JavaScript variables "out of focus"? - javascript

I have a function (see below) that writes a message out onto the screen. Whenever you're actively viewing the page that it is running on, it prints out just fine; however, say you're watching a video in another tab and switch back to the tab that is writing out the function, the text comes out all jumble. e.g: "This is a message." generally would come out scrambled like "t isa hismg esseg."
The function in question:
params:
message: string
object: an HTML Object
function writeMessage(message,object){
var i = 0;
var interval = setInterval(function(){
if(i < message.length){
object.append(message.substr(i,1));
i++;
}else{
clearInterval(interval);
}
}, 25);
}
Any idea as to why this happens?

I haven't tested that, but if what the comments say is true, you should be able to avoid that by manually chaining individual delayed operations. Instead of defining one interval, you should be able to call one timeout (setTimeout function), that appends the letter to the object and then calls itself recursively while passing the rest of the message to the recursive call.
In this case, if the device gives your asynchronous action no processor time, at least the subsequent actions won't be created and executed - because only the code in the first (now waiting) action could do that.
Alternatively you can use Reactive Extensions to generate an observable interval, upon which you can subscribe and update the object with your message. If you're not familiar with reactive programming, it might be a huge new topic for you, but I can certainly recommend it - if only just as a brain-teaser to see a different approach to programming.

Related

NodeJS function getting interrupted by socketio event

I'm seeing some strange behavior in my nodejs game server in which there appears to be concurrency. This is strange because Nodejs is supposed to run in one thread as it doesn't use any concurrency. The problem is that I have an update function that's repeatedly called using setImmediate(). In this function I am using an array in two places. However, this same array is also modified when the "disconnect" event fires (which is when the client disconnects from the server). So it so happens that when the timing aligns so that the disconnect event fires AFTER the first place in which the array is accessed in the update function but BEFORE the second place, the array is modified and so the server crashes when the array is attempted to be accessed in the second place.
Here's some code that might make this picture clear:
function update(){
for(var i = 0; i < gameWorlds.length; i++){
gameWorlds[i].update();
console.log("GAMEWORLDS LENGTH BEFORE: " + gameWorlds.length);
NetworkManager.sendToClient(gameWorlds[i].id, "gameupdate", gameWorlds[i].getState());
console.log("GAMEWORLDS LENGTH AFTER: " + gameWorlds.length);
gameWorlds[i].clearGameState();
}
}
setImmediate(update);
//in the NetworkManager module, the disconnect event handler:
socket.on("disconnect", function(){
for(var a = 0; a < sockets.length; a++){
if(sockets[a].id === socket.id){
sockets.splice(a, 1);
}
}
listenerFunction("disconnect", socket.id);
console.log("Client " + socket.id + " DISCONNECTED!");
});
//also in the NetworkManager module, the sendToClient function:
function sendToClient(clientId, messageName, data){
for(var i = 0; i < sockets.length; i++){
if(sockets[i].id === clientId){
sockets[i].emit(messageName, data);
}
}
}
//in the main module (the same one as the update function), the listener
//function that's called in the disconnect event handler:
function networkEventsListener(eventType, eventObject){
if(eventType === "disconnect"){
for(var i = 0; i < gameWorlds.length; i++){
if(gameWorlds[i].id === eventObject){
gameWorlds.splice(i, 1);
console.log("GAME WORLD DELETED");
}
}
}
}
Now, I have a socketio event listener set up for when the client disconnects in which an element in the array is deleted. When this event occurs RIGHT in between the first and second places the array is accessed (as shown above), my server crashes. Either threads are being used or my function is stopped to let the event handler execute and then my function is resumed. Either way, I don't want this to be happening. Thank you!
EDIT 1: I edited the code to incorporate the console logs I have in my code. The reason why I am saying my loop is getting interrupted is because of the fact that the second console log outputs a length of 0 while the first console log outputs it greater than 0. Also, there is another console log in the disconnect event handler which FIRES in between the two console logs in my update function. This means that my function is getting interrupted.
EDIT 2: Thank you for all your replies I really appreciate it. I think there's been some confusion regarding:
1. The fact that no one has acknowledged how the console logs are appearing. In my previous edit, I changed the code to reflect how I am logging to see the problem. The issue is that in the disconnect event handler, I have a console log which is happening in between the two console logs in the loop. I.e. the disconnect event handler executes BEFORE the second console log is reached in the loop. Unless I am confused about the implementation of the console log function, the logs should be happening in the correct order (that is that the two console logs in the loop should always occur before any other console log in the rest of the program due to the ASYNC nature as most of you have stated.) But this is not the case, which leads me to believe something strange is happening.
2. None of the code inside the loop is changing the array. In a lot of your replies, you assume that there is code which actually modifies the array INSIDE the loop, which is not the case. The only code that modifies the array is code OUTISDE of the loop, which is why it's very strange that the first part of the loop in which the array is accessed doesn't crash but the second part does, even though the code in between DOESN'T change the array.
EDIT 3: Ok so a lot of the replies have been asking for the COMPLETE code. I have update the code with all the relevant REAL code.
Javascript in node.js is single threaded. A given thread of execution in Javascript will NOT be interrupted by a socket.io disconnect event. That physically can't happen. node.js is event driven. When the disconnect event happens, an event will be put into the Javascript event queue and ONLY when your current thread of execution is done will Javascript grab the next event out of the event queue and call the callback associated with it.
You don't show enough of your real code to know for sure, but what could be happening is if you have asynchronous operations, then when you start an async operation and register a callback for its completion, then you are finishing that Javascript thread of execution and it is merely a race to see which async event happens next (the completion of this specific async operation or the disconnect event from the socket.io disconnect). That is indeterminate and those events can happen in any order. So, if you have async code in the code in question, then the disconnect event can get processed while that code is waiting for a completion of an async event.
That is the type of race conditions that you have to be aware of in node.js programming. Anytime your logic goes asynchronous, then other things can get processed in node.js while your code is waiting for the asynchronous callback that signals the operation is complete.
What exactly to do about this depends entirely upon the exact situation and we would need to see and understand your real code (not pseudo code) to know which option to best recommend to you. FYI, this is one of the reasons we can always help you better if you show us your real code, not just pseudo code.
Here are some of the techniques that can be used when you are operating with async operations on a shared data structure that could be changed by other async code:
Make a copy of the data you want to process so no other code has access to your copy so it can't be modified by any other code. This might be making a copy of an array or it might be just using a closure to capture an index locally so the index can't be impacted by other code.
Use a flag to protect a data structure that is in the middle of being modified and train all other code to respect that flag. How exactly to do this depends upon the specific data. I have code in a Raspberry Pi node.js app that regularly saves data to disk and is subject to a race condition where other event driven code may want to update that data while I'm in the middle of using async I/O to write it to disk. Because the data is potentially large and the memory of the system not so large, I can't make a copy of the data as suggested in the first point. So, I used a flag to indicate that I'm in the middle of writing the data to disk and any code that wishes to modify the data while this flag is set, adds its operations to a queue rather than directly modifies the data. Then, when I'm done writing the data to disk, the code checks the queue to see if any pending operations need to be carried out to modify the data. And, since the data is represented by an object and all operations on the data are carried out by methods on the object, this is all made transparent to the code using the data or trying to modify the data.
Put the data in an actual database that has concurrency features and controls built into it so that it can make atomic changes to the data or data can be locked for brief periods of time or data can be fetched or updated in a safe way. Databases have lots of possible strategies for dealing with this since it happens with them a lot.
Make all accesses to the data be asynchronous so if some other async operation is in the middle of modifying the data, then other unsafe attempts to access the data can "block" until the original operation is done. This is one technique that databases use. You do, of course, have to watch out for deadlocks or for error paths where the flags or locks aren't cleared.
Some new comments based on your posting of more code:
This code is just wrong:
//in the main module (the same one as the update function), the listener
//function that's called in the disconnect event handler:
function networkEventsListener(eventType, eventObject){
if(eventType === "disconnect"){
for(var i = 0; i < gameWorlds.length; i++){
if(gameWorlds[i].id === eventObject){
gameWorlds.splice(i, 1);
console.log("GAME WORLD DELETED");
}
}
}
}
When you call .splice() in the middle of a for loop on the array you are iterating, it causes you to miss an item in the array you are iterating. I don't know if this has anything to do with your issue, but it is wrong. One simple way to avoid this issue it to iterate the array backwards. Then calling .splice() will not influence the position of any of the array elements that you have not yet iterated and you won't miss anything in the array.
Same issue in the for loop in your disconnect handler. If you only ever expect one array element to match in your iteration, then you can break right after the splice() and this will avoid this issue and you won't have to iterate backwards.
Two things I think you should change to fix the problem.
1) don't modify the length of the array when disconnect occurs but instead make a value that is falsey. A boolean or a one and zero scenario
2) add logic in the form of an if statement to check if the value is falsey for player two. That way you'll know they disconnected and don't deserve to have anything because they're lame and couldn't watch the loser screen.
That should fix the issue and you can. Decide what to do if they're to lazy to stay and watch the winning losing ceremony of your game.
var gameWorld = [ ];
function update(){ // some code } is async and is pushed to the event loop.
function disconnect(){ // some code } is also async and gets pushed to the event loop.
Even though update() is running on the call stack it's waiting for the event loop and it doesn't mean that it'll complete it's execution before the next tick occurs. gameWorld is outside both scopes it can be modified in the middle of update(). So when update() tries to access the array again it's different then when it started.
disconnect() is called before update() finishes and modifies the array on the event loop nexttick() thus by the time the code for update() gets to second player bam the array is messed up.
Even if you have an event listener, execution should not just stop mid function. When the event occurs, node will push the event callback on to the stack. Then when node finishes executing the current function it will start processing the other requests on the stack. You can't be sure of the order things will execute, but you can be sure that things will not get interrupted mid execution.
If your doWhatever function is async then the problem may be occurring because when node finally gets around to servicing the requests on the stack the loop has already finished, therefore everytime doWhatever is called it is being called with the same index (whatever its last value was.)
If you want to call async functions from a loop then you should wrap them in a function to preserve the arguments.
e.g.
function doWhateverWrapper(index){
theArray[index].doWhatever();
}
function update(){
for(var i = 0; i < theArray.length; i++){
//first place the array is accessed
doWhateverWrapper(i);
....more code.....
//second place the array is accessed
doWhateverWrapper(i);
}
}
setImmediate(update);

Using setTimeout to improve responsiveness

When looking to improve a page's performance, one technique I haven't heard mentioned before is using setTimeout to prevent javascript from holding up the rendering of a page.
For example, imagine we have a particularly time-consuming piece of jQuery inline with the html:
$('input').click(function () {
// Do stuff
});
If this code is inline, we are holding up the perceived completion of the page while the piece of jquery is busy attaching a click handler to every input on the page.
Would it be wise to spawn a new thread instead:
setTimeout(function() {
$('input').click(function () {
// Do stuff
})
}, 100);
The only downside I can see is that there is now a greater chance the user clicks on an element before the click handler is attached. However, this risk may be acceptable and we have a degree of this risk anyway, even without setTimeout.
Am I right, or am I wrong?
The actual technique is to use setTimeout with a time of 0.
This works because JavaScript is single-threaded. A timeout doesn't cause the browser to spawn another thread, nor does it guarantee that the code will execute in the specified time. However, the code will be executed when both:
The specified time has elapsed.
Execution control is handed back to the browser.
Therefore calling setTimeout with a time of 0 can be considered as temporarily yielding to the browser.
This means if you have long running code, you can simulate multi-threading by regularly yielding with a setTimeout. Your code may look something like this:
var batches = [...]; // Some array
var currentBatch = 0;
// Start long-running code, whenever browser is ready
setTimeout(doBatch, 0);
function doBatch() {
if (currentBatch < batches.length) {
// Do stuff with batches[currentBatch]
currentBatch++;
setTimeout(doBatch, 0);
}
}
Note: While it's useful to know this technique in some scenarios, I highly doubt you will need it in the situation you describe (assigning event handlers on DOM ready). If performance is indeed an issue, I would suggest looking into ways of improving the real performance by tweaking the selector.
For example if you only have one form on the page which contains <input>s, then give the <form> an ID, and use $('#someId input').
setTimeout() can be used to improve the "perceived" load time -- but not the way you've shown it. Using setTimeout() does not cause your code to run in a separate thread. Instead setTimeout() simply yields the thread back to the browser for (approximately) the specified amount of time. When it's time for your function to run, the browser will yield the thread back to the javascript engine. In javascript there is never more than one thread (unless you're using something like "Web Workers").
So, if you want to use setTimeout() to improve performance during a computation-intensive task, you must break that task into smaller chunks, and execute them in-order, chaining them together using setTimeout(). Something like this works well:
function runTasks( tasks, idx ) {
idx = idx || 0;
tasks[idx++]();
if( idx < tasks.length ) {
setTimeout( function(){ runTasks(tasks, idx); },1);
}
}
runTasks([
function() {
/* do first part */
},
function() {
/* do next part */
},
function() {
/* do final part */
}
]);
Note:
The functions are executed in order. There can be as many as you need.
When the first function returns, the next one is called via setTimeout().
The timeout value I've used is 1. This is sufficient to cause a yield, and the browser will take the thread if it needs it, or allow the next task to proceed if there's time. You can experiment with other values if you feel the need, but usually 1 is what you want for these purposes.
You are correct, there is a greater chance of a "missed" click, but with a low timeout value, its pretty unlikely.

Prompt user for confirmation in the middle of a process

I'm looking for a good approach to sometimes pause an action (function/method call) until the user confirms that he wants to do a specific part of that action. I need to do this in an environment that doesn't allow code execution to stop (ActionScript in my case, but an approach for JavaScript should be identical).
To illustrate, this is a mock-up of the action before introducing the user prompt:
<preliminary-phase> // this contains data needed by all the following phases //
<mandatory-phase> // this will be always be executed //
<optional-phase> // this will always execute too, if in this form, but in some cases we need to ask the user if he wants to do it //
<ending-phase> // also mandatory //
What I need is to insert a conditional user prompt, a "Do you want to do this part?", and do <optional-phase> only if the user wants to.
<preliminary-phase>
<mandatory-phase>
if(<user-confirmation-is-needed> and not <user-response-is-positive>){
<do-nothing>
}
else{
<optional-phase>
}
<ending-phase>
When trying to do this in ActionScript/JavaScript I got something like this:
<preliminary-phase>
<mandatory-phase>
if(<user-confirmation-is-needed>){
askForConfirmation(callback = function(){
if(<user-response-is-positive>)
<optional-phase>
<ending-phase>
});
return;
}
<optional-phase>
<ending-phase>
Now both <optional-phase> and <ending-phase> are duplicated. Also because they use objects created in <preliminary-phase> I can't move them to external functions without passing all the data to those functions.
My current solution is that I enclosed each of <optional-phase> and <ending-phase> in some local functions (so that they have access to data in <preliminary-phase>) declared before I ask for confirmation and I call those functions instead of duplicating the code, but it doesn't seem right that the code is no longer in the order it's executed.
What would you guys recommend?
Notes:
1. askForConfirmation is a non-blocking function. This means that the code that follows its call is executed immediately (this is why I have a return; in my approach).
Note: I'm not 100% sure I get your exact circumstances.
The Command Pattern might be suitable here. It's similar to what people are suggesting.
You have an array of commands that get executed in order.
[<preliminary-phase>, <mandatory-phase>, <optional-phase>, <ending-phase>]
Just shift the commands off the array one at a time and call the execute method.
In the optional-phase, check to see if the user confirmation is required, if not then execute an optional code method which dispatches a command complete event, if it is required then show the alert, wait for an event, check the result and either dispatch a command complete event or call the optional method (which will run and then dispatch a command complete).
You can also create a tree of commands so can clearly state the flow of execution without having to mess with the array.
This is how programs like installation wizards work.
It's good in that the order of execution is nice and visible and your code is nicely broken down in to chunks, and the complexity of each step is encapsulated. For example, the optional-phase doesn't know anything about the ending-phase. The optional-phase only knows that the user might need prompted before executing and it handles all of that internally.
http://en.wikipedia.org/wiki/Command_pattern
"Using command objects makes it easier to construct general components that need to delegate, sequence or execute method calls at a time of their choosing..."
"the code is no longer in the order it's executed" seems fine to me actually. It's fine to have code that isn't written in the order it's executed just as long as it's clear. In fact, since your code executes in variable orders I think it's impossible for you to write it in the order it will execute without duplicating code, which is a far greater evil. Pick good function names and your approach would pass my code review.
<preliminary-phase>
<mandatory-phase>
var optional_phase = function() {
<optional-phase>
}
var ending_phase = function() {
<ending-phase>
}
if(<user-confirmation-is-needed>){
askForConfirmation(function(){
if(<user-response-is-positive>)
optional_phase();
ending_phase();
});
return;
}
optional_phase();
ending_phase();
Does this do what you're asking for?
<preliminary-phase>
<mandatory-phase>
if(<user-confirmation-is-needed>){
askForConfirmation(function(){
if(<user-response-is-positive>)
<optional-phase-as-local-function>
<ending-phase-as-local-function>
});
} else {
<optional-phase-as-local-function>
<ending-phase-as-local-function>
}
Not a huge change , but provided this flow works, optional phase is not repeated
<preliminary-phase>
<mandatory-phase>
if(<user-confirmation-is-needed>){
askForConfirmation(function(){
if(<user-response-is-negative>)
{
<ending-phase>
return;
}
});
}
<optional-phase>
<ending-phase>

javascript, while loop

i'm trying to get my script to wait for user input (click of a button) before continuing, this is v feasible in other languages, but seems impossible in js. basically, i want the user to select an option within a given time frame, if the user selects the wrong option, they're told..script then conts...otherwise, if after a certain amount of time theres no response...script just continues again sowing them the correct ans, but there seems to be nothing in js to make the script wait for that user input! ive tried a while loop, but that is just a big no no in js, ive used settimeout but has no real effect because the script just continues like normal then performs an action after x amount of time, ive tried setting variables and letting the script cont only if it is of a particular value, which is set only if the user clicks...eg var proceed=false, this is only set to true if the user clicks a button, but it still doesn't work... ive tried sooo many other solutions but nothing actually seems to be working. i like the idea of a while loop, because it doeas exactly what i want it to so, but if completly freezes my browser, is there a more effecient type of loop that will will peroform in the same manner with crashing my browser?
heres my code below that compltely freezes my computer. this method is called within a for loop which calls another method after it.
function getUserResp(){
$("#countdown").countdown({seconds: 15});
setTimeout("proceed=true", 16000);
$("#ans1").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
$("#ans2").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
$("#ans3").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
would like something like this.....or just some sort of loop to make the script wait before going ahead so at least it gives the user some time to respond rather than running straight though!
do{
$(".ans").mouseover(function(){
$(this).addClass("hilite").fadeIn(800);
});
$(".ans").mouseout(function(){
$(this).removeClass("hilite");
});
}while(proceed==false);
}
You're doing it wrong.
JavaScript in the browser uses an event-driven model. There's no main function, just callbacks that are called when an event happens (such as document ready or anchor clicked). If you want something to happen after a user clicks something, then put a listener on that thing.
What you've done just keeps adding an event listener every time round the loop.
If you want to wait for user input then just don't do anything - the browser waits for user input (it's got an internal event loop). The worst thing you can do is try to reimplement your own event loop on top of the browser's.
You need to learn JavaScript. Trying to write JavaScript like you would another language only leads to pain and suffering. Seriously.
Douglas Crockford said it best:
JavaScript is a language that most people don’t bother to learn before they use. You can’t do that with any other language, and you shouldn’t want to, and you shouldn’t do that with this language either. Programming is a serious business, and you should have good knowledge about what you’re doing, but most people feel that they ought to be able to program in this language without any knowledge at all, and it still works. It’s because the language has enormous expressive power, and that’s not by accident.
You can't block the Javascript from running in the same way that you can in some other imperative languages. There's only one thread for Javascript in the browser, so if you hang it in a loop, nothing else can happen.
You must use asynchronous, event-driven programming. Setting a click handler (or whatever) combined with a timeout is the right way to start. Start a 15 second setTimeout. Inside the click handler for the answers, cancel the timeout. This way the timeout's handler only happens if the user doesn't click an answer.
For example:
var mytimeout = setTimeout(15000, function() {
// This is an anonymous function that will be called when the timer goes off.
alert("You didn't answer in time.");
// Remove the answer so the user can't click it anymore, etc...
$('#ans').hide();
});
$('#ans').click(function() {
// Clear the timeout, so it will never fire the function above.
clearTimeout(mytimeout);
alert("You picked an answer!");
});
See how the code must be structured such that it's event-driven. There's no way to structure it to say "do this thing, and wait here for an answer."
You're looking at client-side javascript as if it wasn't already in an event-driven loop. All you need to do is wait for the appropriate event to happen, and if it hasn't happened yet, continue to wait, or else perform some default action.
You don't need to:
create main loop: // All
wait for user input // Of
timer = start_timer() // This
// Is done for you
if [user has input data]:
process_data()
else if [timer > allowed_time]:
process_no_data()
else:
wait() // By the Browser
You only need the middle part. All you need to do is (Actual javascript follows, not pseudo-code):
// First, store all of the answer sections,
// so you're not grabbing them every time
// you need to check them.
var answers = {};
answers.ans1 = $("#ans1");
answers.ans2 = $("#ans2");
answers.ans3 = $("#ans3");
// This is a flag. We'll use it to check whether we:
// A. Have waited for 16 seconds
// B. Have correct user input
var clear_to_proceed = false;
var timer_id;
// Now we need to set up a function to check the answers.
function check_answers() {
if ( ! clear_to_proceed ) {
clear_to_proceed = checkAns(answers.ans1.text());
clear_to_proceed = checkAns(answers.ans2.text());
clear_to_proceed = checkAns(answers.ans3.text());
// I assume checkAns returns
// true if the answer is correct
// and false if it is wrong
}
if ( clear_to_proceed ) {
clearTimeout(timer_id);
return true; // Or do whatever needs be done,
// as the client has answered correctly
} else {
// If we haven't set a timer yet, set one
if ( typeof timer_id === 'undefined' ) {
timer_id = setTimeout(function(){
// After 16 seconds have passed we'll check their
// answers one more time and then force the default.
check_answers();
clear_to_proceed = true;
check_answers();
}, 16000);
}
return false; // We're just waiting for now.
}
}
// Finally, we check the answers any time the user interact
// with the answer elements.
$("#ans1,#ans2,#ans3").bind("focus blur", function() {
check_answers();
});

Thread Safety in Javascript?

I have a function called save(), this function gathers up all the inputs on the page, and performs an AJAX call to the server to save the state of the user's work.
save() is currently called when a user clicks the save button, or performs some other action which requires us to have the most current state on the server (generate a document from the page for example).
I am adding in the ability to auto save the user's work every so often. First I would like to prevent an AutoSave and a User generated save from running at the same time. So we have the following code (I am cutting most of the code and this is not a 1:1 but should be enough to get the idea across):
var isSaving=false;
var timeoutId;
var timeoutInterval=300000;
function save(showMsg)
{
//Don't save if we are already saving.
if (isSaving)
{
return;
}
isSaving=true;
//disables the autoSave timer so if we are saving via some other method
//we won't kick off the timer.
disableAutoSave();
if (showMsg) { //show a saving popup}
params=CollectParams();
PerformCallBack(params,endSave,endSaveError);
}
function endSave()
{
isSaving=false;
//hides popup if it's visible
//Turns auto saving back on so we save x milliseconds after the last save.
enableAutoSave();
}
function endSaveError()
{
alert("Ooops");
endSave();
}
function enableAutoSave()
{
timeoutId=setTimeOut(function(){save(false);},timeoutInterval);
}
function disableAutoSave()
{
cancelTimeOut(timeoutId);
}
My question is if this code is safe? Do the major browsers allow only a single thread to execute at a time?
One thought I had is it would be worse for the user to click save and get no response because we are autosaving (And I know how to modify the code to handle this). Anyone see any other issues here?
JavaScript in browsers is single threaded. You will only ever be in one function at any point in time. Functions will complete before the next one is entered. You can count on this behavior, so if you are in your save() function, you will never enter it again until the current one has finished.
Where this sometimes gets confusing (and yet remains true) is when you have asynchronous server requests (or setTimeouts or setIntervals), because then it feels like your functions are being interleaved. They're not.
In your case, while two save() calls will not overlap each other, your auto-save and user save could occur back-to-back.
If you just want a save to happen at least every x seconds, you can do a setInterval on your save function and forget about it. I don't see a need for the isSaving flag.
I think your code could be simplified a lot:
var intervalTime = 300000;
var intervalId = setInterval("save('my message')", intervalTime);
function save(showMsg)
{
if (showMsg) { //show a saving popup}
params=CollectParams();
PerformCallBack(params, endSave, endSaveError);
// You could even reset your interval now that you know we just saved.
// Of course, you'll need to know it was a successful save.
// Doing this will prevent the user clicking save only to have another
// save bump them in the face right away because an interval comes up.
clearInterval(intervalId);
intervalId = setInterval("save('my message')", intervalTime);
}
function endSave()
{
// no need for this method
alert("I'm done saving!");
}
function endSaveError()
{
alert("Ooops");
endSave();
}
All major browsers only support one javascript thread (unless you use web workers) on a page.
XHR requests can be asynchronous, though. But as long as you disable the ability to save until the current request to save returns, everything should work out just fine.
My only suggestion, is to make sure you indicate to the user somehow when an autosave occurs (disable the save button, etc).
All the major browsers currently single-thread javascript execution (just don't use web workers since a few browsers support this technique!), so this approach is safe.
For a bunch of references, see Is JavaScript Multithreaded?
Looks safe to me. Javascript is single threaded (unless you are using webworkers)
Its not quite on topic but this post by John Resig covers javascript threading and timers:
http://ejohn.org/blog/how-javascript-timers-work/
I think the way you're handling it is best for your situation. By using the flag you're guaranteeing that the asynchronous calls aren't overlapping. I've had to deal with asynchronous calls to the server as well and also used some sort of flag to prevent overlap.
As others have already pointed out JavaScript is single threaded, but asynchronous calls can be tricky if you're expecting things to say the same or not happen during the round trip to the server.
One thing, though, is that I don't think you actually need to disable the auto-save. If the auto-save tries to happen when a user is saving then the save method will simply return and nothing will happen. On the other hand you're needlessly disabling and reenabling the autosave every time autosave is activated. I'd recommend changing to setInterval and then forgetting about it.
Also, I'm a stickler for minimizing global variables. I'd probably refactor your code like this:
var saveWork = (function() {
var isSaving=false;
var timeoutId;
var timeoutInterval=300000;
function endSave() {
isSaving=false;
//hides popup if it's visible
}
function endSaveError() {
alert("Ooops");
endSave();
}
function _save(showMsg) {
//Don't save if we are already saving.
if (isSaving)
{
return;
}
isSaving=true;
if (showMsg) { //show a saving popup}
params=CollectParams();
PerformCallBack(params,endSave,endSaveError);
}
return {
save: function(showMsg) { _save(showMsg); },
enableAutoSave: function() {
timeoutId=setInterval(function(){_save(false);},timeoutInterval);
},
disableAutoSave: function() {
cancelTimeOut(timeoutId);
}
};
})();
You don't have to refactor it like that, of course, but like I said, I like to minimize globals. The important thing is that the whole thing should work without disabling and reenabling autosave every time you save.
Edit: Forgot had to create a private save function to be able to reference from enableAutoSave

Categories

Resources