Can one access a private class property in a public method? - javascript

Newbie Javascript question:
how does one access a private class property in a public method? In all the example I see a public prototype function accessing public (this.property). Is it possible to access a private property in a public method?

This pattern is known as a "privileged" method. It looks something like this:
function MyClass() {
var secret = "foo";
this.tellSecret = function() {
return secret;
};
}
var inst = new MyClass();
console.log(inst.tellSecret()); // => "foo"
console.log(inst.secret); // => undefined
This works because the private variable is in a closure. The problem with this is that we are putting the privileged method on each instance, rather than the prototype. This is not ideal. Often, instead of having private variables in JavaScript, authors will just use a leading underscore which is conventionally used to imply that public methods/properties should be treated as private:
function MyClass() {
this._secret = "foo";
}
MyClass.prototype.tellSecret = function() {
return this._secret;
};

Here is a little demo:
var Foo = function(name){
this.name = name;
var t = name;
if(typeof(this.show) != 'function'){
Foo.prototype.show = function(){
console.log(t);
console.log(this.name);
};
}
};
var a = new Foo('a');
var b = new Foo('b');
b.show(); // ...
Hope it can help you out.

Related

Is there a rather complete definition of a JavaScript class [duplicate]

I'm new in javascript.
How can I declare a class in javascript for example with property that named username.
then after username property valued a function is run.
In C# it is something like this :
public int M_A
{
get
{
return m_a;
}
set
{
m_a = value;
RunFunction();
}
}
Javascript doesn't have a class-based inheritance, it uses a prototype-based. Additionally, it doesn't provide support for getters and setters (in most versions).
Here would be one way to write your example:
var ExampleClass = function(){
var _m_a;//private instance
this.m_a = function(){
if(arguments.length){
_m_a = arguments[0];
}else{
return _m_a;
}
};
};
Usage:
var inst = new ExampleClass();
inst.m_a(5);//provide an argument to set it
console.log(inst.m_a());//no arguments to get it
Since we're just approximating a class system, there's actually a couple ways to do this. Here's another:
var ExampleClass = function(){
this._m_a = null;
};
ExampleClass.prototype.get_m_a = function(){
return this._m_a;
};
ExampleClass.prototype.set_m_a = function(value){
this._m_a = value;
};
Usage:
var inst = new ExampleClass();
inst.set_m_a(5);
console.log(inst.get_m_a());
console.log(inst._m_a);//annoying thing is the private property is accessible
For a better understanding of prototypal inheritance and javascript class systems, check out these posts:
Simple JavaScript Inheritance by John Resig (creator of jQuery)
Classical Inheritance in JavaScript by Douglas Crockford
JS Class - a Class framework for javascript
You can do something like this:
var M_A = function()
{
var m_a; //private variable
this.get = function()
{
return m_a;
}
this.set = function(value)
{
m_a = value;
RunFunction(); //run some global or private function
this.runPublic(); // run a public function
}
}
Then you can do:
var ma = new M_A();
ma.set(16);
alert(ma.get()); //alerts `16`
Demo: http://jsfiddle.net/maniator/72bnW/

Javascript OOP - private/public methods [duplicate]

To make a JavaScript class with a public method I'd do something like:
function Restaurant() {}
Restaurant.prototype.buy_food = function(){
// something here
}
Restaurant.prototype.use_restroom = function(){
// something here
}
That way users of my class can:
var restaurant = new Restaurant();
restaurant.buy_food();
restaurant.use_restroom();
How do I create a private method that can be called by the buy_food and use_restroom methods but not externally by users of the class?
In other words, I want my method implementation to be able to do:
Restaurant.prototype.use_restroom = function() {
this.private_stuff();
}
But this shouldn't work:
var r = new Restaurant();
r.private_stuff();
How do I define private_stuff as a private method so both of these hold true?
I've read Doug Crockford's writeup a few times but it doesn't seem like "private" methods can be called by public methods and "privileged" methods can be called externally.
You can do it, but the downside is that it can't be part of the prototype:
function Restaurant() {
var myPrivateVar;
var private_stuff = function() { // Only visible inside Restaurant()
myPrivateVar = "I can set this here!";
}
this.use_restroom = function() { // use_restroom is visible to all
private_stuff();
}
this.buy_food = function() { // buy_food is visible to all
private_stuff();
}
}
Using self invoking function and call
JavaScript uses prototypes and does't have classes (or methods for that matter) like Object Oriented languages. A JavaScript developer need to think in JavaScript.
Wikipedia quote:
Unlike many object-oriented languages, there is no distinction between
a function definition and a method definition. Rather, the distinction
occurs during function calling; when a function is called as a method
of an object, the function's local this keyword is bound to that
object for that invocation.
Solution using a self invoking function and the call function to call the private "method" :
var MyObject = (function () {
// Constructor
function MyObject(foo) {
this._foo = foo;
}
function privateFun(prefix) {
return prefix + this._foo;
}
MyObject.prototype.publicFun = function () {
return privateFun.call(this, ">>");
}
return MyObject;
}());
var myObject = new MyObject("bar");
myObject.publicFun(); // Returns ">>bar"
myObject.privateFun(">>"); // ReferenceError: private is not defined
The call function allows us to call the private function with the appropriate context (this).
Simpler with Node.js
If you are using Node.js, you don't need the IIFE because you can take advantage of the module loading system:
function MyObject(foo) {
this._foo = foo;
}
function privateFun(prefix) {
return prefix + this._foo;
}
MyObject.prototype.publicFun = function () {
return privateFun.call(this, ">>");
}
module.exports= MyObject;
Load the file:
var MyObject = require("./MyObject");
var myObject = new MyObject("bar");
myObject.publicFun(); // Returns ">>bar"
myObject.privateFun(">>"); // ReferenceError: private is not defined
(new!) Native private methods in future JavaScript versions
TC39 private methods and getter/setters for JavaScript classes proposal is stage 3. That means any time soon, JavaScript will implement private methods natively!
Note that JavaScript private class fields already exists in modern JavaScript versions.
Here is an example of how it is used:
class MyObject {
// Private field
#foo;
constructor(foo) {
this.#foo = foo;
}
#privateFun(prefix) {
return prefix + this.#foo;
}
publicFun() {
return this.#privateFun(">>");
}
}
You may need a JavaScript transpiler/compiler to run this code on old JavaScript engines.
PS: If you wonder why the # prefix, read this.
(deprecated) ES7 with the Bind Operator
Warning: The bind operator TC39 proposition is near dead https://github.com/tc39/proposal-bind-operator/issues/53#issuecomment-374271822
The bind operator :: is an ECMAScript proposal and is implemented in Babel (stage 0).
export default class MyObject {
constructor (foo) {
this._foo = foo;
}
publicFun () {
return this::privateFun(">>");
}
}
function privateFun (prefix) {
return prefix + this._foo;
}
You can simulate private methods like this:
function Restaurant() {
}
Restaurant.prototype = (function() {
var private_stuff = function() {
// Private code here
};
return {
constructor:Restaurant,
use_restroom:function() {
private_stuff();
}
};
})();
var r = new Restaurant();
// This will work:
r.use_restroom();
// This will cause an error:
r.private_stuff();
More information on this technique here: http://webreflection.blogspot.com/2008/04/natural-javascript-private-methods.html
In these situations when you have a public API, and you would like private and public methods/properties, I always use the Module Pattern. This pattern was made popular within the YUI library, and the details can be found here:
http://yuiblog.com/blog/2007/06/12/module-pattern/
It is really straightforward, and easy for other developers to comprehend. For a simple example:
var MYLIB = function() {
var aPrivateProperty = true;
var aPrivateMethod = function() {
// some code here...
};
return {
aPublicMethod : function() {
aPrivateMethod(); // okay
// some code here...
},
aPublicProperty : true
};
}();
MYLIB.aPrivateMethod() // not okay
MYLIB.aPublicMethod() // okay
Here is the class which I created to understand what Douglas Crockford's has suggested in his site Private Members in JavaScript
function Employee(id, name) { //Constructor
//Public member variables
this.id = id;
this.name = name;
//Private member variables
var fName;
var lName;
var that = this;
//By convention, we create a private variable 'that'. This is used to
//make the object available to the private methods.
//Private function
function setFName(pfname) {
fName = pfname;
alert('setFName called');
}
//Privileged function
this.setLName = function (plName, pfname) {
lName = plName; //Has access to private variables
setFName(pfname); //Has access to private function
alert('setLName called ' + this.id); //Has access to member variables
}
//Another privileged member has access to both member variables and private variables
//Note access of this.dataOfBirth created by public member setDateOfBirth
this.toString = function () {
return 'toString called ' + this.id + ' ' + this.name + ' ' + fName + ' ' + lName + ' ' + this.dataOfBirth;
}
}
//Public function has access to member variable and can create on too but does not have access to private variable
Employee.prototype.setDateOfBirth = function (dob) {
alert('setDateOfBirth called ' + this.id);
this.dataOfBirth = dob; //Creates new public member note this is accessed by toString
//alert(fName); //Does not have access to private member
}
$(document).ready()
{
var employee = new Employee(5, 'Shyam'); //Create a new object and initialize it with constructor
employee.setLName('Bhaskar', 'Ram'); //Call privileged function
employee.setDateOfBirth('1/1/2000'); //Call public function
employee.id = 9; //Set up member value
//employee.setFName('Ram'); //can not call Private Privileged method
alert(employee.toString()); //See the changed object
}
ES12 Private Methods
You can do this now with es12 private methods. You just need to add a # before the method name.
class ClassWithPrivateMethod {
#privateMethod() {
return 'hello world';
}
getPrivateMessage() {
return #privateMethod();
}
}
I conjured up this: EDIT: Actually, someone has linked to a identical solution. Duh!
var Car = function() {
}
Car.prototype = (function() {
var hotWire = function() {
// Private code *with* access to public properties through 'this'
alert( this.drive() ); // Alerts 'Vroom!'
}
return {
steal: function() {
hotWire.call( this ); // Call a private method
},
drive: function() {
return 'Vroom!';
}
};
})();
var getAwayVechile = new Car();
hotWire(); // Not allowed
getAwayVechile.hotWire(); // Not allowed
getAwayVechile.steal(); // Alerts 'Vroom!'
ES2021 / ES12 - Private Methods
Private method names start with a hash # prefix and can be accessed only inside the class where it is defined.
class Restaurant {
// private method
#private_stuff() {
console.log("private stuff");
}
// public method
buy_food() {
this.#private_stuff();
}
};
const restaurant = new Restaurant();
restaurant.buy_food(); // "private stuff";
restaurant.private_stuff(); // Uncaught TypeError: restaurant.private_stuff is not a function
I think such questions come up again and again because of the lack of understanding of the closures. Сlosures is most important thing in JS. Every JS programmer have to feel the essence of it.
1. First of all we need to make separate scope (closure).
function () {
}
2. In this area, we can do whatever we want. And no one will know about it.
function () {
var name,
secretSkills = {
pizza: function () { return new Pizza() },
sushi: function () { return new Sushi() }
}
function Restaurant(_name) {
name = _name
}
Restaurant.prototype.getFood = function (name) {
return name in secretSkills ? secretSkills[name]() : null
}
}
3. For the world to know about our restaurant class,
we have to return it from the closure.
var Restaurant = (function () {
// Restaurant definition
return Restaurant
})()
4. At the end, we have:
var Restaurant = (function () {
var name,
secretSkills = {
pizza: function () { return new Pizza() },
sushi: function () { return new Sushi() }
}
function Restaurant(_name) {
name = _name
}
Restaurant.prototype.getFood = function (name) {
return name in secretSkills ? secretSkills[name]() : null
}
return Restaurant
})()
5. Also, this approach has potential for inheritance and templating
// Abstract class
function AbstractRestaurant(skills) {
var name
function Restaurant(_name) {
name = _name
}
Restaurant.prototype.getFood = function (name) {
return skills && name in skills ? skills[name]() : null
}
return Restaurant
}
// Concrete classes
SushiRestaurant = AbstractRestaurant({
sushi: function() { return new Sushi() }
})
PizzaRestaurant = AbstractRestaurant({
pizza: function() { return new Pizza() }
})
var r1 = new SushiRestaurant('Yo! Sushi'),
r2 = new PizzaRestaurant('Dominos Pizza')
r1.getFood('sushi')
r2.getFood('pizza')
I hope this helps someone better understand this subject
Personally, I prefer the following pattern for creating classes in JavaScript :
var myClass = (function() {
// Private class properties go here
var blueprint = function() {
// Private instance properties go here
...
};
blueprint.prototype = {
// Public class properties go here
...
};
return {
// Public class properties go here
create : function() { return new blueprint(); }
...
};
})();
As you can see, it allows you to define both class properties and instance properties, each of which can be public and private.
Demo
var Restaurant = function() {
var totalfoodcount = 0; // Private class property
var totalrestroomcount = 0; // Private class property
var Restaurant = function(name){
var foodcount = 0; // Private instance property
var restroomcount = 0; // Private instance property
this.name = name
this.incrementFoodCount = function() {
foodcount++;
totalfoodcount++;
this.printStatus();
};
this.incrementRestroomCount = function() {
restroomcount++;
totalrestroomcount++;
this.printStatus();
};
this.getRestroomCount = function() {
return restroomcount;
},
this.getFoodCount = function() {
return foodcount;
}
};
Restaurant.prototype = {
name : '',
buy_food : function(){
this.incrementFoodCount();
},
use_restroom : function(){
this.incrementRestroomCount();
},
getTotalRestroomCount : function() {
return totalrestroomcount;
},
getTotalFoodCount : function() {
return totalfoodcount;
},
printStatus : function() {
document.body.innerHTML
+= '<h3>Buying food at '+this.name+'</h3>'
+ '<ul>'
+ '<li>Restroom count at ' + this.name + ' : '+ this.getRestroomCount() + '</li>'
+ '<li>Food count at ' + this.name + ' : ' + this.getFoodCount() + '</li>'
+ '<li>Total restroom count : '+ this.getTotalRestroomCount() + '</li>'
+ '<li>Total food count : '+ this.getTotalFoodCount() + '</li>'
+ '</ul>';
}
};
return { // Singleton public properties
create : function(name) {
return new Restaurant(name);
},
printStatus : function() {
document.body.innerHTML
+= '<hr />'
+ '<h3>Overview</h3>'
+ '<ul>'
+ '<li>Total restroom count : '+ Restaurant.prototype.getTotalRestroomCount() + '</li>'
+ '<li>Total food count : '+ Restaurant.prototype.getTotalFoodCount() + '</li>'
+ '</ul>'
+ '<hr />';
}
};
}();
var Wendys = Restaurant.create("Wendy's");
var McDonalds = Restaurant.create("McDonald's");
var KFC = Restaurant.create("KFC");
var BurgerKing = Restaurant.create("Burger King");
Restaurant.printStatus();
Wendys.buy_food();
Wendys.use_restroom();
KFC.use_restroom();
KFC.use_restroom();
Wendys.use_restroom();
McDonalds.buy_food();
BurgerKing.buy_food();
Restaurant.printStatus();
BurgerKing.buy_food();
Wendys.use_restroom();
McDonalds.buy_food();
KFC.buy_food();
Wendys.buy_food();
BurgerKing.buy_food();
McDonalds.buy_food();
Restaurant.printStatus();
See also this Fiddle.
All of this closure will cost you. Make sure you test the speed implications especially in IE. You will find you are better off with a naming convention. There are still a lot of corporate web users out there that are forced to use IE6...
Don't be so verbose. It's Javascript. Use a Naming Convention.
After years of working in es6 classes, I recently started work on an es5 project (using requireJS which is already very verbose-looking). I've been over and over all the strategies mentioned here and it all basically boils down to use a naming convention:
Javascript doesn't have scope keywords like private. Other developers entering Javascript will know this upfront. Therefore, a simple naming convention is more than sufficient. A simple naming convention of prefixing with an underscore solves the problem of both private properties and private methods.
Let's take advantage of the Prototype for speed reasons, but lets not get anymore verbose than that. Let's try to keep the es5 "class" looking as closely to what we might expect in other backend languages (and treat every file as a class, even if we don't need to return an instance).
Let's demonstrate with a more realistic module situation (we'll use old es5 and old requireJs).
my-tooltip.js
define([
'tooltip'
],
function(
tooltip
){
function MyTooltip() {
// Later, if needed, we can remove the underscore on some
// of these (make public) and allow clients of our class
// to set them.
this._selector = "#my-tooltip"
this._template = 'Hello from inside my tooltip!';
this._initTooltip();
}
MyTooltip.prototype = {
constructor: MyTooltip,
_initTooltip: function () {
new tooltip.tooltip(this._selector, {
content: this._template,
closeOnClick: true,
closeButton: true
});
}
}
return {
init: function init() {
new MyTooltip(); // <-- Our constructor adds our tooltip to the DOM so not much we need to do after instantiation.
}
// You could instead return a new instantiation,
// if later you do more with this class.
/*
create: function create() {
return new MyTooltip();
}
*/
}
});
Take any of the solutions that follow Crockford's private or priviledged pattern. For example:
function Foo(x) {
var y = 5;
var bar = function() {
return y * x;
};
this.public = function(z) {
return bar() + x * z;
};
}
In any case where the attacker has no "execute" right on the JS context he has no way of accessing any "public" or "private" fields or methods. In case the attacker does have that access he can execute this one-liner:
eval("Foo = " + Foo.toString().replace(
/{/, "{ this.eval = function(code) { return eval(code); }; "
));
Note that the above code is generic to all constructor-type-privacy. It will fail with some of the solutions here but it should be clear that pretty much all of the closure based solutions can be broken like this with different replace() parameters.
After this is executed any object created with new Foo() is going to have an eval method which can be called to return or change values or methods defined in the constructor's closure, e.g.:
f = new Foo(99);
f.eval("x");
f.eval("y");
f.eval("x = 8");
The only problem I can see with this that it won't work for cases where there is only one instance and it's created on load. But then there is no reason to actually define a prototype and in that case the attacker can simply recreate the object instead of the constructor as long as he has a way of passing the same parameters (e.g. they are constant or calculated from available values).
In my opinion, this pretty much makes Crockford's solution useless. Since the "privacy" is easily broken the downsides of his solution (reduced readability & maintainability, decreased performance, increased memory) makes the "no privacy" prototype based method the better choice.
I do usually use leading underscores to mark __private and _protected methods and fields (Perl style), but the idea of having privacy in JavaScript just shows how it's a misunderstood language.
Therefore I disagree with Crockford except for his first sentence.
So how do you get real privacy in JS? Put everything that is required to be private on the server side and use JS to do AJAX calls.
The apotheosis of the Module Pattern: The Revealing Module Pattern
A neat little extension to a very robust pattern.
If you want the full range of public and private functions with the ability for public functions to access private functions, layout code for an object like this:
function MyObject(arg1, arg2, ...) {
//constructor code using constructor arguments...
//create/access public variables as
// this.var1 = foo;
//private variables
var v1;
var v2;
//private functions
function privateOne() {
}
function privateTwon() {
}
//public functions
MyObject.prototype.publicOne = function () {
};
MyObject.prototype.publicTwo = function () {
};
}
var TestClass = function( ) {
var privateProperty = 42;
function privateMethod( ) {
alert( "privateMethod, " + privateProperty );
}
this.public = {
constructor: TestClass,
publicProperty: 88,
publicMethod: function( ) {
alert( "publicMethod" );
privateMethod( );
}
};
};
TestClass.prototype = new TestClass( ).public;
var myTestClass = new TestClass( );
alert( myTestClass.publicProperty );
myTestClass.publicMethod( );
alert( myTestClass.privateMethod || "no privateMethod" );
Similar to georgebrock but a little less verbose (IMHO)
Any problems with doing it this way? (I haven't seen it anywhere)
edit: I realised this is kinda useless since every independent instantiation has its own copy of the public methods, thus undermining the use of the prototype.
Here's what i enjoyed the most so far regarding private/public methods/members and instantiation in javascript:
here is the article: http://www.sefol.com/?p=1090
and here is the example:
var Person = (function () {
//Immediately returns an anonymous function which builds our modules
return function (name, location) {
alert("createPerson called with " + name);
var localPrivateVar = name;
var localPublicVar = "A public variable";
var localPublicFunction = function () {
alert("PUBLIC Func called, private var is :" + localPrivateVar)
};
var localPrivateFunction = function () {
alert("PRIVATE Func called ")
};
var setName = function (name) {
localPrivateVar = name;
}
return {
publicVar: localPublicVar,
location: location,
publicFunction: localPublicFunction,
setName: setName
}
}
})();
//Request a Person instance - should print "createPerson called with ben"
var x = Person("ben", "germany");
//Request a Person instance - should print "createPerson called with candide"
var y = Person("candide", "belgium");
//Prints "ben"
x.publicFunction();
//Prints "candide"
y.publicFunction();
//Now call a public function which sets the value of a private variable in the x instance
x.setName("Ben 2");
//Shouldn't have changed this : prints "candide"
y.publicFunction();
//Should have changed this : prints "Ben 2"
x.publicFunction();
JSFiddle: http://jsfiddle.net/northkildonan/kopj3dt3/1/
The module pattern is right in most cases. But if you have thousands of instances, classes save memory. If saving memory is a concern and your objects contain a small amount of private data, but have a lot of public functions, then you'll want all public functions to live in the .prototype to save memory.
This is what I came up with:
var MyClass = (function () {
var secret = {}; // You can only getPriv() if you know this
function MyClass() {
var that = this, priv = {
foo: 0 // ... and other private values
};
that.getPriv = function (proof) {
return (proof === secret) && priv;
};
}
MyClass.prototype.inc = function () {
var priv = this.getPriv(secret);
priv.foo += 1;
return priv.foo;
};
return MyClass;
}());
var x = new MyClass();
x.inc(); // 1
x.inc(); // 2
The object priv contains private properties. It is accessible through the public function getPriv(), but this function returns false unless you pass it the secret, and this is only known inside the main closure.
What about this?
var Restaurant = (function() {
var _id = 0;
var privateVars = [];
function Restaurant(name) {
this.id = ++_id;
this.name = name;
privateVars[this.id] = {
cooked: []
};
}
Restaurant.prototype.cook = function (food) {
privateVars[this.id].cooked.push(food);
}
return Restaurant;
})();
Private variable lookup is impossible outside of the scope of the immediate function.
There is no duplication of functions, saving memory.
The downside is that the lookup of private variables is clunky privateVars[this.id].cooked is ridiculous to type. There is also an extra "id" variable.
Wrap all code in Anonymous Function: Then , all functions will be private ,ONLY functions attached to window object :
(function(w,nameSpacePrivate){
w.Person=function(name){
this.name=name;
return this;
};
w.Person.prototype.profilePublic=function(){
return nameSpacePrivate.profile.call(this);
};
nameSpacePrivate.profile=function(){
return 'My name is '+this.name;
};
})(window,{});
Use this :
var abdennour=new Person('Abdennour');
abdennour.profilePublic();
FIDDLE
I prefer to store private data in an associated WeakMap. This allows you to keep your public methods on the prototype where they belong. This seems to be the most efficient way to handle this problem for large numbers of objects.
const data = new WeakMap();
function Foo(value) {
data.set(this, {value});
}
// public method accessing private value
Foo.prototype.accessValue = function() {
return data.get(this).value;
}
// private 'method' accessing private value
function accessValue(foo) {
return data.get(foo).value;
}
export {Foo};
2021 HERE!
This polyfill effectively hides your private properties and methods returning undefined when you try to read your private property and a TypeError when you try to execute your private method thus effectively making them both PRIVATE to the outside but giving you access to them by using your public methods.
If you check it you will see it is very easy to implement. For the most part you don't need to do anything quirky like using Proxy objects, underscore functions (_myprivate), getters or setters. None of that. The only thing required is to place in your constructor that like snippet of code that is aimed to let you expose your public interface to the outside world.
((self) => ({
pubProp: self.pubProp,
// More public properties to export HERE
// ...
pubMethod: self.pubMethod.bind(self)
// More public mehods to export HERE
// Be sure bind each of them to self!!!
// ...
}))(self);
The above code is where the magic happens. It is an IIFE that returns an object with just the properties and methods you want to exposed and bound to the context of the object that was first instantiated.
You can still access your hidden properties and methods but only through your public methods just the way OOP should do.
Consider that part of the code as your module.exports
BTW, this is without using the latest ECMAScript 2022 # addition to the language.
'use strict';
class MyClass {
constructor(pubProp) {
let self = this;
self.pubProp = pubProp;
self.privProp = "I'm a private property!";
return ((self) => ({
pubProp: self.pubProp,
// More public properties to export HERE
// ...
pubMethod: self.pubMethod.bind(self)
// More public mehods to export HERE
// Be sure to bind each of them to self!!!
// ...
}))(self);
}
pubMethod() {
console.log("I'm a public method!");
console.log(this.pubProp);
return this.privMethod();
}
privMethod() {
console.log("I'm a private method!");
return this.privProp
}
}
const myObj = new MyClass("I'm a public property!");
console.log("***DUMPING MY NEW INSTANCE***");
console.dir(myObj);
console.log("");
console.log("***TESTING ACCESS TO PUBLIC PROPERTIES***");
console.log(myObj.pubProp);
console.log("");
console.log("***TESTING ACCESS TO PRIVATE PROPERTIES***");
console.log(myObj.privProp);
console.log("");
console.log("***TESTING ACCESS TO PUBLIC METHODS***");
console.log("1. pubMethod access pubProp ");
console.log("2. pubMethod calls privMethod");
console.log("3. privMethod access privProp");
console.log("")
console.log(myObj.pubMethod());
console.log("");
console.log("***TESTING ACCESS TO PRIVATE METHODS***");
console.log(myObj.privMethod());
Check my gist
Private functions cannot access the public variables using module pattern
Since everybody was posting here his own code, I'm gonna do that too...
I like Crockford because he introduced real object oriented patterns in Javascript. But he also came up with a new misunderstanding, the "that" one.
So why is he using "that = this"? It has nothing to do with private functions at all. It has to do with inner functions!
Because according to Crockford this is buggy code:
Function Foo( ) {
this.bar = 0;
var foobar=function( ) {
alert(this.bar);
}
}
So he suggested doing this:
Function Foo( ) {
this.bar = 0;
that = this;
var foobar=function( ) {
alert(that.bar);
}
}
So as I said, I'm quite sure that Crockford was wrong his explanation about that and this (but his code is certainly correct). Or was he just fooling the Javascript world, to know who is copying his code? I dunno...I'm no browser geek ;D
EDIT
Ah, that's what is all about: What does 'var that = this;' mean in JavaScript?
So Crockie was really wrong with his explanation....but right with his code, so he's still a great guy. :))
In general I added the private Object _ temporarily to the object.
You have to open the privacy exlipcitly in the "Power-constructor" for the method.
If you call the method from the prototype, you will
be able to overwrite the prototype-method
Make a public method accessible in the "Power-constructor": (ctx is the object context)
ctx.test = GD.Fabric.open('test', GD.Test.prototype, ctx, _); // is a private object
Now I have this openPrivacy:
GD.Fabric.openPrivacy = function(func, clss, ctx, _) {
return function() {
ctx._ = _;
var res = clss[func].apply(ctx, arguments);
ctx._ = null;
return res;
};
};
This is what I worked out:
Needs one class of sugar code that you can find here. Also supports protected, inheritance, virtual, static stuff...
;( function class_Restaurant( namespace )
{
'use strict';
if( namespace[ "Restaurant" ] ) return // protect against double inclusions
namespace.Restaurant = Restaurant
var Static = TidBits.OoJs.setupClass( namespace, "Restaurant" )
// constructor
//
function Restaurant()
{
this.toilets = 3
this.Private( private_stuff )
return this.Public( buy_food, use_restroom )
}
function private_stuff(){ console.log( "There are", this.toilets, "toilets available") }
function buy_food (){ return "food" }
function use_restroom (){ this.private_stuff() }
})( window )
var chinese = new Restaurant
console.log( chinese.buy_food() ); // output: food
console.log( chinese.use_restroom() ); // output: There are 3 toilets available
console.log( chinese.toilets ); // output: undefined
console.log( chinese.private_stuff() ); // output: undefined
// and throws: TypeError: Object #<Restaurant> has no method 'private_stuff'
Class({
Namespace:ABC,
Name:"ClassL2",
Bases:[ABC.ClassTop],
Private:{
m_var:2
},
Protected:{
proval:2,
fight:Property(function(){
this.m_var--;
console.log("ClassL2::fight (m_var)" +this.m_var);
},[Property.Type.Virtual])
},
Public:{
Fight:function(){
console.log("ClassL2::Fight (m_var)"+this.m_var);
this.fight();
}
}
});
https://github.com/nooning/JSClass
I have created a new tool to allow you to have true private methods on the prototype
https://github.com/TremayneChrist/ProtectJS
Example:
var MyObject = (function () {
// Create the object
function MyObject() {}
// Add methods to the prototype
MyObject.prototype = {
// This is our public method
public: function () {
console.log('PUBLIC method has been called');
},
// This is our private method, using (_)
_private: function () {
console.log('PRIVATE method has been called');
}
}
return protect(MyObject);
})();
// Create an instance of the object
var mo = new MyObject();
// Call its methods
mo.public(); // Pass
mo._private(); // Fail
You have to put a closure around your actual constructor-function, where you can define your private methods.
To change data of the instances through these private methods, you have to give them "this" with them, either as an function argument or by calling this function with .apply(this) :
var Restaurant = (function(){
var private_buy_food = function(that){
that.data.soldFood = true;
}
var private_take_a_shit = function(){
this.data.isdirty = true;
}
// New Closure
function restaurant()
{
this.data = {
isdirty : false,
soldFood: false,
};
}
restaurant.prototype.buy_food = function()
{
private_buy_food(this);
}
restaurant.prototype.use_restroom = function()
{
private_take_a_shit.call(this);
}
return restaurant;
})()
// TEST:
var McDonalds = new Restaurant();
McDonalds.buy_food();
McDonalds.use_restroom();
console.log(McDonalds);
console.log(McDonalds.__proto__);
I know it's a bit too late but how about this?
var obj = function(){
var pr = "private";
var prt = Object.getPrototypeOf(this);
if(!prt.hasOwnProperty("showPrivate")){
prt.showPrivate = function(){
console.log(pr);
}
}
}
var i = new obj();
i.showPrivate();
console.log(i.hasOwnProperty("pr"));

Javascript function, private public value

In javascript as I know, we can make class-like object using function
but is it possible to set private and public funciton and variable in function?
example.
var a = function(){
this.public = "hello"
var private = "hello"
this.public_func = function(){ console.log("private function");};
var private_func = function(){ console.log("public function");};
}
so public, public_func are public attribute and private,private_func is private attribute
am I right?
The private and public properties or functions come into effect only when you create an object out of your class a.
So try this in console:
var b = new a();
Then inspect b, and you will see only :
a {public: "hello", public_func: function}
The code that works as you described:
var a = function(){
this.public = "hello";
var private = "hello";
this.public_func = function(){
console.log("public function");
//calling the 'private' function.
private_func();
};
var private_func = function(){
console.log("private function");
};
}
But this way doesn't inherits.Check prototype inheritance.
Take care with reserved words:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Reserved_Words
You can mimic the private properties/functions like other class based languages and there are so many ways to do that, for example this is an example of exposing some public members by explicitly returning an object (Fiddle):
var MyClass = (function(){
var privateProp = "Private property accessed via public function";
var privateFunc = function(){
console.log(privateProp);
};
// Expose these as public members
return {
'publicProp':'Public Prop',
'publicFunc':function(){
privateFunc();
}
};
})();
// Use
console.log(MyClass.publicProp); // Public Prop
MyClass.publicFunc(); // Private property accessed via public function
It's a big term and you need to read books and probably articles on this topic (OOP JavaScript), you may read Learning JavaScript Design Patterns book online written by Addy Osmani. It's a good one.

Javascript Private/Public Inheritence Syntax

I am having trouble combining private/public methods along with inheritance in Javascript. I think it is just a misunderstanding on my part and hopefully an easy resolution.
Here is what I have:
RB = {};
RB.Fruit = function() {
// Public
this.getType = function() {
return "FRUIT";
}
}
RB.Orange = function() {
// Private
function makeOrangeJuice() {
console.log("Orange has been squeezed.");
}
// Public
return {
getName : function() {
return "Orange";
}
}
}
RB.Orange.prototype = new RB.Fruit();
var o = new RB.Orange();
console.log(o.getType());
When I run this code I receive the error "Uncaught TypeError: Object # has no method 'getType'". I know that it has to do with using the "return" within the class functions (since moving the getName method out of the "return" block allows it to work), but I'd like to continue to be able to declare private/public methods within classes.
How do I modify this to allow RB.Orange to access the RB.Fruit.getType function?
Thanks!
In JavaScript, a constructor call implicitly returns the newly-constructed instance, but the constructor can override that default behavior by explicitly returning a different object. For example, if you define a "constructor" Foo like this:
function Foo() {
return new Date();
}
then the statement foo = new Foo() will set foo to a new Date, not a new Foo.
If I understand correctly what you want, you just need to change this:
return {
getName : function() {
return "Orange";
}
}
(whereby your "constructor" returns a completely fresh object, with only a getName method, and no relation to the object under construction) to this:
this.getName = function() {
return "Orange";
};
(whereby it adds a getName method to the object under construction, and still allows that object to be returned).
The main problem
When you return a non-primitive value from a constructor function, that non-primitive value is returned rather than the default returned instance you would expect when invoking it with the new keyword.
E.g.
function A() { return {}; }
new A() instanceof A; //false
Therefore you could simply change your code to something like:
RB.Orange = function() {
// Private
function makeOrangeJuice() {
console.log("Orange has been squeezed.");
}
this.getName = function () {
return 'Orange';
};
//priviledged function which uses a private member
this.someOtherFunction = function () {
makeOrangeJuice();
};
};
Some inefficiencies in your code
Why not using the prototype?
Functions that aren't priviledged should not be declared within the constructor function. In other words, functions that do not access private variables should not be created in the constructor function because they do not have to and it's extremely inefficient to do so. Why? Because a new function is being created everytime the constructor is called.
Instead you should make use of the Constructor.prototype to share your public functions between all instances.
E.g.
function Person(name) {
this.name = name;
}
Person.prototype.sayName = function () {
console.log('My name is ' + this.name);
};
new Person('Foo Bar').sayName();
Use Object.create rather than new for inheritance when possible.
Most inheritance patterns using the new keyword were done this way because the language was lacking another way of setting up the prototype chain of an object, but now that we have Object.create, your should use it. Using the new keyword for inheritance the way you did has some undesired side-effects like running the constructor function. There are ways to avoid these side effects by using an intermediate empty function but why not simply use Object.create?
E.g. (based on the above example)
function BadPerson(name) {
//call parent constructor
Person.call(this, name + ' the bad');
}
BadPerson.prototype = Object.create(Person.prototype);
BadPerson.prototype.constructor = BadPerson; //fix constructor
Private functions can also be shared!
Note that private functions that do not access private variables can also be shared. You can make use of the module pattern to create a scope for them.
E.g.
var Person = (function () {
//private function used in a functionnal style
function _validateName(name) {
console.log('Validating the name in functionnal style');
}
//private function used in an OO style
function _validateNameOO() {
console.log('Validating the name in a OO style');
}
function Person(name) {
this.name = name;
}
Person.prototype.validateNameBothWays = function () {
_validateName(this.name);
_validateNameOO.call(this);
};
return Person;
})();
new Person().validateNameBothWays();
The following shows how you could implement shared private members and where to put the priviliged methods (methods that can access the shared privates);
I never found much use for this pattern and usually indicate a private being private with the name _aPrivate as Phillip already explained in his answer.
For an introduction on constructor functions, prototype, inheritance and the value of this click here.
RB = {};
RB.Fruit = function() {
}
// Public
RB.Fruit.prototype.getType = function() {
return "FRUIT";
};
RB.Orange = function() {
//inherit instance specific values of Fruit (there are none but there might be)
RB.Fruit.apply(this,arguments);
};
//inherit shared members from the prototype of Fruit
RB.Orange.prototype = Object.create(RB.Fruit.prototype);
//repair constructor to be Orange instead of Fruit
RB.Orange.prototype.constructor = RB.Orange;
//shared privates and privileged methods (methods that can access the privates)
// go in the following IIFE function body.
(function(){
//private version of makeOrangeJuice
var makeOrangeJuice = function () {
//the value of 'this' here isn't the Orange instance
//if you need it then pass it with the public version of
//makeOrangeJuice or use makeOrangeJuice.call(this) in the
//public version
console.log("Orange has been squeezed.");
};
//public version of makeOrangeJuice
RB.Orange.prototype.makeOrangeJuice=function(){
//call private makeOrangeJuice function
makeOrangeJuice();
}
}());
//non privileged member, in getName the private version of makeOrangeJuice
//doesn't exist you can call the public version with this.makeOrangeJuice
RB.Orange.prototype.getName = function() {
return "Orange";
};
var o = new RB.Orange();
console.log(o.getType());
o.makeOrangeJuice();
You need to assign the functions to the prototype of your objects, if you want them to be inherited.
RB = {};
RB.Fruit = function() {};
RB.Fruit.prototype.getType = function() {
return 'Fruit';
};
RB.Orange = function() {};
RB.Orange.prototype = new RB.Fruit();
RB.Orange.prototype.getName = function() {
return 'Orange';
};
If you really need to use privates, and can't just label things as private using conventions like the _name, then you'll need to move the functions that will use the privates into the constructor with the private members.
If they're not instance specific, you can (and should) wrap this whole thing with an immediate function.
(function() {
// All previous code here
window.RB = RB;
}());
Here is one way that you could do it:
var RB = {};
RB.Fruit = function() {
// Public
this.getType = function() {
return "FRUIT";
}
}
RB.Orange = function() {
// Private variable
var fruit = new RB.Fruit();
// Private function
function makeOrangeJuice() {
console.log("Orange has been squeezed.");
}
// Public object with accessor
return {
getName : function() {
return "Orange";
},
getType: fruit.getType
}
}
var o = new RB.Orange();
console.log(o.getType());
try this code.
RB = {};
RB.Fruit = function() {
// Public
this.getType = function() {
return "FRUIT";
}
}
RB.Fruit.prototype.getType = function() {
return "FRUIT";
};
RB.Orange = function() {
RB.Fruit.call(this);
// Private
function makeOrangeJuice() {
console.log("Orange has been squeezed.");
}
this.getName = function() {
return "Orange";
};
this.getJuice = function(){
makeOrangeJuice();
};
};
var o = new RB.Orange();
//calling the super-call's function
console.log(o.getType());
//public function
o.getJuice();
//trying to access private function
o.makeOrangeJuice();
For more detail on the code ojbect oriented javscript plz check below link
http://mckoss.com/jscript/object.htm

Private members in javascript

Can anyone please tell me how do we use or declare private members in javascript.I will appreciate an example.I am new to this
Douglas Crockford has a write-up on Private Members:
Private members are made by the constructor. Ordinary vars and parameters of the constructor becomes the private members.
function Container(param) {
this.member = param;
var secret = 3;
var that = this;
}
This constructor makes three private instance variables: param, secret, and that. They are attached to the object, but they are not accessible to the outside, nor are they accessible to the object's own public methods. They are accessible to private methods. Private methods are inner functions of the constructor.
function Container(param) {
function dec() {
if (secret > 0) {
secret -= 1;
return true;
} else {
return false;
}
}
this.member = param;
var secret = 3;
var that = this;
}
The private method dec examines the secret instance variable. If it is greater than zero, it decrements secret and returns true. Otherwise it returns false. It can be used to make this object limited to three uses.
By convention, we make a private that variable. This is used to make the object available to the private methods. This is a workaround for an error in the ECMAScript Language Specification which causes this to be set incorrectly for inner functions.
Private methods cannot be called by public methods. To make private methods useful, we need to introduce a privileged method.
here is one way to do it:
function TheClass() {
var _this = this;
var privateMember = 'foo';
this.publicMember = 'bar';
var privateMethod = function(){
// things happen here
};
this.publicMethod = function(){
//other things here
_this.publicMember = 'sparky';
return privateMember;
};
}
var myObj = new TheClass();
alert(myObj.privateMember); //won't work
alert(myObj.publicMember); //should work
alert(myObj.publicMethod()); //should work too
see this working fiddle and play a bit with it ;)
JavaScript doesn't have private variables per-say. In JS variables are scoped to the top of the closest function. So creating a function (or closure) is a way to make private variables only accessible within that scope. The important thing to remeber is to always use var to declare variables, otherwise, even inside a function, the variable will become global, and that's bad.
If you're working with prototype inheritance then it's as easy as creating a constructor and any variable declared with var will be private and declared with this will be public.
function Bar() {
var foo = ''; // private
this.baz = function() {}; // public
}
var bar = new Bar(); // create new instance of Bar
alert(bar.foo); // error
alert(bar.baz); // function
Also the above constructor is very simple, typically you'd put function methods on the actual prototype of the object, like Bar.prototype.baz = function(){}.
If you're working with a singleton for example, you can use the module pattern:
var bar = (function(){ // bar is public
var foo = ''; // foo is private
function baz() {}; // baz is private
return {
baz: baz // expose 'baz' as a public member of 'bar'
}
}());
alert(bar.foo); // error
alert(bar.baz); // function
You can try this https://www.npmjs.com/package/private-members
This package will save the members by instance.
const pvt = require('private-members');
const _ = pvt();
let Exemplo = (function () {
function Exemplo() {
_(this).msg = "Minha Mensagem";
}
_().mensagem = function() {
return _(this).msg;
}
Exemplo.prototype.showMsg = function () {
let msg = _(this).mensagem();
console.log(msg);
};
return Exemplo;
})();
module.exports = Exemplo;
Private members are made by the constructor. Ordinary vars and parameters of the constructor becomes the private members.
function Container(param) {
this.member = param;
var secret = 3;
var that = this;
}
This constructor makes three private instance variables: param, secret, and that. They are attached to the object, but they are not accessible to the outside, nor are they accessible to the object's own public methods. They are accessible to private methods. Private methods are inner functions of the constructor.
You can find more details on this link.
The (currently draft) ECMAScript 2022 Specification includes the concept of private identifiers. See Private class features on MDN:
Class fields are public by default, but private class members can be created by using a hash # prefix. The privacy encapsulation of these class features is enforced by JavaScript itself.
Most popular JS engines already support it.
Example:
class Animal {
#owner;
constructor(name, owner) {
this.name = name;
this.#owner = owner;
}
hasOwner() {
return Boolean(this.#owner);
}
}
let dog = new Animal("blacky", "trincot");
console.log(dog.hasOwner()); // true
console.log("#owner" in dog, "#owner" in Animal.prototype); // false, false

Categories

Resources