?l2.next:null;
}
return snt.next;
}
var a=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
var b=[5,6,4];
console.log(addTwoNumbers(makeLinkedList(a),makeLinkedList(b)));
a=[9,9];
b=[1,9];
console.log(addTwoNumbers(makeLinkedList(a),makeLinkedList(b)));
Recursive version:
function makeLinkedList(arr,i){
i=i || 0;
return i<arr.length?{val:arr[i], next:makeLinkedList(arr,i+1)}:null;
}
var addTwoNumbers = function(l1, l2, carry) {
if(!(l1 || l2 || carry))
return null;
carry=carry || 0;
var sum=(l1?l1.val:0)+(l2?l2.val:0)+carry;
return {
val: sum % 10,
next: addTwoNumbers(l1?l1.next:null,l2?l2.next:null,sum>9?1:0)
};
}
var a=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
var b=[5,6,4];
console.log(addTwoNumbers(makeLinkedList(a),makeLinkedList(b)));
a=[9,9];
b=[1,9];
console.log(addTwoNumbers(makeLinkedList(a),makeLinkedList(b)));
Solution for the problem in JavaScript.
var addTwoNumbers = function (l1, l2) {
let reminder = 0;
let l1Node = l1;
let l2Node = l2;
let list = new ListNode(0);
let currentNode = list;
while (l1Node || l2Node) {
const valueL1 = l1Node ? l1Node.val : 0;
const valueL2 = l2Node ? l2Node.val : 0;
let sum = valueL1 + valueL2 + reminder;
reminder = 0;
if (sum > 9) {
reminder = Math.floor(sum / 10);
sum = sum % 10;
}
currentNode.next = new ListNode(sum);
currentNode = currentNode.next;
l1Node = l1Node ? l1Node.next : null;
l2Node = l2Node ? l2Node.next : null;
}
if (reminder != 0) {
currentNode.next = new ListNode(reminder);
currentNode = currentNode.next;
}
return list.next;
};
function ListNode(val, next) {
this.val = (val === undefined ? 0 : val)
this.next = (next === undefined ? null : next)
}
const l1 = new ListNode(2, new ListNode(4, new ListNode(3)));
const l2 = new ListNode(5, new ListNode(6))
const res = addTwoNumbers(l1, l2);
console.log(res);

For comparing a calculated value to a fixed precision number, is string conversion better or mathematical calculation?

I have the following two scenarios where I want to compare a certain calculated value to float value 0.05.
In the first scenario, the value is being converted into String to get the value in two decimal place and then converting it back into a number for comparison.
var soneFunction = function(value)
{
var a = ((Math.round(value * 10) / 10) - value).toFixed(2);
if(Number(a) === 0.05)
a = -0.05;
return a;
};
In the second scenario, I am not doing any string-number conversion but using mathematical functions.
var soneFunction = function(value)
{
var roundingValue = (Math.round(value * 10) / 10) - value;
// fix the value till 2 decimal places
var a = Math.round((roundingValue) * 100) / 100;
if(a === 0.05)
a = -0.05;
return a;
};
I am curious to know which one is better?
UPDATE:
By better, I meant performance and memory consumption wise.
I think you can use
let parseFloatWithPrecision = function (value, precision){
var floatValue = parseFloat(value) || 0.0 ;
floatValue = floatValue.toFixed(precision);
return parseFloat(floatValue);
}
let compare = function(val){
if(parseFloatWithPrecision(val, 2) == 0.05)
return -0.05;
return val;
}

javascript toFixed()

In many case toFixed() fail cause of floating point in javascript math.
I found this solution:
function toFixed(decimalPlaces) {
var factor = Math.pow(10, decimalPlaces || 0);
var v = (Math.round(Math.round(this * factor * 100) / 100) / factor).toString();
if (v.indexOf('.') >= 0) {
return v + factor.toString().substr(v.length - v.indexOf('.'));
}
return v + '.' + factor.toString().substr(1);
}
and this:
function toFixed(num, fixed) {
var re = new RegExp('^-?\\d+(?:\.\\d{0,' + (fixed || -1) + '})?');
return num.toString().match(re)[0];
}
There are other approaches? I have to be certain that performs well in any case. Also in borderline-cases.
EDIT:
https://github.com/MikeMcl/decimal.js
#Tschallacka
Number.prototype.toFixed = function(fixed) {
x = new Decimal(Number(this));
return x.toFixed(fixed);
};
I suggest you use a library:
https://github.com/MikeMcl/decimal.js
I found it very dependable when working with finanical data.
Working with floating point numbers is always difficult, but there are several solutions out there.
I suggest you use an existin library that is well maintained, which already has had it's baby teeth knocked out.
Assuming you added decimal.js you can do this for financial values.
/**
* #var input float
*/
function toFixed(input) {
var dec = new Decimal(input);
return dec.toFixed(2);
}
console.log("float to fixed 2 decimal places: ",toFixed(200.23546546546));
function toFixed2(decimalPlaces) {
var dec = new Decimal(1);
return dec.toFixed(decimalPlaces);
}
console.log("get a fixed num: ",toFixed2(10));
Number.prototype.toFixed = function(fixed) {
x = new Decimal(Number(this));
return x.toFixed(fixed);
};
var num = new Number(10.4458);
console.log("Number to fixed via prototyped method: ",num.toFixed(2));
var x = 44.456
console.log('Number to fixed via inderect number casting:' ,x.toFixed(2));
<script src="https://cdnjs.cloudflare.com/ajax/libs/decimal.js/7.1.1/decimal.min.js"></script>

Truncate (not round off) decimal numbers in javascript

I am trying to truncate decimal numbers to decimal places. Something like this:
5.467 -> 5.46
985.943 -> 985.94
toFixed(2) does just about the right thing but it rounds off the value. I don't need the value rounded off. Hope this is possible in javascript.
Dogbert's answer is good, but if your code might have to deal with negative numbers, Math.floor by itself may give unexpected results.
E.g. Math.floor(4.3) = 4, but Math.floor(-4.3) = -5
Use a helper function like this one instead to get consistent results:
truncateDecimals = function (number) {
return Math[number < 0 ? 'ceil' : 'floor'](number);
};
// Applied to Dogbert's answer:
var a = 5.467;
var truncated = truncateDecimals(a * 100) / 100; // = 5.46
Here's a more convenient version of this function:
truncateDecimals = function (number, digits) {
var multiplier = Math.pow(10, digits),
adjustedNum = number * multiplier,
truncatedNum = Math[adjustedNum < 0 ? 'ceil' : 'floor'](adjustedNum);
return truncatedNum / multiplier;
};
// Usage:
var a = 5.467;
var truncated = truncateDecimals(a, 2); // = 5.46
// Negative digits:
var b = 4235.24;
var truncated = truncateDecimals(b, -2); // = 4200
If that isn't desired behaviour, insert a call to Math.abs on the first line:
var multiplier = Math.pow(10, Math.abs(digits)),
EDIT: shendz correctly points out that using this solution with a = 17.56 will incorrectly produce 17.55. For more about why this happens, read What Every Computer Scientist Should Know About Floating-Point Arithmetic. Unfortunately, writing a solution that eliminates all sources of floating-point error is pretty tricky with javascript. In another language you'd use integers or maybe a Decimal type, but with javascript...
This solution should be 100% accurate, but it will also be slower:
function truncateDecimals (num, digits) {
var numS = num.toString(),
decPos = numS.indexOf('.'),
substrLength = decPos == -1 ? numS.length : 1 + decPos + digits,
trimmedResult = numS.substr(0, substrLength),
finalResult = isNaN(trimmedResult) ? 0 : trimmedResult;
return parseFloat(finalResult);
}
For those who need speed but also want to avoid floating-point errors, try something like BigDecimal.js. You can find other javascript BigDecimal libraries in this SO question: "Is there a good Javascript BigDecimal library?" and here's a good blog post about math libraries for Javascript
upd:
So, after all it turned out, rounding bugs will always haunt you, no matter how hard you try to compensate them. Hence the problem should be attacked by representing numbers exactly in decimal notation.
Number.prototype.toFixedDown = function(digits) {
var re = new RegExp("(\\d+\\.\\d{" + digits + "})(\\d)"),
m = this.toString().match(re);
return m ? parseFloat(m[1]) : this.valueOf();
};
[ 5.467.toFixedDown(2),
985.943.toFixedDown(2),
17.56.toFixedDown(2),
(0).toFixedDown(1),
1.11.toFixedDown(1) + 22];
// [5.46, 985.94, 17.56, 0, 23.1]
Old error-prone solution based on compilation of others':
Number.prototype.toFixedDown = function(digits) {
var n = this - Math.pow(10, -digits)/2;
n += n / Math.pow(2, 53); // added 1360765523: 17.56.toFixedDown(2) === "17.56"
return n.toFixed(digits);
}
var a = 5.467;
var truncated = Math.floor(a * 100) / 100; // = 5.46
You can fix the rounding by subtracting 0.5 for toFixed, e.g.
(f - 0.005).toFixed(2)
Nice one-line solution:
function truncate (num, places) {
return Math.trunc(num * Math.pow(10, places)) / Math.pow(10, places);
}
Then call it with:
truncate(3.5636232, 2); // returns 3.56
truncate(5.4332312, 3); // returns 5.433
truncate(25.463214, 4); // returns 25.4632
Consider taking advantage of the double tilde: ~~.
Take in the number. Multiply by significant digits after the decimal so that you can truncate to zero places with ~~. Divide that multiplier back out. Profit.
function truncator(numToTruncate, intDecimalPlaces) {
var numPower = Math.pow(10, intDecimalPlaces); // "numPowerConverter" might be better
return ~~(numToTruncate * numPower)/numPower;
}
I'm trying to resist wrapping the ~~ call in parens; order of operations should make that work correctly, I believe.
alert(truncator(5.1231231, 1)); // is 5.1
alert(truncator(-5.73, 1)); // is -5.7
alert(truncator(-5.73, 0)); // is -5
JSFiddle link.
EDIT: Looking back over, I've unintentionally also handled cases to round off left of the decimal as well.
alert(truncator(4343.123, -2)); // gives 4300.
The logic's a little wacky looking for that usage, and may benefit from a quick refactor. But it still works. Better lucky than good.
I thought I'd throw in an answer using | since it is simple and works well.
truncate = function(number, places) {
var shift = Math.pow(10, places);
return ((number * shift) | 0) / shift;
};
Truncate using bitwise operators:
~~0.5 === 0
~~(-0.5) === 0
~~14.32794823 === 14
~~(-439.93) === -439
#Dogbert's answer can be improved with Math.trunc, which truncates instead of rounding.
There is a difference between rounding and truncating. Truncating is
clearly the behaviour this question is seeking. If I call
truncate(-3.14) and receive -4 back, I would definitely call that
undesirable. – #NickKnowlson
var a = 5.467;
var truncated = Math.trunc(a * 100) / 100; // = 5.46
var a = -5.467;
var truncated = Math.trunc(a * 100) / 100; // = -5.46
I wrote an answer using a shorter method. Here is what I came up with
function truncate(value, precision) {
var step = Math.pow(10, precision || 0);
var temp = Math.trunc(step * value);
return temp / step;
}
The method can be used like so
truncate(132456.25456789, 5)); // Output: 132456.25456
truncate(132456.25456789, 3)); // Output: 132456.254
truncate(132456.25456789, 1)); // Output: 132456.2
truncate(132456.25456789)); // Output: 132456
Or, if you want a shorter syntax, here you go
function truncate(v, p) {
var s = Math.pow(10, p || 0);
return Math.trunc(s * v) / s;
}
I think this function could be a simple solution:
function trunc(decimal,n=2){
let x = decimal + ''; // string
return x.lastIndexOf('.')>=0?parseFloat(x.substr(0,x.lastIndexOf('.')+(n+1))):decimal; // You can use indexOf() instead of lastIndexOf()
}
console.log(trunc(-241.31234,2));
console.log(trunc(241.312,5));
console.log(trunc(-241.233));
console.log(trunc(241.2,0));
console.log(trunc(241));
Number.prototype.trim = function(decimals) {
var s = this.toString();
var d = s.split(".");
d[1] = d[1].substring(0, decimals);
return parseFloat(d.join("."));
}
console.log((5.676).trim(2)); //logs 5.67
I'm a bit confused as to why there are so many different answers to such a fundamentally simple question; there are only two approaches which I saw which seemed to be worth looking at. I did a quick benchmark to see the speed difference using https://jsbench.me/.
This is the solution which is currently (9/26/2020) flagged as the answer:
function truncate(n, digits) {
var re = new RegExp("(\\d+\\.\\d{" + digits + "})(\\d)"),
m = n.toString().match(re);
return m ? parseFloat(m[1]) : n.valueOf();
};
[ truncate(5.467,2),
truncate(985.943,2),
truncate(17.56,2),
truncate(0, 1),
truncate(1.11, 1) + 22];
However, this is doing string and regex stuff, which is usually not very efficient, and there is a Math.trunc function which does exactly what the OP wants just with no decimals. Therefore, you can easily use that plus a little extra arithmetic to get the same thing.
Here is another solution I found on this thread, which is the one I would use:
function truncate(n, digits) {
var step = Math.pow(10, digits || 0);
var temp = Math.trunc(step * n);
return temp / step;
}
[ truncate(5.467,2),
truncate(985.943,2),
truncate(17.56,2),
truncate(0, 1),
truncate(1.11, 1) + 22];
The first method is "99.92% slower" than the second, so the second is definitely the one I would recommend using.
Okay, back to finding other ways to avoid work...
I found a problem: considering the next situation: 2.1 or 1.2 or -6.4
What if you want always 3 decimals or two or wharever, so, you have to complete the leading zeros to the right
// 3 decimals numbers
0.5 => 0.500
// 6 decimals
0.1 => 0.10000
// 4 decimales
-2.1 => -2.1000
// truncate to 3 decimals
3.11568 => 3.115
This is the fixed function of Nick Knowlson
function truncateDecimals (num, digits)
{
var numS = num.toString();
var decPos = numS.indexOf('.');
var substrLength = decPos == -1 ? numS.length : 1 + decPos + digits;
var trimmedResult = numS.substr(0, substrLength);
var finalResult = isNaN(trimmedResult) ? 0 : trimmedResult;
// adds leading zeros to the right
if (decPos != -1){
var s = trimmedResult+"";
decPos = s.indexOf('.');
var decLength = s.length - decPos;
while (decLength <= digits){
s = s + "0";
decPos = s.indexOf('.');
decLength = s.length - decPos;
substrLength = decPos == -1 ? s.length : 1 + decPos + digits;
};
finalResult = s;
}
return finalResult;
};
https://jsfiddle.net/huttn155/7/
function toFixed(number, digits) {
var reg_ex = new RegExp("(\\d+\\.\\d{" + digits + "})(\\d)")
var array = number.toString().match(reg_ex);
return array ? parseFloat(array[1]) : number.valueOf()
}
var test = 10.123456789
var __fixed = toFixed(test, 6)
console.log(__fixed)
// => 10.123456
The answer by #kirilloid seems to be the correct answer, however, the main code needs to be updated. His solution doesn't take care of negative numbers (which someone did mention in the comment section but has not been updated in the main code).
Updating that to a complete final tested solution:
Number.prototype.toFixedDown = function(digits) {
var re = new RegExp("([-]*\\d+\\.\\d{" + digits + "})(\\d)"),
m = this.toString().match(re);
return m ? parseFloat(m[1]) : this.valueOf();
};
Sample Usage:
var x = 3.1415629;
Logger.log(x.toFixedDown(2)); //or use whatever you use to log
Fiddle: JS Number Round down
PS: Not enough repo to comment on that solution.
Here my take on the subject:
convert.truncate = function(value, decimals) {
decimals = (decimals === undefined ? 0 : decimals);
return parseFloat((value-(0.5/Math.pow(10, decimals))).toFixed(decimals),10);
};
It's just a slightly more elaborate version of
(f - 0.005).toFixed(2)
Here is simple but working function to truncate number upto 2 decimal places.
function truncateNumber(num) {
var num1 = "";
var num2 = "";
var num1 = num.split('.')[0];
num2 = num.split('.')[1];
var decimalNum = num2.substring(0, 2);
var strNum = num1 +"."+ decimalNum;
var finalNum = parseFloat(strNum);
return finalNum;
}
The resulting type remains a number...
/* Return the truncation of n wrt base */
var trunc = function(n, base) {
n = (n / base) | 0;
return base * n;
};
var t = trunc(5.467, 0.01);
Lodash has a few Math utility methods that can round, floor, and ceil a number to a given decimal precision. This leaves off trailing zeroes.
They take an interesting approach, using the exponent of a number. Apparently this avoids rounding issues.
(Note: func is Math.round or ceil or floor in the code below)
// Shift with exponential notation to avoid floating-point issues.
var pair = (toString(number) + 'e').split('e'),
value = func(pair[0] + 'e' + (+pair[1] + precision));
pair = (toString(value) + 'e').split('e');
return +(pair[0] + 'e' + (+pair[1] - precision));
Link to the source code
const TO_FIXED_MAX = 100;
function truncate(number, decimalsPrecison) {
// make it a string with precision 1e-100
number = number.toFixed(TO_FIXED_MAX);
// chop off uneccessary digits
const dotIndex = number.indexOf('.');
number = number.substring(0, dotIndex + decimalsPrecison + 1);
// back to a number data type (app specific)
return Number.parseFloat(number);
}
// example
truncate(0.00000001999, 8);
0.00000001
works with:
negative numbers
very small numbers (Number.EPSILON precision)
The one that is mark as the solution is the better solution I been found until today, but has a serious problem with 0 (for example, 0.toFixedDown(2) gives -0.01). So I suggest to use this:
Number.prototype.toFixedDown = function(digits) {
if(this == 0) {
return 0;
}
var n = this - Math.pow(10, -digits)/2;
n += n / Math.pow(2, 53); // added 1360765523: 17.56.toFixedDown(2) === "17.56"
return n.toFixed(digits);
}
Here is what I use:
var t = 1;
for (var i = 0; i < decimalPrecision; i++)
t = t * 10;
var f = parseFloat(value);
return (Math.floor(f * t)) / t;
You can work with strings.
It Checks if '.' exists, and then removes part of string.
truncate (7.88, 1) --> 7.8
truncate (7.889, 2) --> 7.89
truncate (-7.88, 1 ) --> -7.88
function truncate(number, decimals) {
const tmp = number + '';
if (tmp.indexOf('.') > -1) {
return +tmp.substr(0 , tmp.indexOf('.') + decimals+1 );
} else {
return +number
}
}
function trunc(num, dec) {
const pow = 10 ** dec
return Math.trunc(num * pow) / pow
}
// ex.
trunc(4.9634, 1) // 4.9
trunc(4.9634, 2) // 4.96
trunc(-4.9634, 1) // -4.9
You can use toFixed(2) to convert your float to a string with 2 decimal points. Then you can wrap that in floatParse() to convert that string back to a float to make it usable for calculations or db storage.
const truncatedNumber = floatParse(num.toFixed(2))
I am not sure of the potential drawbacks of this answer like increased processing time but I tested edge cases from other comments like .29 which returns .29 (not .28 like other solutions). It also handles negative numbers.
just to point out a simple solution that worked for me
convert it to string and then regex it...
var number = 123.45678;
var number_s = '' + number;
var number_truncated_s = number_s.match(/\d*\.\d{4}/)[0]
var number_truncated = parseFloat(number_truncated_s)
It can be abbreviated to
var number_truncated = parseFloat(('' + 123.4568908).match(/\d*\.\d{4}/)[0])
Here is an ES6 code which does what you want
const truncateTo = (unRouned, nrOfDecimals = 2) => {
const parts = String(unRouned).split(".");
if (parts.length !== 2) {
// without any decimal part
return unRouned;
}
const newDecimals = parts[1].slice(0, nrOfDecimals),
newString = `${parts[0]}.${newDecimals}`;
return Number(newString);
};
// your examples
console.log(truncateTo(5.467)); // ---> 5.46
console.log(truncateTo(985.943)); // ---> 985.94
// other examples
console.log(truncateTo(5)); // ---> 5
console.log(truncateTo(-5)); // ---> -5
console.log(truncateTo(-985.943)); // ---> -985.94
Suppose you want to truncate number x till n digits.
Math.trunc(x * pow(10,n))/pow(10,n);
Number.prototype.truncate = function(places) {
var shift = Math.pow(10, places);
return Math.trunc(this * shift) / shift;
};

Javascript Fibonacci nth Term Optimization

I've become interested in algorithms lately, and the fibonacci sequence grabbed my attention due to its simplicity.
I've managed to put something together in javascript that calculates the nth term in the fibonacci sequence in less than 15 milliseconds after reading lots of information on the web. It goes up to 1476...1477 is infinity and 1478 is NaN (according to javascript!)
I'm quite proud of the code itself, except it's an utter monster.
So here's my question:
A) is there a faster way to calculate the sequence?
B) is there a faster/smaller way to multiply two matrices?
Here's the code:
//Fibonacci sequence generator in JS
//Cobbled together by Salty
m = [[1,0],[0,1]];
odd = [[1,1],[1,0]];
function matrix(a,b) {
/*
Matrix multiplication
Strassen Algorithm
Only works with 2x2 matrices.
*/
c=[[0,0],[0,0]];
c[0][0]=(a[0][0]*b[0][0])+(a[0][1]*b[1][0]);
c[0][1]=(a[0][0]*b[0][1])+(a[0][1]*b[1][1]);
c[1][0]=(a[1][0]*b[0][0])+(a[1][1]*b[1][0]);
c[1][1]=(a[1][0]*b[0][1])+(a[1][1]*b[1][1]);
m1=(a[0][0]+a[1][1])*(b[0][0]+b[1][1]);
m2=(a[1][0]+a[1][1])*b[0][0];
m3=a[0][0]*(b[0][1]-b[1][1]);
m4=a[1][1]*(b[1][0]-b[0][0]);
m5=(a[0][0]+a[0][1])*b[1][1];
m6=(a[1][0]-a[0][0])*(b[0][0]+b[0][1]);
m7=(a[0][1]-a[1][1])*(b[1][0]+b[1][1]);
c[0][0]=m1+m4-m5+m7;
c[0][1]=m3+m5;
c[1][0]=m2+m4;
c[1][1]=m1-m2+m3+m6;
return c;
}
function fib(n) {
mat(n-1);
return m[0][0];
}
function mat(n) {
if(n > 1) {
mat(n/2);
m = matrix(m,m);
}
m = (n%2<1) ? m : matrix(m,odd);
}
alert(fib(1476)); //Alerts 1.3069892237633993e+308
The matrix function takes two arguments: a and b, and returns a*b where a and b are 2x2 arrays.
Oh, and on a side note, a magical thing happened...I was converting the Strassen algorithm into JS array notation and it worked on my first try! Fantastic, right? :P
Thanks in advance if you manage to find an easier way to do this.
Don't speculate, benchmark:
edit: I added my own matrix implementation using the optimized multiplication functions mentioned in my other answer. This resulted in a major speedup, but even the vanilla O(n^3) implementation of matrix multiplication with loops was faster than the Strassen algorithm.
<pre><script>
var fib = {};
(function() {
var sqrt_5 = Math.sqrt(5),
phi = (1 + sqrt_5) / 2;
fib.round = function(n) {
return Math.floor(Math.pow(phi, n) / sqrt_5 + 0.5);
};
})();
(function() {
fib.loop = function(n) {
var i = 0,
j = 1;
while(n--) {
var tmp = i;
i = j;
j += tmp;
}
return i;
};
})();
(function () {
var cache = [0, 1];
fib.loop_cached = function(n) {
if(n >= cache.length) {
for(var i = cache.length; i <= n; ++i)
cache[i] = cache[i - 1] + cache[i - 2];
}
return cache[n];
};
})();
(function() {
//Fibonacci sequence generator in JS
//Cobbled together by Salty
var m;
var odd = [[1,1],[1,0]];
function matrix(a,b) {
/*
Matrix multiplication
Strassen Algorithm
Only works with 2x2 matrices.
*/
var c=[[0,0],[0,0]];
var m1=(a[0][0]+a[1][1])*(b[0][0]+b[1][1]);
var m2=(a[1][0]+a[1][1])*b[0][0];
var m3=a[0][0]*(b[0][1]-b[1][1]);
var m4=a[1][1]*(b[1][0]-b[0][0]);
var m5=(a[0][0]+a[0][1])*b[1][1];
var m6=(a[1][0]-a[0][0])*(b[0][0]+b[0][1]);
var m7=(a[0][1]-a[1][1])*(b[1][0]+b[1][1]);
c[0][0]=m1+m4-m5+m7;
c[0][1]=m3+m5;
c[1][0]=m2+m4;
c[1][1]=m1-m2+m3+m6;
return c;
}
function mat(n) {
if(n > 1) {
mat(n/2);
m = matrix(m,m);
}
m = (n%2<1) ? m : matrix(m,odd);
}
fib.matrix = function(n) {
m = [[1,0],[0,1]];
mat(n-1);
return m[0][0];
};
})();
(function() {
var a;
function square() {
var a00 = a[0][0],
a01 = a[0][1],
a10 = a[1][0],
a11 = a[1][1];
var a10_x_a01 = a10 * a01,
a00_p_a11 = a00 + a11;
a[0][0] = a10_x_a01 + a00 * a00;
a[0][1] = a00_p_a11 * a01;
a[1][0] = a00_p_a11 * a10;
a[1][1] = a10_x_a01 + a11 * a11;
}
function powPlusPlus() {
var a01 = a[0][1],
a11 = a[1][1];
a[0][1] = a[0][0];
a[1][1] = a[1][0];
a[0][0] += a01;
a[1][0] += a11;
}
function compute(n) {
if(n > 1) {
compute(n >> 1);
square();
if(n & 1)
powPlusPlus();
}
}
fib.matrix_optimised = function(n) {
if(n == 0)
return 0;
a = [[1, 1], [1, 0]];
compute(n - 1);
return a[0][0];
};
})();
(function() {
var cache = {};
cache[0] = [[1, 0], [0, 1]];
cache[1] = [[1, 1], [1, 0]];
function mult(a, b) {
return [
[a[0][0] * b[0][0] + a[0][1] * b[1][0],
a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0],
a[1][0] * b[0][1] + a[1][1] * b[1][1]]
];
}
function compute(n) {
if(!cache[n]) {
var n_2 = n >> 1;
compute(n_2);
cache[n] = mult(cache[n_2], cache[n_2]);
if(n & 1)
cache[n] = mult(cache[1], cache[n]);
}
}
fib.matrix_cached = function(n) {
if(n == 0)
return 0;
compute(--n);
return cache[n][0][0];
};
})();
function test(name, func, n, count) {
var value;
var start = Number(new Date);
while(count--)
value = func(n);
var end = Number(new Date);
return 'fib.' + name + '(' + n + ') = ' + value + ' [' +
(end - start) + 'ms]';
}
for(var func in fib)
document.writeln(test(func, fib[func], 1450, 10000));
</script></pre>
yields
fib.round(1450) = 4.8149675025003456e+302 [20ms]
fib.loop(1450) = 4.81496750250011e+302 [4035ms]
fib.loop_cached(1450) = 4.81496750250011e+302 [8ms]
fib.matrix(1450) = 4.814967502500118e+302 [2201ms]
fib.matrix_optimised(1450) = 4.814967502500113e+302 [585ms]
fib.matrix_cached(1450) = 4.814967502500113e+302 [12ms]
Your algorithm is nearly as bad as uncached looping. Caching is your best bet, closely followed by the rounding algorithm - which yields incorrect results for big n (as does your matrix algorithm).
For smaller n, your algorithm performs even worse than everything else:
fib.round(100) = 354224848179263100000 [20ms]
fib.loop(100) = 354224848179262000000 [248ms]
fib.loop_cached(100) = 354224848179262000000 [6ms]
fib.matrix(100) = 354224848179261900000 [1911ms]
fib.matrix_optimised(100) = 354224848179261900000 [380ms]
fib.matrix_cached(100) = 354224848179261900000 [12ms]
There is a closed form (no loops) solution for the nth Fibonacci number.
See Wikipedia.
There may well be a faster way to calculate the values but I don't believe it's necessary.
Calculate them once and, in your program, output the results as the fibdata line below:
fibdata = [1,1,2,3,5,8,13, ... , 1.3069892237633993e+308]; // 1476 entries.
function fib(n) {
if ((n < 0) || (n > 1476)) {
** Do something exception-like or return INF;
}
return fibdata[n];
}
Then, that's the code you ship to your clients. That's an O(1) solution for you.
People often overlook the 'caching' solution. I once had to write trigonometry routines for an embedded system and, rather than using infinite series to calculate them on the fly, I just had a few lookup tables, 360 entries in each for each of the degrees of input.
Needless to say, it screamed along, at the cost of only about 1K of RAM. The values were stored as 1-byte entries, [actual value (0-1) * 16] so we could just do a lookup, multiply and bit shift to get the desired value.
My previous answer got a bit crowded, so I'll post a new one:
You can speed up your algorithm by using vanilla 2x2 matrix multiplication - ie replace your matrix() function with this:
function matrix(a, b) {
return [
[a[0][0] * b[0][0] + a[0][1] * b[1][0],
a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0],
a[1][0] * b[0][1] + a[1][1] * b[1][1]]
];
}
If you care for accuracy and speed, use the caching solution. If accuracy isn't a concern, but memory consumption is, use the rounding solution. The matrix solution only makes sense if you want results for big n fast, don't care for accuracy and don't want to call the function repeatedly.
edit: You can even further speed up the computation if you use specialised multiplication functions, eliminate common subexpressions and replace the values in the existing array instead of creating a new array:
function square() {
var a00 = a[0][0],
a01 = a[0][1],
a10 = a[1][0],
a11 = a[1][1];
var a10_x_a01 = a10 * a01,
a00_p_a11 = a00 + a11;
a[0][0] = a10_x_a01 + a00 * a00;
a[0][1] = a00_p_a11 * a01;
a[1][0] = a00_p_a11 * a10;
a[1][1] = a10_x_a01 + a11 * a11;
}
function powPlusPlus() {
var a01 = a[0][1],
a11 = a[1][1];
a[0][1] = a[0][0];
a[1][1] = a[1][0];
a[0][0] += a01;
a[1][0] += a11;
}
Note: a is the name of the global matrix variable.
Closed form solution in JavaScript: O(1), accurate up for n=75
function fib(n){
var sqrt5 = Math.sqrt(5);
var a = (1 + sqrt5)/2;
var b = (1 - sqrt5)/2;
var ans = Math.round((Math.pow(a, n) - Math.pow(b, n))/sqrt5);
return ans;
}
Granted, even multiplication starts to take its expense when dealing with huge numbers, but this will give you the answer. As far as I know, because of JavaScript rounding the values, it's only accurate up to n = 75. Past that, you'll get a good estimate, but it won't be totally accurate unless you want to do something tricky like store the values as a string then parse those as BigIntegers.
How about memoizing the results that where already calculated, like such:
var IterMemoFib = function() {
var cache = [1, 1];
var fib = function(n) {
if (n >= cache.length) {
for (var i = cache.length; i <= n; i++) {
cache[i] = cache[i - 2] + cache[i - 1];
}
}
return cache[n];
}
return fib;
}();
Or if you want a more generic memoization function, extend the Function prototype:
Function.prototype.memoize = function() {
var pad = {};
var self = this;
var obj = arguments.length > 0 ? arguments[i] : null;
var memoizedFn = function() {
// Copy the arguments object into an array: allows it to be used as
// a cache key.
var args = [];
for (var i = 0; i < arguments.length; i++) {
args[i] = arguments[i];
}
// Evaluate the memoized function if it hasn't been evaluated with
// these arguments before.
if (!(args in pad)) {
pad[args] = self.apply(obj, arguments);
}
return pad[args];
}
memoizedFn.unmemoize = function() {
return self;
}
return memoizedFn;
}
//Now, you can apply the memoized function to a normal fibonacci function like such:
Fib = fib.memoize();
One note to add is that due to technical (browser security) constraints, the arguments for memoized functions can only be arrays or scalar values. No objects.
Reference: http://talideon.com/weblog/2005/07/javascript-memoization.cfm
To expand a bit on Dreas's answer:
1) cache should start as [0, 1]
2) what do you do with IterMemoFib(5.5)? (cache[5.5] == undefined)
fibonacci = (function () {
var FIB = [0, 1];
return function (x) {
if ((typeof(x) !== 'number') || (x < 0)) return;
x = Math.floor(x);
if (x >= FIB.length)
for (var i = FIB.length; i <= x; i += 1)
FIB[i] = FIB[i-1] + FIB[i-2];
return FIB[x];
}
})();
alert(fibonacci(17)); // 1597 (FIB => [0, 1, ..., 1597]) (length = 17)
alert(fibonacci(400)); // 1.760236806450138e+83 (finds 18 to 400)
alert(fibonacci(1476)); // 1.3069892237633987e+308 (length = 1476)
If you don't like silent errors:
// replace...
if ((typeof(x) !== 'number') || (x < 0)) return;
// with...
if (typeof(x) !== 'number') throw new TypeError('Not a Number.');
if (x < 0) throw new RangeError('Not a possible fibonacci index. (' + x + ')');
Here is a very fast solution of calculating the fibonacci sequence
function fib(n){
var start = Number(new Date);
var field = new Array();
field[0] = 0;
field[1] = 1;
for(var i=2; i<=n; i++)
field[i] = field[i-2] + field[i-1]
var end = Number(new Date);
return 'fib' + '(' + n + ') = ' + field[n] + ' [' +
(end - start) + 'ms]';
}
var f = fib(1450)
console.log(f)
I've just written my own little implementation using an Object to store already computed results. I've written it in Node.JS, which needed 2ms (according to my timer) to calculate the fibonacci for 1476.
Here's the code stripped down to pure Javascript:
var nums = {}; // Object that stores already computed fibonacci results
function fib(n) { //Function
var ret; //Variable that holds the return Value
if (n < 3) return 1; //Fib of 1 and 2 equal 1 => filtered here
else if (nums.hasOwnProperty(n)) ret = nums[n]; /*if the requested number is
already in the object nums, return it from the object, instead of computing */
else ret = fib( n - 2 ) + fib( n - 1 ); /* if requested number has not
yet been calculated, do so here */
nums[n] = ret; // add calculated number to nums objecti
return ret; //return the value
}
//and finally the function call:
fib(1476)
EDIT: I did not try running this in a Browser!
EDIT again: now I did. try the jsfiddle: jsfiddle fibonacci Time varies between 0 and 2ms
Much faster algorithm:
const fib = n => fib[n] || (fib[n-1] = fib(n-1)) + fib[n-2];
fib[0] = 0; // Any number you like
fib[1] = 1; // Any number you like

Categories

Resources