Randomize, no repeat [duplicate] - javascript

I have an array like this:
var arr1 = ["a", "b", "c", "d"];
How can I randomize / shuffle it?

The de-facto unbiased shuffle algorithm is the Fisher-Yates (aka Knuth) Shuffle.
You can see a great visualization here (and the original post linked to this)
function shuffle(array) {
let currentIndex = array.length, randomIndex;
// While there remain elements to shuffle.
while (currentIndex != 0) {
// Pick a remaining element.
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex--;
// And swap it with the current element.
[array[currentIndex], array[randomIndex]] = [
array[randomIndex], array[currentIndex]];
}
return array;
}
// Used like so
var arr = [2, 11, 37, 42];
shuffle(arr);
console.log(arr);
Some more info about the algorithm used.

Here's a JavaScript implementation of the Durstenfeld shuffle, an optimized version of Fisher-Yates:
/* Randomize array in-place using Durstenfeld shuffle algorithm */
function shuffleArray(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
It picks a random element for each original array element, and excludes it from the next draw, like picking randomly from a deck of cards.
This clever exclusion swaps the picked element with the current one, then picks the next random element from the remainder, looping backwards for optimal efficiency, ensuring the random pick is simplified (it can always start at 0), and thereby skipping the final element.
Algorithm runtime is O(n). Note that the shuffle is done in-place so if you don't want to modify the original array, first make a copy of it with .slice(0).
EDIT: Updating to ES6 / ECMAScript 2015
The new ES6 allows us to assign two variables at once. This is especially handy when we want to swap the values of two variables, as we can do it in one line of code. Here is a shorter form of the same function, using this feature.
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}

You can do it easily with map and sort:
let unshuffled = ['hello', 'a', 't', 'q', 1, 2, 3, {cats: true}]
let shuffled = unshuffled
.map(value => ({ value, sort: Math.random() }))
.sort((a, b) => a.sort - b.sort)
.map(({ value }) => value)
console.log(shuffled)
We put each element in the array in an object, and give it a random sort key
We sort using the random key
We unmap to get the original objects
You can shuffle polymorphic arrays, and the sort is as random as Math.random, which is good enough for most purposes.
Since the elements are sorted against consistent keys that are not regenerated each iteration, and each comparison pulls from the same distribution, any non-randomness in the distribution of Math.random is canceled out.
Speed
Time complexity is O(N log N), same as quick sort. Space complexity is O(N). This is not as efficient as a Fischer Yates shuffle but, in my opinion, the code is significantly shorter and more functional. If you have a large array you should certainly use Fischer Yates. If you have a small array with a few hundred items, you might do this.

Warning!
The use of this algorithm is not recommended, because it is inefficient and strongly biased; see comments. It is being left here for future reference, because the idea is not that rare.
[1,2,3,4,5,6].sort( () => .5 - Math.random() );
This https://javascript.info/array-methods#shuffle-an-array tutorial explains the differences straightforwardly.

Use the underscore.js library. The method _.shuffle() is nice for this case.
Here is an example with the method:
var _ = require("underscore");
var arr = [1,2,3,4,5,6];
// Testing _.shuffle
var testShuffle = function () {
var indexOne = 0;
var stObj = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
};
for (var i = 0; i < 1000; i++) {
arr = _.shuffle(arr);
indexOne = _.indexOf(arr, 1);
stObj[indexOne] ++;
}
console.log(stObj);
};
testShuffle();

One could (but should NOT) use it as a protoype from Array:
From ChristopheD:
Array.prototype.shuffle = function() {
var i = this.length, j, temp;
if ( i == 0 ) return this;
while ( --i ) {
j = Math.floor( Math.random() * ( i + 1 ) );
temp = this[i];
this[i] = this[j];
this[j] = temp;
}
return this;
}

NEW!
Shorter & probably *faster Fisher-Yates shuffle algorithm
it uses while---
bitwise to floor (numbers up to 10 decimal digits (32bit))
removed unecessary closures & other stuff
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*(--c+1)|0,d=a[c],a[c]=a[b],a[b]=d
}
script size (with fy as function name): 90bytes
DEMO
http://jsfiddle.net/vvpoma8w/
*faster probably on all browsers except chrome.
If you have any questions just ask.
EDIT
yes it is faster
PERFORMANCE: http://jsperf.com/fyshuffle
using the top voted functions.
EDIT
There was a calculation in excess (don't need --c+1) and noone noticed
shorter(4bytes)&faster(test it!).
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*c--|0,d=a[c],a[c]=a[b],a[b]=d
}
Caching somewhere else var rnd=Math.random and then use rnd() would also increase slightly the performance on big arrays.
http://jsfiddle.net/vvpoma8w/2/
Readable version (use the original version. this is slower, vars are useless, like the closures & ";", the code itself is also shorter ... maybe read this How to 'minify' Javascript code , btw you are not able to compress the following code in a javascript minifiers like the above one.)
function fisherYates( array ){
var count = array.length,
randomnumber,
temp;
while( count ){
randomnumber = Math.random() * count-- | 0;
temp = array[count];
array[count] = array[randomnumber];
array[randomnumber] = temp
}
}

Shuffle Array In place
function shuffleArr (array){
for (var i = array.length - 1; i > 0; i--) {
var rand = Math.floor(Math.random() * (i + 1));
[array[i], array[rand]] = [array[rand], array[i]]
}
}
ES6 Pure, Iterative
const getShuffledArr = arr => {
const newArr = arr.slice()
for (let i = newArr.length - 1; i > 0; i--) {
const rand = Math.floor(Math.random() * (i + 1));
[newArr[i], newArr[rand]] = [newArr[rand], newArr[i]];
}
return newArr
};
Reliability and Performance Test
Some solutions on this page aren't reliable (they only partially randomise the array). Other solutions are significantly less efficient. With testShuffleArrayFun (see below) we can test array shuffling functions for reliability and performance.
function testShuffleArrayFun(getShuffledArrayFun){
const arr = [0,1,2,3,4,5,6,7,8,9]
var countArr = arr.map(el=>{
return arr.map(
el=> 0
)
}) // For each possible position in the shuffledArr and for
// each possible value, we'll create a counter.
const t0 = performance.now()
const n = 1000000
for (var i=0 ; i<n ; i++){
// We'll call getShuffledArrayFun n times.
// And for each iteration, we'll increment the counter.
var shuffledArr = getShuffledArrayFun(arr)
shuffledArr.forEach(
(value,key)=>{countArr[key][value]++}
)
}
const t1 = performance.now()
console.log(`Count Values in position`)
console.table(countArr)
const frequencyArr = countArr.map( positionArr => (
positionArr.map(
count => count/n
)
))
console.log("Frequency of value in position")
console.table(frequencyArr)
console.log(`total time: ${t1-t0}`)
}
Other Solutions
Other solutions just for fun.
ES6 Pure, Recursive
const getShuffledArr = arr => {
if (arr.length === 1) {return arr};
const rand = Math.floor(Math.random() * arr.length);
return [arr[rand], ...getShuffledArr(arr.filter((_, i) => i != rand))];
};
ES6 Pure using array.map
function getShuffledArr (arr){
return [...arr].map( (_, i, arrCopy) => {
var rand = i + ( Math.floor( Math.random() * (arrCopy.length - i) ) );
[arrCopy[rand], arrCopy[i]] = [arrCopy[i], arrCopy[rand]]
return arrCopy[i]
})
}
ES6 Pure using array.reduce
function getShuffledArr (arr){
return arr.reduce(
(newArr, _, i) => {
var rand = i + ( Math.floor( Math.random() * (newArr.length - i) ) );
[newArr[rand], newArr[i]] = [newArr[i], newArr[rand]]
return newArr
}, [...arr]
)
}

Edit: This answer is incorrect
See comments and https://stackoverflow.com/a/18650169/28234. It is being left here for reference because the idea isn't rare.
A very simple way for small arrays is simply this:
const someArray = [1, 2, 3, 4, 5];
someArray.sort(() => Math.random() - 0.5);
It's probably not very efficient, but for small arrays this works just fine. Here's an example so you can see how random (or not) it is, and whether it fits your usecase or not.
const resultsEl = document.querySelector('#results');
const buttonEl = document.querySelector('#trigger');
const generateArrayAndRandomize = () => {
const someArray = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
someArray.sort(() => Math.random() - 0.5);
return someArray;
};
const renderResultsToDom = (results, el) => {
el.innerHTML = results.join(' ');
};
buttonEl.addEventListener('click', () => renderResultsToDom(generateArrayAndRandomize(), resultsEl));
<h1>Randomize!</h1>
<button id="trigger">Generate</button>
<p id="results">0 1 2 3 4 5 6 7 8 9</p>

Adding to #Laurens Holsts answer. This is 50% compressed.
function shuffleArray(d) {
for (var c = d.length - 1; c > 0; c--) {
var b = Math.floor(Math.random() * (c + 1));
var a = d[c];
d[c] = d[b];
d[b] = a;
}
return d
};

I found this variant hanging out in the "deleted by author" answers on a duplicate of this question. Unlike some of the other answers that have many upvotes already, this is:
Actually random
Not in-place (hence the shuffled name rather than shuffle)
Not already present here with multiple variants
Here's a jsfiddle showing it in use.
Array.prototype.shuffled = function() {
return this.map(function(n){ return [Math.random(), n] })
.sort().map(function(n){ return n[1] });
}

With ES2015 you can use this one:
Array.prototype.shuffle = function() {
let m = this.length, i;
while (m) {
i = (Math.random() * m--) >>> 0;
[this[m], this[i]] = [this[i], this[m]]
}
return this;
}
Usage:
[1, 2, 3, 4, 5, 6, 7].shuffle();

Warning!
Using this answer for randomizing large arrays, cryptography, or any other application requiring true randomness is not recommended, due to its bias and inefficiency. Elements position is only semi-randomized, and they will tend to stay closer to their original position. See https://stackoverflow.com/a/18650169/28234.
You can arbitrarily decide whether to return 1 : -1 by using Math.random:
[1, 2, 3, 4].sort(() => (Math.random() > 0.5) ? 1 : -1)
Try running the following example:
const array = [1, 2, 3, 4];
// Based on the value returned by Math.Random,
// the decision is arbitrarily made whether to return 1 : -1
const shuffeled = array.sort(() => {
const randomTrueOrFalse = Math.random() > 0.5;
return randomTrueOrFalse ? 1 : -1
});
console.log(shuffeled);

//one line solution
shuffle = (array) => array.sort(() => Math.random() - 0.5);
//Demo
let arr = [1, 2, 3];
shuffle(arr);
alert(arr);
https://javascript.info/task/shuffle
Math.random() - 0.5 is a random number that may be positive or
negative, so the sorting function reorders elements randomly.

benchmarks
Let's first see the results then we'll look at each implementation of shuffle below -
splice is slow
Any solution using splice or shift in a loop is going to be very slow. Which is especially noticeable when we increase the size of the array. In a naive algorithm we -
get a rand position, i, in the input array, t
add t[i] to the output
splice position i from array t
To exaggerate the slow effect, we'll demonstrate this on an array of one million elements. The following script almost 30 seconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
yield r[i] // 2
r.splice(i, 1) // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via splice")
const result = shuffle(bigarray)
console.timeEnd("shuffle via splice")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via splice";
font-weight: bold;
display: block;
}
pop is fast
The trick is not to splice and instead use the super efficient pop. To do this, in place of the typical splice call, you -
select the position to splice, i
swap t[i] with the last element, t[t.length - 1]
add t.pop() to the result
Now we can shuffle one million elements in less than 100 milliseconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
swap(r, i, r.length - 1) // 2
yield r.pop() // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via pop")
const result = shuffle(bigarray)
console.timeEnd("shuffle via pop")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via pop";
font-weight: bold;
display: block;
}
even faster
The two implementations of shuffle above produce a new output array. The input array is not modified. This is my preferred way of working however you can increase the speed even more by shuffling in place.
Below shuffle one million elements in less than 10 milliseconds -
function shuffle (t)
{ let last = t.length
let n
while (last > 0)
{ n = rand(last)
swap(t, n, --last)
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle in place")
shuffle(bigarray)
console.timeEnd("shuffle in place")
document.body.textContent = JSON.stringify(bigarray, null, 2)
body::before {
content: "1 million elements in place";
font-weight: bold;
display: block;
}

var shuffle = function(array) {
temp = [];
originalLength = array.length;
for (var i = 0; i < originalLength; i++) {
temp.push(array.splice(Math.floor(Math.random()*array.length),1));
}
return temp;
};

A recursive solution:
function shuffle(a,b){
return a.length==0?b:function(c){
return shuffle(a,(b||[]).concat(c));
}(a.splice(Math.floor(Math.random()*a.length),1));
};

Fisher-Yates shuffle in javascript. I'm posting this here because the use of two utility functions (swap and randInt) clarifies the algorithm compared to the other answers here.
function swap(arr, i, j) {
// swaps two elements of an array in place
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function randInt(max) {
// returns random integer between 0 and max-1 inclusive.
return Math.floor(Math.random()*max);
}
function shuffle(arr) {
// For each slot in the array (starting at the end),
// pick an element randomly from the unplaced elements and
// place it in the slot, exchanging places with the
// element in the slot.
for(var slot = arr.length - 1; slot > 0; slot--){
var element = randInt(slot+1);
swap(arr, element, slot);
}
}

Modern short inline solution using ES6 features:
['a','b','c','d'].map(x => [Math.random(), x]).sort(([a], [b]) => a - b).map(([_, x]) => x);
(for educational purposes)

Using Fisher-Yates shuffle algorithm and ES6:
// Original array
let array = ['a', 'b', 'c', 'd'];
// Create a copy of the original array to be randomized
let shuffle = [...array];
// Defining function returning random value from i to N
const getRandomValue = (i, N) => Math.floor(Math.random() * (N - i) + i);
// Shuffle a pair of two elements at random position j
shuffle.forEach( (elem, i, arr, j = getRandomValue(i, arr.length)) => [arr[i], arr[j]] = [arr[j], arr[i]] );
console.log(shuffle);
// ['d', 'a', 'b', 'c']

First of all, have a look here for a great visual comparison of different sorting methods in javascript.
Secondly, if you have a quick look at the link above you'll find that the random order sort seems to perform relatively well compared to the other methods, while being extremely easy and fast to implement as shown below:
function shuffle(array) {
var random = array.map(Math.random);
array.sort(function(a, b) {
return random[array.indexOf(a)] - random[array.indexOf(b)];
});
}
Edit: as pointed out by #gregers, the compare function is called with values rather than indices, which is why you need to use indexOf. Note that this change makes the code less suitable for larger arrays as indexOf runs in O(n) time.

All the other answers are based on Math.random() which is fast but not suitable for cryptgraphic level randomization.
The below code is using the well known Fisher-Yates algorithm while utilizing Web Cryptography API for cryptographic level of randomization.
var d = [1,2,3,4,5,6,7,8,9,10];
function shuffle(a) {
var x, t, r = new Uint32Array(1);
for (var i = 0, c = a.length - 1, m = a.length; i < c; i++, m--) {
crypto.getRandomValues(r);
x = Math.floor(r / 65536 / 65536 * m) + i;
t = a [i], a [i] = a [x], a [x] = t;
}
return a;
}
console.log(shuffle(d));

a shuffle function that doesn't change the source array
Update: Here I'm suggesting a relatively simple (not from complexity perspective) and short algorithm that will do just fine with small sized arrays, but it's definitely going to cost a lot more than the classic Durstenfeld algorithm when you deal with huge arrays. You can find the Durstenfeld in one of the top replies to this question.
Original answer:
If you don't wish your shuffle function to mutate the source array, you can copy it to a local variable, then do the rest with a simple shuffling logic.
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source[index]);
source.splice(index, 1);
}
return result;
}
Shuffling logic: pick up a random index, then add the corresponding element to the result array and delete it from the source array copy. Repeat this action until the source array gets empty.
And if you really want it short, here's how far I could get:
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source.splice(index, 1)[0]);
}
return result;
}

Here is the EASIEST one,
function shuffle(array) {
return array.sort(() => Math.random() - 0.5);
}
for further example, you can check it here

We're still shuffling arrays in 2019, so here goes my approach, which seems to be neat and fast to me:
const src = [...'abcdefg'];
const shuffle = arr =>
[...arr].reduceRight((res,_,__,s) =>
(res.push(s.splice(0|Math.random()*s.length,1)[0]), res),[]);
console.log(shuffle(src));
.as-console-wrapper {min-height: 100%}

You can do it easily with:
// array
var fruits = ["Banana", "Orange", "Apple", "Mango"];
// random
fruits.sort(function(a, b){return 0.5 - Math.random()});
// out
console.log(fruits);
Please reference at JavaScript Sorting Arrays

A simple modification of CoolAJ86's answer that does not modify the original array:
/**
* Returns a new array whose contents are a shuffled copy of the original array.
* #param {Array} The items to shuffle.
* https://stackoverflow.com/a/2450976/1673761
* https://stackoverflow.com/a/44071316/1673761
*/
const shuffle = (array) => {
let currentIndex = array.length;
let temporaryValue;
let randomIndex;
const newArray = array.slice();
// While there remains elements to shuffle...
while (currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
// Swap it with the current element.
temporaryValue = newArray[currentIndex];
newArray[currentIndex] = newArray[randomIndex];
newArray[randomIndex] = temporaryValue;
}
return newArray;
};

For those of us who are not very gifted but have access to the wonders of lodash, there is such a thing as lodash.shuffle.

I found this useful:
const shuffle = (array: any[]) => {
return array.slice().sort(() => Math.random() - 0.5);
}
console.log(shuffle([1,2,3,4,5,6,7,8,9,10]));
// Output: [4, 3, 8, 10, 1, 7, 9, 2, 6, 5]

yet another implementation of Fisher-Yates, using strict mode:
function shuffleArray(a) {
"use strict";
var i, t, j;
for (i = a.length - 1; i > 0; i -= 1) {
t = a[i];
j = Math.floor(Math.random() * (i + 1));
a[i] = a[j];
a[j] = t;
}
return a;
}

Related

JavaScript: Randomly select a limited number of objects from an array to be placed into a second array? [duplicate]

I am working on 'how to access elements randomly from an array in javascript'. I found many links regarding this. Like:
Get random item from JavaScript array
var item = items[Math.floor(Math.random()*items.length)];
But in this, we can choose only one item from the array. If we want more than one elements then how can we achieve this? How can we get more than one element from an array?
Just two lines :
// Shuffle array
const shuffled = array.sort(() => 0.5 - Math.random());
// Get sub-array of first n elements after shuffled
let selected = shuffled.slice(0, n);
DEMO:
Try this non-destructive (and fast) function:
function getRandom(arr, n) {
var result = new Array(n),
len = arr.length,
taken = new Array(len);
if (n > len)
throw new RangeError("getRandom: more elements taken than available");
while (n--) {
var x = Math.floor(Math.random() * len);
result[n] = arr[x in taken ? taken[x] : x];
taken[x] = --len in taken ? taken[len] : len;
}
return result;
}
There is a one-liner unique solution here
array.sort(() => Math.random() - Math.random()).slice(0, n)
lodash _.sample and _.sampleSize.
Gets one or n random elements at unique keys from collection up to the size of collection.
_.sample([1, 2, 3, 4]);
// => 2
_.sampleSize([1, 2, 3], 2);
// => [3, 1]
_.sampleSize([1, 2, 3], 3);
// => [2, 3, 1]
Getting 5 random items without changing the original array:
const n = 5;
const sample = items
.map(x => ({ x, r: Math.random() }))
.sort((a, b) => a.r - b.r)
.map(a => a.x)
.slice(0, n);
(Don't use this for big lists)
create a funcion which does that:
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
result.push(sourceArray[Math.floor(Math.random()*sourceArray.length)]);
}
return result;
}
you should also check if the sourceArray has enough elements to be returned. and if you want unique elements returned, you should remove selected element from the sourceArray.
Porting .sample from the Python standard library:
function sample(population, k){
/*
Chooses k unique random elements from a population sequence or set.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
Sampling without replacement entails tracking either potential
selections (the pool) in a list or previous selections in a set.
When the number of selections is small compared to the
population, then tracking selections is efficient, requiring
only a small set and an occasional reselection. For
a larger number of selections, the pool tracking method is
preferred since the list takes less space than the
set and it doesn't suffer from frequent reselections.
*/
if(!Array.isArray(population))
throw new TypeError("Population must be an array.");
var n = population.length;
if(k < 0 || k > n)
throw new RangeError("Sample larger than population or is negative");
var result = new Array(k);
var setsize = 21; // size of a small set minus size of an empty list
if(k > 5)
setsize += Math.pow(4, Math.ceil(Math.log(k * 3) / Math.log(4)))
if(n <= setsize){
// An n-length list is smaller than a k-length set
var pool = population.slice();
for(var i = 0; i < k; i++){ // invariant: non-selected at [0,n-i)
var j = Math.random() * (n - i) | 0;
result[i] = pool[j];
pool[j] = pool[n - i - 1]; // move non-selected item into vacancy
}
}else{
var selected = new Set();
for(var i = 0; i < k; i++){
var j = Math.random() * n | 0;
while(selected.has(j)){
j = Math.random() * n | 0;
}
selected.add(j);
result[i] = population[j];
}
}
return result;
}
Implementation ported from Lib/random.py.
Notes:
setsize is set based on characteristics in Python for efficiency. Although it has not been adjusted for JavaScript, the algorithm will still function as expected.
Some other answers described in this page are not safe according to the ECMAScript specification due to the misuse of Array.prototype.sort. This algorithm however is guaranteed to terminate in finite time.
For older browsers that do not have Set implemented, the set can be replaced with an Array and .has(j) replaced with .indexOf(j) > -1.
Performance against the accepted answer:
https://jsperf.com/pick-random-elements-from-an-array
The performance difference is the greatest on Safari.
If you want to randomly get items from the array in a loop without repetitions you can remove the selected item from the array with splice:
var items = [1, 2, 3, 4, 5];
var newItems = [];
for (var i = 0; i < 3; i++) {
var idx = Math.floor(Math.random() * items.length);
newItems.push(items[idx]);
items.splice(idx, 1);
}
console.log(newItems);
ES6 syntax
const pickRandom = (arr,count) => {
let _arr = [...arr];
return[...Array(count)].map( ()=> _arr.splice(Math.floor(Math.random() * _arr.length), 1)[0] );
}
I can't believe that no one didn't mention this method, pretty clean and straightforward.
const getRnd = (a, n) => new Array(n).fill(null).map(() => a[Math.floor(Math.random() * a.length)]);
Array.prototype.getnkill = function() {
var a = Math.floor(Math.random()*this.length);
var dead = this[a];
this.splice(a,1);
return dead;
}
//.getnkill() removes element in the array
//so if you like you can keep a copy of the array first:
//var original= items.slice(0);
var item = items.getnkill();
var anotheritem = items.getnkill();
Here's a nicely typed version. It doesn't fail. Returns a shuffled array if sample size is larger than original array's length.
function sampleArr<T>(arr: T[], size: number): T[] {
const setOfIndexes = new Set<number>();
while (setOfIndexes.size < size && setOfIndexes.size < arr.length) {
setOfIndexes.add(randomIntFromInterval(0, arr.length - 1));
}
return Array.from(setOfIndexes.values()).map(i => arr[i]);
}
const randomIntFromInterval = (min: number, max: number): number =>
Math.floor(Math.random() * (max - min + 1) + min);
In this answer, I want to share with you the test that I have to know the best method that gives equal chances for all elements to have random subarray.
Method 01
array.sort(() => Math.random() - Math.random()).slice(0, n)
using this method, some elements have higher chances comparing with others.
calculateProbability = function(number=0 ,iterations=10000,arraySize=100) {
let occ = 0
for (let index = 0; index < iterations; index++) {
const myArray= Array.from(Array(arraySize).keys()) //=> [0, 1, 2, 3, 4, ... arraySize]
/** Wrong Method */
const arr = myArray.sort(function() {
return val= .5 - Math.random();
});
if(arr[0]===number) {
occ ++
}
}
console.log("Probability of ",number, " = ",occ*100 /iterations,"%")
}
calculateProbability(0)
calculateProbability(0)
calculateProbability(0)
calculateProbability(50)
calculateProbability(50)
calculateProbability(50)
calculateProbability(25)
calculateProbability(25)
calculateProbability(25)
Method 2
Using this method, the elements have the same probability:
const arr = myArray
.map((a) => ({sort: Math.random(), value: a}))
.sort((a, b) => a.sort - b.sort)
.map((a) => a.value)
calculateProbability = function(number=0 ,iterations=10000,arraySize=100) {
let occ = 0
for (let index = 0; index < iterations; index++) {
const myArray= Array.from(Array(arraySize).keys()) //=> [0, 1, 2, 3, 4, ... arraySize]
/** Correct Method */
const arr = myArray
.map((a) => ({sort: Math.random(), value: a}))
.sort((a, b) => a.sort - b.sort)
.map((a) => a.value)
if(arr[0]===number) {
occ ++
}
}
console.log("Probability of ",number, " = ",occ*100 /iterations,"%")
}
calculateProbability(0)
calculateProbability(0)
calculateProbability(0)
calculateProbability(50)
calculateProbability(50)
calculateProbability(50)
calculateProbability(25)
calculateProbability(25)
calculateProbability(25)
The correct answer is posted in in the following link: https://stackoverflow.com/a/46545530/3811640
2020
non destructive functional programing style, working in a immutable context.
const _randomslice = (ar, size) => {
let new_ar = [...ar];
new_ar.splice(Math.floor(Math.random()*ar.length),1);
return ar.length <= (size+1) ? new_ar : _randomslice(new_ar, size);
}
console.log(_randomslice([1,2,3,4,5],2));
EDIT: This solution is slower than others presented here (which splice the source array) if you want to get only a few elements. The speed of this solution depends only on the number of elements in the original array, while the speed of the splicing solution depends on the number of elements required in the output array.
If you want non-repeating random elements, you can shuffle your array then get only as many as you want:
function shuffle(array) {
var counter = array.length, temp, index;
// While there are elements in the array
while (counter--) {
// Pick a random index
index = (Math.random() * counter) | 0;
// And swap the last element with it
temp = array[counter];
array[counter] = array[index];
array[index] = temp;
}
return array;
}
var arr = [0,1,2,3,4,5,7,8,9];
var randoms = shuffle(arr.slice(0)); // array is cloned so it won't be destroyed
randoms.length = 4; // get 4 random elements
DEMO: http://jsbin.com/UHUHuqi/1/edit
Shuffle function taken from here: https://stackoverflow.com/a/6274398/1669279
I needed a function to solve this kind of issue so I'm sharing it here.
const getRandomItem = function(arr) {
return arr[Math.floor(Math.random() * arr.length)];
}
// original array
let arr = [4, 3, 1, 6, 9, 8, 5];
// number of random elements to get from arr
let n = 4;
let count = 0;
// new array to push random item in
let randomItems = []
do {
let item = getRandomItem(arr);
randomItems.push(item);
// update the original array and remove the recently pushed item
arr.splice(arr.indexOf(item), 1);
count++;
} while(count < n);
console.log(randomItems);
console.log(arr);
Note: if n = arr.length then basically you're shuffling the array arr and randomItems returns that shuffled array.
Demo
Here's an optimized version of the code ported from Python by #Derek, with the added destructive (in-place) option that makes it the fastest algorithm possible if you can go with it. Otherwise it either makes a full copy or, for a small number of items requested from a large array, switches to a selection-based algorithm.
// Chooses k unique random elements from pool.
function sample(pool, k, destructive) {
var n = pool.length;
if (k < 0 || k > n)
throw new RangeError("Sample larger than population or is negative");
if (destructive || n <= (k <= 5 ? 21 : 21 + Math.pow(4, Math.ceil(Math.log(k*3) / Math.log(4))))) {
if (!destructive)
pool = Array.prototype.slice.call(pool);
for (var i = 0; i < k; i++) { // invariant: non-selected at [i,n)
var j = i + Math.random() * (n - i) | 0;
var x = pool[i];
pool[i] = pool[j];
pool[j] = x;
}
pool.length = k; // truncate
return pool;
} else {
var selected = new Set();
while (selected.add(Math.random() * n | 0).size < k) {}
return Array.prototype.map.call(selected, i => pool[i]);
}
}
In comparison to Derek's implementation, the first algorithm is much faster in Firefox while being a bit slower in Chrome, although now it has the destructive option - the most performant one. The second algorithm is simply 5-15% faster. I try not to give any concrete numbers since they vary depending on k and n and probably won't mean anything in the future with the new browser versions.
The heuristic that makes the choice between algorithms originates from Python code. I've left it as is, although it sometimes selects the slower one. It should be optimized for JS, but it's a complex task since the performance of corner cases is browser- and their version-dependent. For example, when you try to select 20 out of 1000 or 1050, it will switch to the first or the second algorithm accordingly. In this case the first one runs 2x faster than the second one in Chrome 80 but 3x slower in Firefox 74.
Sampling with possible duplicates:
const sample_with_duplicates = Array(sample_size).fill().map(() => items[~~(Math.random() * items.length)])
Sampling without duplicates:
const sample_without_duplicates = [...Array(items.length).keys()].sort(() => 0.5 - Math.random()).slice(0, sample_size).map(index => items[index]);
Since without duplicates requires sorting the whole index array first, it is considerably slow than with possible duplicates for big items input arrays.
Obviously, the max size of without duplicates is <= items.length
Check this fiddle: https://jsfiddle.net/doleron/5zw2vequ/30/
It extracts random elements from srcArray one by one while it get's enough or there is no more elements in srcArray left for extracting.
Fast and reliable.
function getNRandomValuesFromArray(srcArr, n) {
// making copy to do not affect original srcArray
srcArr = srcArr.slice();
resultArr = [];
// while srcArray isn't empty AND we didn't enough random elements
while (srcArr.length && resultArr.length < n) {
// remove one element from random position and add this element to the result array
resultArr = resultArr.concat( // merge arrays
srcArr.splice( // extract one random element
Math.floor(Math.random() * srcArr.length),
1
)
);
}
return resultArr;
}
Here's a function I use that allows you to easily sample an array with or without replacement:
// Returns a random sample (either with or without replacement) from an array
const randomSample = (arr, k, withReplacement = false) => {
let sample;
if (withReplacement === true) { // sample with replacement
sample = Array.from({length: k}, () => arr[Math.floor(Math.random() * arr.length)]);
} else { // sample without replacement
if (k > arr.length) {
throw new RangeError('Sample size must be less than or equal to array length when sampling without replacement.')
}
sample = arr.map(a => [a, Math.random()]).sort((a, b) => {
return a[1] < b[1] ? -1 : 1;}).slice(0, k).map(a => a[0]);
};
return sample;
};
Using it is simple:
Without Replacement (default behavior)
randomSample([1, 2, 3], 2) may return [2, 1]
With Replacement
randomSample([1, 2, 3, 4, 5, 6], 4) may return [2, 3, 3, 2]
var getRandomElements = function(sourceArray, requiredLength) {
var result = [];
while(result.length<requiredLength){
random = Math.floor(Math.random()*sourceArray.length);
if(result.indexOf(sourceArray[random])==-1){
result.push(sourceArray[random]);
}
}
return result;
}
const items = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'I', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 1, 2, 3, 4, 5];
const fetchRandomArray = ({pool=[], limit=1})=>{
let query = []
let selectedIndices = {}
while(query.length < limit){
const index = Math.floor(Math.random()*pool.length)
if(typeof(selectedIndices[index])==='undefined'){
query.push(items[index])
selectedIndices[index] = index
}
}
console.log(fetchRandomArray({pool:items, limit:10})
2019
This is same as Laurynas MaliĊĦauskas answer, just that the elements are unique (no duplicates).
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
var index = Math.floor(Math.random() * sourceArray.length);
result.push(sourceArray[index]);
sourceArray.splice(index, 1);
}
return result;
}
Now to answer original question "How to get multiple random elements by jQuery", here you go:
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
var index = Math.floor(Math.random() * sourceArray.length);
result.push(sourceArray[index]);
sourceArray.splice(index, 1);
}
return result;
}
var $set = $('.someClass');// <<<<< change this please
var allIndexes = [];
for(var i = 0; i < $set.length; ++i) {
allIndexes.push(i);
}
var totalRandom = 4;// <<<<< change this please
var randomIndexes = getMeRandomElements(allIndexes, totalRandom);
var $randomElements = null;
for(var i = 0; i < randomIndexes.length; ++i) {
var randomIndex = randomIndexes[i];
if($randomElements === null) {
$randomElements = $set.eq(randomIndex);
} else {
$randomElements.add($set.eq(randomIndex));
}
}
// $randomElements is ready
$randomElements.css('backgroundColor', 'red');
Here is the most correct answer and it will give you Random + Unique elements.
function randomize(array, n)
{
var final = [];
array = array.filter(function(elem, index, self) {
return index == self.indexOf(elem);
}).sort(function() { return 0.5 - Math.random() });
var len = array.length,
n = n > len ? len : n;
for(var i = 0; i < n; i ++)
{
final[i] = array[i];
}
return final;
}
// randomize([1,2,3,4,5,3,2], 4);
// Result: [1, 2, 3, 5] // Something like this
items.sort(() => (Math.random() > 0.5 ? 1 : -1)).slice(0, count);

shuffle a javascript array of objects every 10 seconds using object id [duplicate]

I have an array like this:
var arr1 = ["a", "b", "c", "d"];
How can I randomize / shuffle it?
The de-facto unbiased shuffle algorithm is the Fisher-Yates (aka Knuth) Shuffle.
You can see a great visualization here (and the original post linked to this)
function shuffle(array) {
let currentIndex = array.length, randomIndex;
// While there remain elements to shuffle.
while (currentIndex != 0) {
// Pick a remaining element.
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex--;
// And swap it with the current element.
[array[currentIndex], array[randomIndex]] = [
array[randomIndex], array[currentIndex]];
}
return array;
}
// Used like so
var arr = [2, 11, 37, 42];
shuffle(arr);
console.log(arr);
Some more info about the algorithm used.
Here's a JavaScript implementation of the Durstenfeld shuffle, an optimized version of Fisher-Yates:
/* Randomize array in-place using Durstenfeld shuffle algorithm */
function shuffleArray(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
It picks a random element for each original array element, and excludes it from the next draw, like picking randomly from a deck of cards.
This clever exclusion swaps the picked element with the current one, then picks the next random element from the remainder, looping backwards for optimal efficiency, ensuring the random pick is simplified (it can always start at 0), and thereby skipping the final element.
Algorithm runtime is O(n). Note that the shuffle is done in-place so if you don't want to modify the original array, first make a copy of it with .slice(0).
EDIT: Updating to ES6 / ECMAScript 2015
The new ES6 allows us to assign two variables at once. This is especially handy when we want to swap the values of two variables, as we can do it in one line of code. Here is a shorter form of the same function, using this feature.
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
You can do it easily with map and sort:
let unshuffled = ['hello', 'a', 't', 'q', 1, 2, 3, {cats: true}]
let shuffled = unshuffled
.map(value => ({ value, sort: Math.random() }))
.sort((a, b) => a.sort - b.sort)
.map(({ value }) => value)
console.log(shuffled)
We put each element in the array in an object, and give it a random sort key
We sort using the random key
We unmap to get the original objects
You can shuffle polymorphic arrays, and the sort is as random as Math.random, which is good enough for most purposes.
Since the elements are sorted against consistent keys that are not regenerated each iteration, and each comparison pulls from the same distribution, any non-randomness in the distribution of Math.random is canceled out.
Speed
Time complexity is O(N log N), same as quick sort. Space complexity is O(N). This is not as efficient as a Fischer Yates shuffle but, in my opinion, the code is significantly shorter and more functional. If you have a large array you should certainly use Fischer Yates. If you have a small array with a few hundred items, you might do this.
Warning!
The use of this algorithm is not recommended, because it is inefficient and strongly biased; see comments. It is being left here for future reference, because the idea is not that rare.
[1,2,3,4,5,6].sort( () => .5 - Math.random() );
This https://javascript.info/array-methods#shuffle-an-array tutorial explains the differences straightforwardly.
Use the underscore.js library. The method _.shuffle() is nice for this case.
Here is an example with the method:
var _ = require("underscore");
var arr = [1,2,3,4,5,6];
// Testing _.shuffle
var testShuffle = function () {
var indexOne = 0;
var stObj = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
};
for (var i = 0; i < 1000; i++) {
arr = _.shuffle(arr);
indexOne = _.indexOf(arr, 1);
stObj[indexOne] ++;
}
console.log(stObj);
};
testShuffle();
One could (but should NOT) use it as a protoype from Array:
From ChristopheD:
Array.prototype.shuffle = function() {
var i = this.length, j, temp;
if ( i == 0 ) return this;
while ( --i ) {
j = Math.floor( Math.random() * ( i + 1 ) );
temp = this[i];
this[i] = this[j];
this[j] = temp;
}
return this;
}
NEW!
Shorter & probably *faster Fisher-Yates shuffle algorithm
it uses while---
bitwise to floor (numbers up to 10 decimal digits (32bit))
removed unecessary closures & other stuff
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*(--c+1)|0,d=a[c],a[c]=a[b],a[b]=d
}
script size (with fy as function name): 90bytes
DEMO
http://jsfiddle.net/vvpoma8w/
*faster probably on all browsers except chrome.
If you have any questions just ask.
EDIT
yes it is faster
PERFORMANCE: http://jsperf.com/fyshuffle
using the top voted functions.
EDIT
There was a calculation in excess (don't need --c+1) and noone noticed
shorter(4bytes)&faster(test it!).
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*c--|0,d=a[c],a[c]=a[b],a[b]=d
}
Caching somewhere else var rnd=Math.random and then use rnd() would also increase slightly the performance on big arrays.
http://jsfiddle.net/vvpoma8w/2/
Readable version (use the original version. this is slower, vars are useless, like the closures & ";", the code itself is also shorter ... maybe read this How to 'minify' Javascript code , btw you are not able to compress the following code in a javascript minifiers like the above one.)
function fisherYates( array ){
var count = array.length,
randomnumber,
temp;
while( count ){
randomnumber = Math.random() * count-- | 0;
temp = array[count];
array[count] = array[randomnumber];
array[randomnumber] = temp
}
}
Shuffle Array In place
function shuffleArr (array){
for (var i = array.length - 1; i > 0; i--) {
var rand = Math.floor(Math.random() * (i + 1));
[array[i], array[rand]] = [array[rand], array[i]]
}
}
ES6 Pure, Iterative
const getShuffledArr = arr => {
const newArr = arr.slice()
for (let i = newArr.length - 1; i > 0; i--) {
const rand = Math.floor(Math.random() * (i + 1));
[newArr[i], newArr[rand]] = [newArr[rand], newArr[i]];
}
return newArr
};
Reliability and Performance Test
Some solutions on this page aren't reliable (they only partially randomise the array). Other solutions are significantly less efficient. With testShuffleArrayFun (see below) we can test array shuffling functions for reliability and performance.
function testShuffleArrayFun(getShuffledArrayFun){
const arr = [0,1,2,3,4,5,6,7,8,9]
var countArr = arr.map(el=>{
return arr.map(
el=> 0
)
}) // For each possible position in the shuffledArr and for
// each possible value, we'll create a counter.
const t0 = performance.now()
const n = 1000000
for (var i=0 ; i<n ; i++){
// We'll call getShuffledArrayFun n times.
// And for each iteration, we'll increment the counter.
var shuffledArr = getShuffledArrayFun(arr)
shuffledArr.forEach(
(value,key)=>{countArr[key][value]++}
)
}
const t1 = performance.now()
console.log(`Count Values in position`)
console.table(countArr)
const frequencyArr = countArr.map( positionArr => (
positionArr.map(
count => count/n
)
))
console.log("Frequency of value in position")
console.table(frequencyArr)
console.log(`total time: ${t1-t0}`)
}
Other Solutions
Other solutions just for fun.
ES6 Pure, Recursive
const getShuffledArr = arr => {
if (arr.length === 1) {return arr};
const rand = Math.floor(Math.random() * arr.length);
return [arr[rand], ...getShuffledArr(arr.filter((_, i) => i != rand))];
};
ES6 Pure using array.map
function getShuffledArr (arr){
return [...arr].map( (_, i, arrCopy) => {
var rand = i + ( Math.floor( Math.random() * (arrCopy.length - i) ) );
[arrCopy[rand], arrCopy[i]] = [arrCopy[i], arrCopy[rand]]
return arrCopy[i]
})
}
ES6 Pure using array.reduce
function getShuffledArr (arr){
return arr.reduce(
(newArr, _, i) => {
var rand = i + ( Math.floor( Math.random() * (newArr.length - i) ) );
[newArr[rand], newArr[i]] = [newArr[i], newArr[rand]]
return newArr
}, [...arr]
)
}
Edit: This answer is incorrect
See comments and https://stackoverflow.com/a/18650169/28234. It is being left here for reference because the idea isn't rare.
A very simple way for small arrays is simply this:
const someArray = [1, 2, 3, 4, 5];
someArray.sort(() => Math.random() - 0.5);
It's probably not very efficient, but for small arrays this works just fine. Here's an example so you can see how random (or not) it is, and whether it fits your usecase or not.
const resultsEl = document.querySelector('#results');
const buttonEl = document.querySelector('#trigger');
const generateArrayAndRandomize = () => {
const someArray = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
someArray.sort(() => Math.random() - 0.5);
return someArray;
};
const renderResultsToDom = (results, el) => {
el.innerHTML = results.join(' ');
};
buttonEl.addEventListener('click', () => renderResultsToDom(generateArrayAndRandomize(), resultsEl));
<h1>Randomize!</h1>
<button id="trigger">Generate</button>
<p id="results">0 1 2 3 4 5 6 7 8 9</p>
Adding to #Laurens Holsts answer. This is 50% compressed.
function shuffleArray(d) {
for (var c = d.length - 1; c > 0; c--) {
var b = Math.floor(Math.random() * (c + 1));
var a = d[c];
d[c] = d[b];
d[b] = a;
}
return d
};
I found this variant hanging out in the "deleted by author" answers on a duplicate of this question. Unlike some of the other answers that have many upvotes already, this is:
Actually random
Not in-place (hence the shuffled name rather than shuffle)
Not already present here with multiple variants
Here's a jsfiddle showing it in use.
Array.prototype.shuffled = function() {
return this.map(function(n){ return [Math.random(), n] })
.sort().map(function(n){ return n[1] });
}
With ES2015 you can use this one:
Array.prototype.shuffle = function() {
let m = this.length, i;
while (m) {
i = (Math.random() * m--) >>> 0;
[this[m], this[i]] = [this[i], this[m]]
}
return this;
}
Usage:
[1, 2, 3, 4, 5, 6, 7].shuffle();
Warning!
Using this answer for randomizing large arrays, cryptography, or any other application requiring true randomness is not recommended, due to its bias and inefficiency. Elements position is only semi-randomized, and they will tend to stay closer to their original position. See https://stackoverflow.com/a/18650169/28234.
You can arbitrarily decide whether to return 1 : -1 by using Math.random:
[1, 2, 3, 4].sort(() => (Math.random() > 0.5) ? 1 : -1)
Try running the following example:
const array = [1, 2, 3, 4];
// Based on the value returned by Math.Random,
// the decision is arbitrarily made whether to return 1 : -1
const shuffeled = array.sort(() => {
const randomTrueOrFalse = Math.random() > 0.5;
return randomTrueOrFalse ? 1 : -1
});
console.log(shuffeled);
//one line solution
shuffle = (array) => array.sort(() => Math.random() - 0.5);
//Demo
let arr = [1, 2, 3];
shuffle(arr);
alert(arr);
https://javascript.info/task/shuffle
Math.random() - 0.5 is a random number that may be positive or
negative, so the sorting function reorders elements randomly.
benchmarks
Let's first see the results then we'll look at each implementation of shuffle below -
splice is slow
Any solution using splice or shift in a loop is going to be very slow. Which is especially noticeable when we increase the size of the array. In a naive algorithm we -
get a rand position, i, in the input array, t
add t[i] to the output
splice position i from array t
To exaggerate the slow effect, we'll demonstrate this on an array of one million elements. The following script almost 30 seconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
yield r[i] // 2
r.splice(i, 1) // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via splice")
const result = shuffle(bigarray)
console.timeEnd("shuffle via splice")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via splice";
font-weight: bold;
display: block;
}
pop is fast
The trick is not to splice and instead use the super efficient pop. To do this, in place of the typical splice call, you -
select the position to splice, i
swap t[i] with the last element, t[t.length - 1]
add t.pop() to the result
Now we can shuffle one million elements in less than 100 milliseconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
swap(r, i, r.length - 1) // 2
yield r.pop() // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via pop")
const result = shuffle(bigarray)
console.timeEnd("shuffle via pop")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via pop";
font-weight: bold;
display: block;
}
even faster
The two implementations of shuffle above produce a new output array. The input array is not modified. This is my preferred way of working however you can increase the speed even more by shuffling in place.
Below shuffle one million elements in less than 10 milliseconds -
function shuffle (t)
{ let last = t.length
let n
while (last > 0)
{ n = rand(last)
swap(t, n, --last)
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle in place")
shuffle(bigarray)
console.timeEnd("shuffle in place")
document.body.textContent = JSON.stringify(bigarray, null, 2)
body::before {
content: "1 million elements in place";
font-weight: bold;
display: block;
}
var shuffle = function(array) {
temp = [];
originalLength = array.length;
for (var i = 0; i < originalLength; i++) {
temp.push(array.splice(Math.floor(Math.random()*array.length),1));
}
return temp;
};
A recursive solution:
function shuffle(a,b){
return a.length==0?b:function(c){
return shuffle(a,(b||[]).concat(c));
}(a.splice(Math.floor(Math.random()*a.length),1));
};
Fisher-Yates shuffle in javascript. I'm posting this here because the use of two utility functions (swap and randInt) clarifies the algorithm compared to the other answers here.
function swap(arr, i, j) {
// swaps two elements of an array in place
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function randInt(max) {
// returns random integer between 0 and max-1 inclusive.
return Math.floor(Math.random()*max);
}
function shuffle(arr) {
// For each slot in the array (starting at the end),
// pick an element randomly from the unplaced elements and
// place it in the slot, exchanging places with the
// element in the slot.
for(var slot = arr.length - 1; slot > 0; slot--){
var element = randInt(slot+1);
swap(arr, element, slot);
}
}
Modern short inline solution using ES6 features:
['a','b','c','d'].map(x => [Math.random(), x]).sort(([a], [b]) => a - b).map(([_, x]) => x);
(for educational purposes)
Using Fisher-Yates shuffle algorithm and ES6:
// Original array
let array = ['a', 'b', 'c', 'd'];
// Create a copy of the original array to be randomized
let shuffle = [...array];
// Defining function returning random value from i to N
const getRandomValue = (i, N) => Math.floor(Math.random() * (N - i) + i);
// Shuffle a pair of two elements at random position j
shuffle.forEach( (elem, i, arr, j = getRandomValue(i, arr.length)) => [arr[i], arr[j]] = [arr[j], arr[i]] );
console.log(shuffle);
// ['d', 'a', 'b', 'c']
First of all, have a look here for a great visual comparison of different sorting methods in javascript.
Secondly, if you have a quick look at the link above you'll find that the random order sort seems to perform relatively well compared to the other methods, while being extremely easy and fast to implement as shown below:
function shuffle(array) {
var random = array.map(Math.random);
array.sort(function(a, b) {
return random[array.indexOf(a)] - random[array.indexOf(b)];
});
}
Edit: as pointed out by #gregers, the compare function is called with values rather than indices, which is why you need to use indexOf. Note that this change makes the code less suitable for larger arrays as indexOf runs in O(n) time.
All the other answers are based on Math.random() which is fast but not suitable for cryptgraphic level randomization.
The below code is using the well known Fisher-Yates algorithm while utilizing Web Cryptography API for cryptographic level of randomization.
var d = [1,2,3,4,5,6,7,8,9,10];
function shuffle(a) {
var x, t, r = new Uint32Array(1);
for (var i = 0, c = a.length - 1, m = a.length; i < c; i++, m--) {
crypto.getRandomValues(r);
x = Math.floor(r / 65536 / 65536 * m) + i;
t = a [i], a [i] = a [x], a [x] = t;
}
return a;
}
console.log(shuffle(d));
a shuffle function that doesn't change the source array
Update: Here I'm suggesting a relatively simple (not from complexity perspective) and short algorithm that will do just fine with small sized arrays, but it's definitely going to cost a lot more than the classic Durstenfeld algorithm when you deal with huge arrays. You can find the Durstenfeld in one of the top replies to this question.
Original answer:
If you don't wish your shuffle function to mutate the source array, you can copy it to a local variable, then do the rest with a simple shuffling logic.
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source[index]);
source.splice(index, 1);
}
return result;
}
Shuffling logic: pick up a random index, then add the corresponding element to the result array and delete it from the source array copy. Repeat this action until the source array gets empty.
And if you really want it short, here's how far I could get:
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source.splice(index, 1)[0]);
}
return result;
}
Here is the EASIEST one,
function shuffle(array) {
return array.sort(() => Math.random() - 0.5);
}
for further example, you can check it here
We're still shuffling arrays in 2019, so here goes my approach, which seems to be neat and fast to me:
const src = [...'abcdefg'];
const shuffle = arr =>
[...arr].reduceRight((res,_,__,s) =>
(res.push(s.splice(0|Math.random()*s.length,1)[0]), res),[]);
console.log(shuffle(src));
.as-console-wrapper {min-height: 100%}
You can do it easily with:
// array
var fruits = ["Banana", "Orange", "Apple", "Mango"];
// random
fruits.sort(function(a, b){return 0.5 - Math.random()});
// out
console.log(fruits);
Please reference at JavaScript Sorting Arrays
A simple modification of CoolAJ86's answer that does not modify the original array:
/**
* Returns a new array whose contents are a shuffled copy of the original array.
* #param {Array} The items to shuffle.
* https://stackoverflow.com/a/2450976/1673761
* https://stackoverflow.com/a/44071316/1673761
*/
const shuffle = (array) => {
let currentIndex = array.length;
let temporaryValue;
let randomIndex;
const newArray = array.slice();
// While there remains elements to shuffle...
while (currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
// Swap it with the current element.
temporaryValue = newArray[currentIndex];
newArray[currentIndex] = newArray[randomIndex];
newArray[randomIndex] = temporaryValue;
}
return newArray;
};
For those of us who are not very gifted but have access to the wonders of lodash, there is such a thing as lodash.shuffle.
I found this useful:
const shuffle = (array: any[]) => {
return array.slice().sort(() => Math.random() - 0.5);
}
console.log(shuffle([1,2,3,4,5,6,7,8,9,10]));
// Output: [4, 3, 8, 10, 1, 7, 9, 2, 6, 5]
yet another implementation of Fisher-Yates, using strict mode:
function shuffleArray(a) {
"use strict";
var i, t, j;
for (i = a.length - 1; i > 0; i -= 1) {
t = a[i];
j = Math.floor(Math.random() * (i + 1));
a[i] = a[j];
a[j] = t;
}
return a;
}

How to display value from object in a random only once [duplicate]

I have an array like this:
var arr1 = ["a", "b", "c", "d"];
How can I randomize / shuffle it?
The de-facto unbiased shuffle algorithm is the Fisher-Yates (aka Knuth) Shuffle.
You can see a great visualization here (and the original post linked to this)
function shuffle(array) {
let currentIndex = array.length, randomIndex;
// While there remain elements to shuffle.
while (currentIndex != 0) {
// Pick a remaining element.
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex--;
// And swap it with the current element.
[array[currentIndex], array[randomIndex]] = [
array[randomIndex], array[currentIndex]];
}
return array;
}
// Used like so
var arr = [2, 11, 37, 42];
shuffle(arr);
console.log(arr);
Some more info about the algorithm used.
Here's a JavaScript implementation of the Durstenfeld shuffle, an optimized version of Fisher-Yates:
/* Randomize array in-place using Durstenfeld shuffle algorithm */
function shuffleArray(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
It picks a random element for each original array element, and excludes it from the next draw, like picking randomly from a deck of cards.
This clever exclusion swaps the picked element with the current one, then picks the next random element from the remainder, looping backwards for optimal efficiency, ensuring the random pick is simplified (it can always start at 0), and thereby skipping the final element.
Algorithm runtime is O(n). Note that the shuffle is done in-place so if you don't want to modify the original array, first make a copy of it with .slice(0).
EDIT: Updating to ES6 / ECMAScript 2015
The new ES6 allows us to assign two variables at once. This is especially handy when we want to swap the values of two variables, as we can do it in one line of code. Here is a shorter form of the same function, using this feature.
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
You can do it easily with map and sort:
let unshuffled = ['hello', 'a', 't', 'q', 1, 2, 3, {cats: true}]
let shuffled = unshuffled
.map(value => ({ value, sort: Math.random() }))
.sort((a, b) => a.sort - b.sort)
.map(({ value }) => value)
console.log(shuffled)
We put each element in the array in an object, and give it a random sort key
We sort using the random key
We unmap to get the original objects
You can shuffle polymorphic arrays, and the sort is as random as Math.random, which is good enough for most purposes.
Since the elements are sorted against consistent keys that are not regenerated each iteration, and each comparison pulls from the same distribution, any non-randomness in the distribution of Math.random is canceled out.
Speed
Time complexity is O(N log N), same as quick sort. Space complexity is O(N). This is not as efficient as a Fischer Yates shuffle but, in my opinion, the code is significantly shorter and more functional. If you have a large array you should certainly use Fischer Yates. If you have a small array with a few hundred items, you might do this.
Warning!
The use of this algorithm is not recommended, because it is inefficient and strongly biased; see comments. It is being left here for future reference, because the idea is not that rare.
[1,2,3,4,5,6].sort( () => .5 - Math.random() );
This https://javascript.info/array-methods#shuffle-an-array tutorial explains the differences straightforwardly.
Use the underscore.js library. The method _.shuffle() is nice for this case.
Here is an example with the method:
var _ = require("underscore");
var arr = [1,2,3,4,5,6];
// Testing _.shuffle
var testShuffle = function () {
var indexOne = 0;
var stObj = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
};
for (var i = 0; i < 1000; i++) {
arr = _.shuffle(arr);
indexOne = _.indexOf(arr, 1);
stObj[indexOne] ++;
}
console.log(stObj);
};
testShuffle();
One could (but should NOT) use it as a protoype from Array:
From ChristopheD:
Array.prototype.shuffle = function() {
var i = this.length, j, temp;
if ( i == 0 ) return this;
while ( --i ) {
j = Math.floor( Math.random() * ( i + 1 ) );
temp = this[i];
this[i] = this[j];
this[j] = temp;
}
return this;
}
NEW!
Shorter & probably *faster Fisher-Yates shuffle algorithm
it uses while---
bitwise to floor (numbers up to 10 decimal digits (32bit))
removed unecessary closures & other stuff
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*(--c+1)|0,d=a[c],a[c]=a[b],a[b]=d
}
script size (with fy as function name): 90bytes
DEMO
http://jsfiddle.net/vvpoma8w/
*faster probably on all browsers except chrome.
If you have any questions just ask.
EDIT
yes it is faster
PERFORMANCE: http://jsperf.com/fyshuffle
using the top voted functions.
EDIT
There was a calculation in excess (don't need --c+1) and noone noticed
shorter(4bytes)&faster(test it!).
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*c--|0,d=a[c],a[c]=a[b],a[b]=d
}
Caching somewhere else var rnd=Math.random and then use rnd() would also increase slightly the performance on big arrays.
http://jsfiddle.net/vvpoma8w/2/
Readable version (use the original version. this is slower, vars are useless, like the closures & ";", the code itself is also shorter ... maybe read this How to 'minify' Javascript code , btw you are not able to compress the following code in a javascript minifiers like the above one.)
function fisherYates( array ){
var count = array.length,
randomnumber,
temp;
while( count ){
randomnumber = Math.random() * count-- | 0;
temp = array[count];
array[count] = array[randomnumber];
array[randomnumber] = temp
}
}
Shuffle Array In place
function shuffleArr (array){
for (var i = array.length - 1; i > 0; i--) {
var rand = Math.floor(Math.random() * (i + 1));
[array[i], array[rand]] = [array[rand], array[i]]
}
}
ES6 Pure, Iterative
const getShuffledArr = arr => {
const newArr = arr.slice()
for (let i = newArr.length - 1; i > 0; i--) {
const rand = Math.floor(Math.random() * (i + 1));
[newArr[i], newArr[rand]] = [newArr[rand], newArr[i]];
}
return newArr
};
Reliability and Performance Test
Some solutions on this page aren't reliable (they only partially randomise the array). Other solutions are significantly less efficient. With testShuffleArrayFun (see below) we can test array shuffling functions for reliability and performance.
function testShuffleArrayFun(getShuffledArrayFun){
const arr = [0,1,2,3,4,5,6,7,8,9]
var countArr = arr.map(el=>{
return arr.map(
el=> 0
)
}) // For each possible position in the shuffledArr and for
// each possible value, we'll create a counter.
const t0 = performance.now()
const n = 1000000
for (var i=0 ; i<n ; i++){
// We'll call getShuffledArrayFun n times.
// And for each iteration, we'll increment the counter.
var shuffledArr = getShuffledArrayFun(arr)
shuffledArr.forEach(
(value,key)=>{countArr[key][value]++}
)
}
const t1 = performance.now()
console.log(`Count Values in position`)
console.table(countArr)
const frequencyArr = countArr.map( positionArr => (
positionArr.map(
count => count/n
)
))
console.log("Frequency of value in position")
console.table(frequencyArr)
console.log(`total time: ${t1-t0}`)
}
Other Solutions
Other solutions just for fun.
ES6 Pure, Recursive
const getShuffledArr = arr => {
if (arr.length === 1) {return arr};
const rand = Math.floor(Math.random() * arr.length);
return [arr[rand], ...getShuffledArr(arr.filter((_, i) => i != rand))];
};
ES6 Pure using array.map
function getShuffledArr (arr){
return [...arr].map( (_, i, arrCopy) => {
var rand = i + ( Math.floor( Math.random() * (arrCopy.length - i) ) );
[arrCopy[rand], arrCopy[i]] = [arrCopy[i], arrCopy[rand]]
return arrCopy[i]
})
}
ES6 Pure using array.reduce
function getShuffledArr (arr){
return arr.reduce(
(newArr, _, i) => {
var rand = i + ( Math.floor( Math.random() * (newArr.length - i) ) );
[newArr[rand], newArr[i]] = [newArr[i], newArr[rand]]
return newArr
}, [...arr]
)
}
Edit: This answer is incorrect
See comments and https://stackoverflow.com/a/18650169/28234. It is being left here for reference because the idea isn't rare.
A very simple way for small arrays is simply this:
const someArray = [1, 2, 3, 4, 5];
someArray.sort(() => Math.random() - 0.5);
It's probably not very efficient, but for small arrays this works just fine. Here's an example so you can see how random (or not) it is, and whether it fits your usecase or not.
const resultsEl = document.querySelector('#results');
const buttonEl = document.querySelector('#trigger');
const generateArrayAndRandomize = () => {
const someArray = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
someArray.sort(() => Math.random() - 0.5);
return someArray;
};
const renderResultsToDom = (results, el) => {
el.innerHTML = results.join(' ');
};
buttonEl.addEventListener('click', () => renderResultsToDom(generateArrayAndRandomize(), resultsEl));
<h1>Randomize!</h1>
<button id="trigger">Generate</button>
<p id="results">0 1 2 3 4 5 6 7 8 9</p>
Adding to #Laurens Holsts answer. This is 50% compressed.
function shuffleArray(d) {
for (var c = d.length - 1; c > 0; c--) {
var b = Math.floor(Math.random() * (c + 1));
var a = d[c];
d[c] = d[b];
d[b] = a;
}
return d
};
I found this variant hanging out in the "deleted by author" answers on a duplicate of this question. Unlike some of the other answers that have many upvotes already, this is:
Actually random
Not in-place (hence the shuffled name rather than shuffle)
Not already present here with multiple variants
Here's a jsfiddle showing it in use.
Array.prototype.shuffled = function() {
return this.map(function(n){ return [Math.random(), n] })
.sort().map(function(n){ return n[1] });
}
With ES2015 you can use this one:
Array.prototype.shuffle = function() {
let m = this.length, i;
while (m) {
i = (Math.random() * m--) >>> 0;
[this[m], this[i]] = [this[i], this[m]]
}
return this;
}
Usage:
[1, 2, 3, 4, 5, 6, 7].shuffle();
Warning!
Using this answer for randomizing large arrays, cryptography, or any other application requiring true randomness is not recommended, due to its bias and inefficiency. Elements position is only semi-randomized, and they will tend to stay closer to their original position. See https://stackoverflow.com/a/18650169/28234.
You can arbitrarily decide whether to return 1 : -1 by using Math.random:
[1, 2, 3, 4].sort(() => (Math.random() > 0.5) ? 1 : -1)
Try running the following example:
const array = [1, 2, 3, 4];
// Based on the value returned by Math.Random,
// the decision is arbitrarily made whether to return 1 : -1
const shuffeled = array.sort(() => {
const randomTrueOrFalse = Math.random() > 0.5;
return randomTrueOrFalse ? 1 : -1
});
console.log(shuffeled);
//one line solution
shuffle = (array) => array.sort(() => Math.random() - 0.5);
//Demo
let arr = [1, 2, 3];
shuffle(arr);
alert(arr);
https://javascript.info/task/shuffle
Math.random() - 0.5 is a random number that may be positive or
negative, so the sorting function reorders elements randomly.
benchmarks
Let's first see the results then we'll look at each implementation of shuffle below -
splice is slow
Any solution using splice or shift in a loop is going to be very slow. Which is especially noticeable when we increase the size of the array. In a naive algorithm we -
get a rand position, i, in the input array, t
add t[i] to the output
splice position i from array t
To exaggerate the slow effect, we'll demonstrate this on an array of one million elements. The following script almost 30 seconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
yield r[i] // 2
r.splice(i, 1) // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via splice")
const result = shuffle(bigarray)
console.timeEnd("shuffle via splice")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via splice";
font-weight: bold;
display: block;
}
pop is fast
The trick is not to splice and instead use the super efficient pop. To do this, in place of the typical splice call, you -
select the position to splice, i
swap t[i] with the last element, t[t.length - 1]
add t.pop() to the result
Now we can shuffle one million elements in less than 100 milliseconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
swap(r, i, r.length - 1) // 2
yield r.pop() // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via pop")
const result = shuffle(bigarray)
console.timeEnd("shuffle via pop")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via pop";
font-weight: bold;
display: block;
}
even faster
The two implementations of shuffle above produce a new output array. The input array is not modified. This is my preferred way of working however you can increase the speed even more by shuffling in place.
Below shuffle one million elements in less than 10 milliseconds -
function shuffle (t)
{ let last = t.length
let n
while (last > 0)
{ n = rand(last)
swap(t, n, --last)
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle in place")
shuffle(bigarray)
console.timeEnd("shuffle in place")
document.body.textContent = JSON.stringify(bigarray, null, 2)
body::before {
content: "1 million elements in place";
font-weight: bold;
display: block;
}
var shuffle = function(array) {
temp = [];
originalLength = array.length;
for (var i = 0; i < originalLength; i++) {
temp.push(array.splice(Math.floor(Math.random()*array.length),1));
}
return temp;
};
A recursive solution:
function shuffle(a,b){
return a.length==0?b:function(c){
return shuffle(a,(b||[]).concat(c));
}(a.splice(Math.floor(Math.random()*a.length),1));
};
Fisher-Yates shuffle in javascript. I'm posting this here because the use of two utility functions (swap and randInt) clarifies the algorithm compared to the other answers here.
function swap(arr, i, j) {
// swaps two elements of an array in place
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function randInt(max) {
// returns random integer between 0 and max-1 inclusive.
return Math.floor(Math.random()*max);
}
function shuffle(arr) {
// For each slot in the array (starting at the end),
// pick an element randomly from the unplaced elements and
// place it in the slot, exchanging places with the
// element in the slot.
for(var slot = arr.length - 1; slot > 0; slot--){
var element = randInt(slot+1);
swap(arr, element, slot);
}
}
Modern short inline solution using ES6 features:
['a','b','c','d'].map(x => [Math.random(), x]).sort(([a], [b]) => a - b).map(([_, x]) => x);
(for educational purposes)
Using Fisher-Yates shuffle algorithm and ES6:
// Original array
let array = ['a', 'b', 'c', 'd'];
// Create a copy of the original array to be randomized
let shuffle = [...array];
// Defining function returning random value from i to N
const getRandomValue = (i, N) => Math.floor(Math.random() * (N - i) + i);
// Shuffle a pair of two elements at random position j
shuffle.forEach( (elem, i, arr, j = getRandomValue(i, arr.length)) => [arr[i], arr[j]] = [arr[j], arr[i]] );
console.log(shuffle);
// ['d', 'a', 'b', 'c']
First of all, have a look here for a great visual comparison of different sorting methods in javascript.
Secondly, if you have a quick look at the link above you'll find that the random order sort seems to perform relatively well compared to the other methods, while being extremely easy and fast to implement as shown below:
function shuffle(array) {
var random = array.map(Math.random);
array.sort(function(a, b) {
return random[array.indexOf(a)] - random[array.indexOf(b)];
});
}
Edit: as pointed out by #gregers, the compare function is called with values rather than indices, which is why you need to use indexOf. Note that this change makes the code less suitable for larger arrays as indexOf runs in O(n) time.
All the other answers are based on Math.random() which is fast but not suitable for cryptgraphic level randomization.
The below code is using the well known Fisher-Yates algorithm while utilizing Web Cryptography API for cryptographic level of randomization.
var d = [1,2,3,4,5,6,7,8,9,10];
function shuffle(a) {
var x, t, r = new Uint32Array(1);
for (var i = 0, c = a.length - 1, m = a.length; i < c; i++, m--) {
crypto.getRandomValues(r);
x = Math.floor(r / 65536 / 65536 * m) + i;
t = a [i], a [i] = a [x], a [x] = t;
}
return a;
}
console.log(shuffle(d));
a shuffle function that doesn't change the source array
Update: Here I'm suggesting a relatively simple (not from complexity perspective) and short algorithm that will do just fine with small sized arrays, but it's definitely going to cost a lot more than the classic Durstenfeld algorithm when you deal with huge arrays. You can find the Durstenfeld in one of the top replies to this question.
Original answer:
If you don't wish your shuffle function to mutate the source array, you can copy it to a local variable, then do the rest with a simple shuffling logic.
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source[index]);
source.splice(index, 1);
}
return result;
}
Shuffling logic: pick up a random index, then add the corresponding element to the result array and delete it from the source array copy. Repeat this action until the source array gets empty.
And if you really want it short, here's how far I could get:
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source.splice(index, 1)[0]);
}
return result;
}
Here is the EASIEST one,
function shuffle(array) {
return array.sort(() => Math.random() - 0.5);
}
for further example, you can check it here
We're still shuffling arrays in 2019, so here goes my approach, which seems to be neat and fast to me:
const src = [...'abcdefg'];
const shuffle = arr =>
[...arr].reduceRight((res,_,__,s) =>
(res.push(s.splice(0|Math.random()*s.length,1)[0]), res),[]);
console.log(shuffle(src));
.as-console-wrapper {min-height: 100%}
You can do it easily with:
// array
var fruits = ["Banana", "Orange", "Apple", "Mango"];
// random
fruits.sort(function(a, b){return 0.5 - Math.random()});
// out
console.log(fruits);
Please reference at JavaScript Sorting Arrays
A simple modification of CoolAJ86's answer that does not modify the original array:
/**
* Returns a new array whose contents are a shuffled copy of the original array.
* #param {Array} The items to shuffle.
* https://stackoverflow.com/a/2450976/1673761
* https://stackoverflow.com/a/44071316/1673761
*/
const shuffle = (array) => {
let currentIndex = array.length;
let temporaryValue;
let randomIndex;
const newArray = array.slice();
// While there remains elements to shuffle...
while (currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
// Swap it with the current element.
temporaryValue = newArray[currentIndex];
newArray[currentIndex] = newArray[randomIndex];
newArray[randomIndex] = temporaryValue;
}
return newArray;
};
For those of us who are not very gifted but have access to the wonders of lodash, there is such a thing as lodash.shuffle.
I found this useful:
const shuffle = (array: any[]) => {
return array.slice().sort(() => Math.random() - 0.5);
}
console.log(shuffle([1,2,3,4,5,6,7,8,9,10]));
// Output: [4, 3, 8, 10, 1, 7, 9, 2, 6, 5]
yet another implementation of Fisher-Yates, using strict mode:
function shuffleArray(a) {
"use strict";
var i, t, j;
for (i = a.length - 1; i > 0; i -= 1) {
t = a[i];
j = Math.floor(Math.random() * (i + 1));
a[i] = a[j];
a[j] = t;
}
return a;
}

Javascript: Ensure 0 duplicates of 5 randomly chosen array items [duplicate]

I have an array like this:
var arr1 = ["a", "b", "c", "d"];
How can I randomize / shuffle it?
The de-facto unbiased shuffle algorithm is the Fisher-Yates (aka Knuth) Shuffle.
You can see a great visualization here (and the original post linked to this)
function shuffle(array) {
let currentIndex = array.length, randomIndex;
// While there remain elements to shuffle.
while (currentIndex != 0) {
// Pick a remaining element.
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex--;
// And swap it with the current element.
[array[currentIndex], array[randomIndex]] = [
array[randomIndex], array[currentIndex]];
}
return array;
}
// Used like so
var arr = [2, 11, 37, 42];
shuffle(arr);
console.log(arr);
Some more info about the algorithm used.
Here's a JavaScript implementation of the Durstenfeld shuffle, an optimized version of Fisher-Yates:
/* Randomize array in-place using Durstenfeld shuffle algorithm */
function shuffleArray(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
It picks a random element for each original array element, and excludes it from the next draw, like picking randomly from a deck of cards.
This clever exclusion swaps the picked element with the current one, then picks the next random element from the remainder, looping backwards for optimal efficiency, ensuring the random pick is simplified (it can always start at 0), and thereby skipping the final element.
Algorithm runtime is O(n). Note that the shuffle is done in-place so if you don't want to modify the original array, first make a copy of it with .slice(0).
EDIT: Updating to ES6 / ECMAScript 2015
The new ES6 allows us to assign two variables at once. This is especially handy when we want to swap the values of two variables, as we can do it in one line of code. Here is a shorter form of the same function, using this feature.
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
You can do it easily with map and sort:
let unshuffled = ['hello', 'a', 't', 'q', 1, 2, 3, {cats: true}]
let shuffled = unshuffled
.map(value => ({ value, sort: Math.random() }))
.sort((a, b) => a.sort - b.sort)
.map(({ value }) => value)
console.log(shuffled)
We put each element in the array in an object, and give it a random sort key
We sort using the random key
We unmap to get the original objects
You can shuffle polymorphic arrays, and the sort is as random as Math.random, which is good enough for most purposes.
Since the elements are sorted against consistent keys that are not regenerated each iteration, and each comparison pulls from the same distribution, any non-randomness in the distribution of Math.random is canceled out.
Speed
Time complexity is O(N log N), same as quick sort. Space complexity is O(N). This is not as efficient as a Fischer Yates shuffle but, in my opinion, the code is significantly shorter and more functional. If you have a large array you should certainly use Fischer Yates. If you have a small array with a few hundred items, you might do this.
Warning!
The use of this algorithm is not recommended, because it is inefficient and strongly biased; see comments. It is being left here for future reference, because the idea is not that rare.
[1,2,3,4,5,6].sort( () => .5 - Math.random() );
This https://javascript.info/array-methods#shuffle-an-array tutorial explains the differences straightforwardly.
Use the underscore.js library. The method _.shuffle() is nice for this case.
Here is an example with the method:
var _ = require("underscore");
var arr = [1,2,3,4,5,6];
// Testing _.shuffle
var testShuffle = function () {
var indexOne = 0;
var stObj = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
};
for (var i = 0; i < 1000; i++) {
arr = _.shuffle(arr);
indexOne = _.indexOf(arr, 1);
stObj[indexOne] ++;
}
console.log(stObj);
};
testShuffle();
One could (but should NOT) use it as a protoype from Array:
From ChristopheD:
Array.prototype.shuffle = function() {
var i = this.length, j, temp;
if ( i == 0 ) return this;
while ( --i ) {
j = Math.floor( Math.random() * ( i + 1 ) );
temp = this[i];
this[i] = this[j];
this[j] = temp;
}
return this;
}
NEW!
Shorter & probably *faster Fisher-Yates shuffle algorithm
it uses while---
bitwise to floor (numbers up to 10 decimal digits (32bit))
removed unecessary closures & other stuff
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*(--c+1)|0,d=a[c],a[c]=a[b],a[b]=d
}
script size (with fy as function name): 90bytes
DEMO
http://jsfiddle.net/vvpoma8w/
*faster probably on all browsers except chrome.
If you have any questions just ask.
EDIT
yes it is faster
PERFORMANCE: http://jsperf.com/fyshuffle
using the top voted functions.
EDIT
There was a calculation in excess (don't need --c+1) and noone noticed
shorter(4bytes)&faster(test it!).
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*c--|0,d=a[c],a[c]=a[b],a[b]=d
}
Caching somewhere else var rnd=Math.random and then use rnd() would also increase slightly the performance on big arrays.
http://jsfiddle.net/vvpoma8w/2/
Readable version (use the original version. this is slower, vars are useless, like the closures & ";", the code itself is also shorter ... maybe read this How to 'minify' Javascript code , btw you are not able to compress the following code in a javascript minifiers like the above one.)
function fisherYates( array ){
var count = array.length,
randomnumber,
temp;
while( count ){
randomnumber = Math.random() * count-- | 0;
temp = array[count];
array[count] = array[randomnumber];
array[randomnumber] = temp
}
}
Shuffle Array In place
function shuffleArr (array){
for (var i = array.length - 1; i > 0; i--) {
var rand = Math.floor(Math.random() * (i + 1));
[array[i], array[rand]] = [array[rand], array[i]]
}
}
ES6 Pure, Iterative
const getShuffledArr = arr => {
const newArr = arr.slice()
for (let i = newArr.length - 1; i > 0; i--) {
const rand = Math.floor(Math.random() * (i + 1));
[newArr[i], newArr[rand]] = [newArr[rand], newArr[i]];
}
return newArr
};
Reliability and Performance Test
Some solutions on this page aren't reliable (they only partially randomise the array). Other solutions are significantly less efficient. With testShuffleArrayFun (see below) we can test array shuffling functions for reliability and performance.
function testShuffleArrayFun(getShuffledArrayFun){
const arr = [0,1,2,3,4,5,6,7,8,9]
var countArr = arr.map(el=>{
return arr.map(
el=> 0
)
}) // For each possible position in the shuffledArr and for
// each possible value, we'll create a counter.
const t0 = performance.now()
const n = 1000000
for (var i=0 ; i<n ; i++){
// We'll call getShuffledArrayFun n times.
// And for each iteration, we'll increment the counter.
var shuffledArr = getShuffledArrayFun(arr)
shuffledArr.forEach(
(value,key)=>{countArr[key][value]++}
)
}
const t1 = performance.now()
console.log(`Count Values in position`)
console.table(countArr)
const frequencyArr = countArr.map( positionArr => (
positionArr.map(
count => count/n
)
))
console.log("Frequency of value in position")
console.table(frequencyArr)
console.log(`total time: ${t1-t0}`)
}
Other Solutions
Other solutions just for fun.
ES6 Pure, Recursive
const getShuffledArr = arr => {
if (arr.length === 1) {return arr};
const rand = Math.floor(Math.random() * arr.length);
return [arr[rand], ...getShuffledArr(arr.filter((_, i) => i != rand))];
};
ES6 Pure using array.map
function getShuffledArr (arr){
return [...arr].map( (_, i, arrCopy) => {
var rand = i + ( Math.floor( Math.random() * (arrCopy.length - i) ) );
[arrCopy[rand], arrCopy[i]] = [arrCopy[i], arrCopy[rand]]
return arrCopy[i]
})
}
ES6 Pure using array.reduce
function getShuffledArr (arr){
return arr.reduce(
(newArr, _, i) => {
var rand = i + ( Math.floor( Math.random() * (newArr.length - i) ) );
[newArr[rand], newArr[i]] = [newArr[i], newArr[rand]]
return newArr
}, [...arr]
)
}
Edit: This answer is incorrect
See comments and https://stackoverflow.com/a/18650169/28234. It is being left here for reference because the idea isn't rare.
A very simple way for small arrays is simply this:
const someArray = [1, 2, 3, 4, 5];
someArray.sort(() => Math.random() - 0.5);
It's probably not very efficient, but for small arrays this works just fine. Here's an example so you can see how random (or not) it is, and whether it fits your usecase or not.
const resultsEl = document.querySelector('#results');
const buttonEl = document.querySelector('#trigger');
const generateArrayAndRandomize = () => {
const someArray = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
someArray.sort(() => Math.random() - 0.5);
return someArray;
};
const renderResultsToDom = (results, el) => {
el.innerHTML = results.join(' ');
};
buttonEl.addEventListener('click', () => renderResultsToDom(generateArrayAndRandomize(), resultsEl));
<h1>Randomize!</h1>
<button id="trigger">Generate</button>
<p id="results">0 1 2 3 4 5 6 7 8 9</p>
Adding to #Laurens Holsts answer. This is 50% compressed.
function shuffleArray(d) {
for (var c = d.length - 1; c > 0; c--) {
var b = Math.floor(Math.random() * (c + 1));
var a = d[c];
d[c] = d[b];
d[b] = a;
}
return d
};
I found this variant hanging out in the "deleted by author" answers on a duplicate of this question. Unlike some of the other answers that have many upvotes already, this is:
Actually random
Not in-place (hence the shuffled name rather than shuffle)
Not already present here with multiple variants
Here's a jsfiddle showing it in use.
Array.prototype.shuffled = function() {
return this.map(function(n){ return [Math.random(), n] })
.sort().map(function(n){ return n[1] });
}
With ES2015 you can use this one:
Array.prototype.shuffle = function() {
let m = this.length, i;
while (m) {
i = (Math.random() * m--) >>> 0;
[this[m], this[i]] = [this[i], this[m]]
}
return this;
}
Usage:
[1, 2, 3, 4, 5, 6, 7].shuffle();
Warning!
Using this answer for randomizing large arrays, cryptography, or any other application requiring true randomness is not recommended, due to its bias and inefficiency. Elements position is only semi-randomized, and they will tend to stay closer to their original position. See https://stackoverflow.com/a/18650169/28234.
You can arbitrarily decide whether to return 1 : -1 by using Math.random:
[1, 2, 3, 4].sort(() => (Math.random() > 0.5) ? 1 : -1)
Try running the following example:
const array = [1, 2, 3, 4];
// Based on the value returned by Math.Random,
// the decision is arbitrarily made whether to return 1 : -1
const shuffeled = array.sort(() => {
const randomTrueOrFalse = Math.random() > 0.5;
return randomTrueOrFalse ? 1 : -1
});
console.log(shuffeled);
//one line solution
shuffle = (array) => array.sort(() => Math.random() - 0.5);
//Demo
let arr = [1, 2, 3];
shuffle(arr);
alert(arr);
https://javascript.info/task/shuffle
Math.random() - 0.5 is a random number that may be positive or
negative, so the sorting function reorders elements randomly.
benchmarks
Let's first see the results then we'll look at each implementation of shuffle below -
splice is slow
Any solution using splice or shift in a loop is going to be very slow. Which is especially noticeable when we increase the size of the array. In a naive algorithm we -
get a rand position, i, in the input array, t
add t[i] to the output
splice position i from array t
To exaggerate the slow effect, we'll demonstrate this on an array of one million elements. The following script almost 30 seconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
yield r[i] // 2
r.splice(i, 1) // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via splice")
const result = shuffle(bigarray)
console.timeEnd("shuffle via splice")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via splice";
font-weight: bold;
display: block;
}
pop is fast
The trick is not to splice and instead use the super efficient pop. To do this, in place of the typical splice call, you -
select the position to splice, i
swap t[i] with the last element, t[t.length - 1]
add t.pop() to the result
Now we can shuffle one million elements in less than 100 milliseconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
swap(r, i, r.length - 1) // 2
yield r.pop() // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via pop")
const result = shuffle(bigarray)
console.timeEnd("shuffle via pop")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via pop";
font-weight: bold;
display: block;
}
even faster
The two implementations of shuffle above produce a new output array. The input array is not modified. This is my preferred way of working however you can increase the speed even more by shuffling in place.
Below shuffle one million elements in less than 10 milliseconds -
function shuffle (t)
{ let last = t.length
let n
while (last > 0)
{ n = rand(last)
swap(t, n, --last)
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle in place")
shuffle(bigarray)
console.timeEnd("shuffle in place")
document.body.textContent = JSON.stringify(bigarray, null, 2)
body::before {
content: "1 million elements in place";
font-weight: bold;
display: block;
}
var shuffle = function(array) {
temp = [];
originalLength = array.length;
for (var i = 0; i < originalLength; i++) {
temp.push(array.splice(Math.floor(Math.random()*array.length),1));
}
return temp;
};
A recursive solution:
function shuffle(a,b){
return a.length==0?b:function(c){
return shuffle(a,(b||[]).concat(c));
}(a.splice(Math.floor(Math.random()*a.length),1));
};
Fisher-Yates shuffle in javascript. I'm posting this here because the use of two utility functions (swap and randInt) clarifies the algorithm compared to the other answers here.
function swap(arr, i, j) {
// swaps two elements of an array in place
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function randInt(max) {
// returns random integer between 0 and max-1 inclusive.
return Math.floor(Math.random()*max);
}
function shuffle(arr) {
// For each slot in the array (starting at the end),
// pick an element randomly from the unplaced elements and
// place it in the slot, exchanging places with the
// element in the slot.
for(var slot = arr.length - 1; slot > 0; slot--){
var element = randInt(slot+1);
swap(arr, element, slot);
}
}
Modern short inline solution using ES6 features:
['a','b','c','d'].map(x => [Math.random(), x]).sort(([a], [b]) => a - b).map(([_, x]) => x);
(for educational purposes)
Using Fisher-Yates shuffle algorithm and ES6:
// Original array
let array = ['a', 'b', 'c', 'd'];
// Create a copy of the original array to be randomized
let shuffle = [...array];
// Defining function returning random value from i to N
const getRandomValue = (i, N) => Math.floor(Math.random() * (N - i) + i);
// Shuffle a pair of two elements at random position j
shuffle.forEach( (elem, i, arr, j = getRandomValue(i, arr.length)) => [arr[i], arr[j]] = [arr[j], arr[i]] );
console.log(shuffle);
// ['d', 'a', 'b', 'c']
First of all, have a look here for a great visual comparison of different sorting methods in javascript.
Secondly, if you have a quick look at the link above you'll find that the random order sort seems to perform relatively well compared to the other methods, while being extremely easy and fast to implement as shown below:
function shuffle(array) {
var random = array.map(Math.random);
array.sort(function(a, b) {
return random[array.indexOf(a)] - random[array.indexOf(b)];
});
}
Edit: as pointed out by #gregers, the compare function is called with values rather than indices, which is why you need to use indexOf. Note that this change makes the code less suitable for larger arrays as indexOf runs in O(n) time.
All the other answers are based on Math.random() which is fast but not suitable for cryptgraphic level randomization.
The below code is using the well known Fisher-Yates algorithm while utilizing Web Cryptography API for cryptographic level of randomization.
var d = [1,2,3,4,5,6,7,8,9,10];
function shuffle(a) {
var x, t, r = new Uint32Array(1);
for (var i = 0, c = a.length - 1, m = a.length; i < c; i++, m--) {
crypto.getRandomValues(r);
x = Math.floor(r / 65536 / 65536 * m) + i;
t = a [i], a [i] = a [x], a [x] = t;
}
return a;
}
console.log(shuffle(d));
a shuffle function that doesn't change the source array
Update: Here I'm suggesting a relatively simple (not from complexity perspective) and short algorithm that will do just fine with small sized arrays, but it's definitely going to cost a lot more than the classic Durstenfeld algorithm when you deal with huge arrays. You can find the Durstenfeld in one of the top replies to this question.
Original answer:
If you don't wish your shuffle function to mutate the source array, you can copy it to a local variable, then do the rest with a simple shuffling logic.
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source[index]);
source.splice(index, 1);
}
return result;
}
Shuffling logic: pick up a random index, then add the corresponding element to the result array and delete it from the source array copy. Repeat this action until the source array gets empty.
And if you really want it short, here's how far I could get:
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source.splice(index, 1)[0]);
}
return result;
}
Here is the EASIEST one,
function shuffle(array) {
return array.sort(() => Math.random() - 0.5);
}
for further example, you can check it here
We're still shuffling arrays in 2019, so here goes my approach, which seems to be neat and fast to me:
const src = [...'abcdefg'];
const shuffle = arr =>
[...arr].reduceRight((res,_,__,s) =>
(res.push(s.splice(0|Math.random()*s.length,1)[0]), res),[]);
console.log(shuffle(src));
.as-console-wrapper {min-height: 100%}
You can do it easily with:
// array
var fruits = ["Banana", "Orange", "Apple", "Mango"];
// random
fruits.sort(function(a, b){return 0.5 - Math.random()});
// out
console.log(fruits);
Please reference at JavaScript Sorting Arrays
A simple modification of CoolAJ86's answer that does not modify the original array:
/**
* Returns a new array whose contents are a shuffled copy of the original array.
* #param {Array} The items to shuffle.
* https://stackoverflow.com/a/2450976/1673761
* https://stackoverflow.com/a/44071316/1673761
*/
const shuffle = (array) => {
let currentIndex = array.length;
let temporaryValue;
let randomIndex;
const newArray = array.slice();
// While there remains elements to shuffle...
while (currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
// Swap it with the current element.
temporaryValue = newArray[currentIndex];
newArray[currentIndex] = newArray[randomIndex];
newArray[randomIndex] = temporaryValue;
}
return newArray;
};
For those of us who are not very gifted but have access to the wonders of lodash, there is such a thing as lodash.shuffle.
I found this useful:
const shuffle = (array: any[]) => {
return array.slice().sort(() => Math.random() - 0.5);
}
console.log(shuffle([1,2,3,4,5,6,7,8,9,10]));
// Output: [4, 3, 8, 10, 1, 7, 9, 2, 6, 5]
yet another implementation of Fisher-Yates, using strict mode:
function shuffleArray(a) {
"use strict";
var i, t, j;
for (i = a.length - 1; i > 0; i -= 1) {
t = a[i];
j = Math.floor(Math.random() * (i + 1));
a[i] = a[j];
a[j] = t;
}
return a;
}

What is most lightweight way of shuffle array in JavaScript? [duplicate]

I have an array like this:
var arr1 = ["a", "b", "c", "d"];
How can I randomize / shuffle it?
The de-facto unbiased shuffle algorithm is the Fisher-Yates (aka Knuth) Shuffle.
You can see a great visualization here (and the original post linked to this)
function shuffle(array) {
let currentIndex = array.length, randomIndex;
// While there remain elements to shuffle.
while (currentIndex != 0) {
// Pick a remaining element.
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex--;
// And swap it with the current element.
[array[currentIndex], array[randomIndex]] = [
array[randomIndex], array[currentIndex]];
}
return array;
}
// Used like so
var arr = [2, 11, 37, 42];
shuffle(arr);
console.log(arr);
Some more info about the algorithm used.
Here's a JavaScript implementation of the Durstenfeld shuffle, an optimized version of Fisher-Yates:
/* Randomize array in-place using Durstenfeld shuffle algorithm */
function shuffleArray(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
It picks a random element for each original array element, and excludes it from the next draw, like picking randomly from a deck of cards.
This clever exclusion swaps the picked element with the current one, then picks the next random element from the remainder, looping backwards for optimal efficiency, ensuring the random pick is simplified (it can always start at 0), and thereby skipping the final element.
Algorithm runtime is O(n). Note that the shuffle is done in-place so if you don't want to modify the original array, first make a copy of it with .slice(0).
EDIT: Updating to ES6 / ECMAScript 2015
The new ES6 allows us to assign two variables at once. This is especially handy when we want to swap the values of two variables, as we can do it in one line of code. Here is a shorter form of the same function, using this feature.
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
You can do it easily with map and sort:
let unshuffled = ['hello', 'a', 't', 'q', 1, 2, 3, {cats: true}]
let shuffled = unshuffled
.map(value => ({ value, sort: Math.random() }))
.sort((a, b) => a.sort - b.sort)
.map(({ value }) => value)
console.log(shuffled)
We put each element in the array in an object, and give it a random sort key
We sort using the random key
We unmap to get the original objects
You can shuffle polymorphic arrays, and the sort is as random as Math.random, which is good enough for most purposes.
Since the elements are sorted against consistent keys that are not regenerated each iteration, and each comparison pulls from the same distribution, any non-randomness in the distribution of Math.random is canceled out.
Speed
Time complexity is O(N log N), same as quick sort. Space complexity is O(N). This is not as efficient as a Fischer Yates shuffle but, in my opinion, the code is significantly shorter and more functional. If you have a large array you should certainly use Fischer Yates. If you have a small array with a few hundred items, you might do this.
Warning!
The use of this algorithm is not recommended, because it is inefficient and strongly biased; see comments. It is being left here for future reference, because the idea is not that rare.
[1,2,3,4,5,6].sort( () => .5 - Math.random() );
This https://javascript.info/array-methods#shuffle-an-array tutorial explains the differences straightforwardly.
Use the underscore.js library. The method _.shuffle() is nice for this case.
Here is an example with the method:
var _ = require("underscore");
var arr = [1,2,3,4,5,6];
// Testing _.shuffle
var testShuffle = function () {
var indexOne = 0;
var stObj = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
};
for (var i = 0; i < 1000; i++) {
arr = _.shuffle(arr);
indexOne = _.indexOf(arr, 1);
stObj[indexOne] ++;
}
console.log(stObj);
};
testShuffle();
One could (but should NOT) use it as a protoype from Array:
From ChristopheD:
Array.prototype.shuffle = function() {
var i = this.length, j, temp;
if ( i == 0 ) return this;
while ( --i ) {
j = Math.floor( Math.random() * ( i + 1 ) );
temp = this[i];
this[i] = this[j];
this[j] = temp;
}
return this;
}
NEW!
Shorter & probably *faster Fisher-Yates shuffle algorithm
it uses while---
bitwise to floor (numbers up to 10 decimal digits (32bit))
removed unecessary closures & other stuff
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*(--c+1)|0,d=a[c],a[c]=a[b],a[b]=d
}
script size (with fy as function name): 90bytes
DEMO
http://jsfiddle.net/vvpoma8w/
*faster probably on all browsers except chrome.
If you have any questions just ask.
EDIT
yes it is faster
PERFORMANCE: http://jsperf.com/fyshuffle
using the top voted functions.
EDIT
There was a calculation in excess (don't need --c+1) and noone noticed
shorter(4bytes)&faster(test it!).
function fy(a,b,c,d){//array,placeholder,placeholder,placeholder
c=a.length;while(c)b=Math.random()*c--|0,d=a[c],a[c]=a[b],a[b]=d
}
Caching somewhere else var rnd=Math.random and then use rnd() would also increase slightly the performance on big arrays.
http://jsfiddle.net/vvpoma8w/2/
Readable version (use the original version. this is slower, vars are useless, like the closures & ";", the code itself is also shorter ... maybe read this How to 'minify' Javascript code , btw you are not able to compress the following code in a javascript minifiers like the above one.)
function fisherYates( array ){
var count = array.length,
randomnumber,
temp;
while( count ){
randomnumber = Math.random() * count-- | 0;
temp = array[count];
array[count] = array[randomnumber];
array[randomnumber] = temp
}
}
Shuffle Array In place
function shuffleArr (array){
for (var i = array.length - 1; i > 0; i--) {
var rand = Math.floor(Math.random() * (i + 1));
[array[i], array[rand]] = [array[rand], array[i]]
}
}
ES6 Pure, Iterative
const getShuffledArr = arr => {
const newArr = arr.slice()
for (let i = newArr.length - 1; i > 0; i--) {
const rand = Math.floor(Math.random() * (i + 1));
[newArr[i], newArr[rand]] = [newArr[rand], newArr[i]];
}
return newArr
};
Reliability and Performance Test
Some solutions on this page aren't reliable (they only partially randomise the array). Other solutions are significantly less efficient. With testShuffleArrayFun (see below) we can test array shuffling functions for reliability and performance.
function testShuffleArrayFun(getShuffledArrayFun){
const arr = [0,1,2,3,4,5,6,7,8,9]
var countArr = arr.map(el=>{
return arr.map(
el=> 0
)
}) // For each possible position in the shuffledArr and for
// each possible value, we'll create a counter.
const t0 = performance.now()
const n = 1000000
for (var i=0 ; i<n ; i++){
// We'll call getShuffledArrayFun n times.
// And for each iteration, we'll increment the counter.
var shuffledArr = getShuffledArrayFun(arr)
shuffledArr.forEach(
(value,key)=>{countArr[key][value]++}
)
}
const t1 = performance.now()
console.log(`Count Values in position`)
console.table(countArr)
const frequencyArr = countArr.map( positionArr => (
positionArr.map(
count => count/n
)
))
console.log("Frequency of value in position")
console.table(frequencyArr)
console.log(`total time: ${t1-t0}`)
}
Other Solutions
Other solutions just for fun.
ES6 Pure, Recursive
const getShuffledArr = arr => {
if (arr.length === 1) {return arr};
const rand = Math.floor(Math.random() * arr.length);
return [arr[rand], ...getShuffledArr(arr.filter((_, i) => i != rand))];
};
ES6 Pure using array.map
function getShuffledArr (arr){
return [...arr].map( (_, i, arrCopy) => {
var rand = i + ( Math.floor( Math.random() * (arrCopy.length - i) ) );
[arrCopy[rand], arrCopy[i]] = [arrCopy[i], arrCopy[rand]]
return arrCopy[i]
})
}
ES6 Pure using array.reduce
function getShuffledArr (arr){
return arr.reduce(
(newArr, _, i) => {
var rand = i + ( Math.floor( Math.random() * (newArr.length - i) ) );
[newArr[rand], newArr[i]] = [newArr[i], newArr[rand]]
return newArr
}, [...arr]
)
}
Edit: This answer is incorrect
See comments and https://stackoverflow.com/a/18650169/28234. It is being left here for reference because the idea isn't rare.
A very simple way for small arrays is simply this:
const someArray = [1, 2, 3, 4, 5];
someArray.sort(() => Math.random() - 0.5);
It's probably not very efficient, but for small arrays this works just fine. Here's an example so you can see how random (or not) it is, and whether it fits your usecase or not.
const resultsEl = document.querySelector('#results');
const buttonEl = document.querySelector('#trigger');
const generateArrayAndRandomize = () => {
const someArray = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
someArray.sort(() => Math.random() - 0.5);
return someArray;
};
const renderResultsToDom = (results, el) => {
el.innerHTML = results.join(' ');
};
buttonEl.addEventListener('click', () => renderResultsToDom(generateArrayAndRandomize(), resultsEl));
<h1>Randomize!</h1>
<button id="trigger">Generate</button>
<p id="results">0 1 2 3 4 5 6 7 8 9</p>
Adding to #Laurens Holsts answer. This is 50% compressed.
function shuffleArray(d) {
for (var c = d.length - 1; c > 0; c--) {
var b = Math.floor(Math.random() * (c + 1));
var a = d[c];
d[c] = d[b];
d[b] = a;
}
return d
};
I found this variant hanging out in the "deleted by author" answers on a duplicate of this question. Unlike some of the other answers that have many upvotes already, this is:
Actually random
Not in-place (hence the shuffled name rather than shuffle)
Not already present here with multiple variants
Here's a jsfiddle showing it in use.
Array.prototype.shuffled = function() {
return this.map(function(n){ return [Math.random(), n] })
.sort().map(function(n){ return n[1] });
}
With ES2015 you can use this one:
Array.prototype.shuffle = function() {
let m = this.length, i;
while (m) {
i = (Math.random() * m--) >>> 0;
[this[m], this[i]] = [this[i], this[m]]
}
return this;
}
Usage:
[1, 2, 3, 4, 5, 6, 7].shuffle();
Warning!
Using this answer for randomizing large arrays, cryptography, or any other application requiring true randomness is not recommended, due to its bias and inefficiency. Elements position is only semi-randomized, and they will tend to stay closer to their original position. See https://stackoverflow.com/a/18650169/28234.
You can arbitrarily decide whether to return 1 : -1 by using Math.random:
[1, 2, 3, 4].sort(() => (Math.random() > 0.5) ? 1 : -1)
Try running the following example:
const array = [1, 2, 3, 4];
// Based on the value returned by Math.Random,
// the decision is arbitrarily made whether to return 1 : -1
const shuffeled = array.sort(() => {
const randomTrueOrFalse = Math.random() > 0.5;
return randomTrueOrFalse ? 1 : -1
});
console.log(shuffeled);
//one line solution
shuffle = (array) => array.sort(() => Math.random() - 0.5);
//Demo
let arr = [1, 2, 3];
shuffle(arr);
alert(arr);
https://javascript.info/task/shuffle
Math.random() - 0.5 is a random number that may be positive or
negative, so the sorting function reorders elements randomly.
benchmarks
Let's first see the results then we'll look at each implementation of shuffle below -
splice is slow
Any solution using splice or shift in a loop is going to be very slow. Which is especially noticeable when we increase the size of the array. In a naive algorithm we -
get a rand position, i, in the input array, t
add t[i] to the output
splice position i from array t
To exaggerate the slow effect, we'll demonstrate this on an array of one million elements. The following script almost 30 seconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
yield r[i] // 2
r.splice(i, 1) // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via splice")
const result = shuffle(bigarray)
console.timeEnd("shuffle via splice")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via splice";
font-weight: bold;
display: block;
}
pop is fast
The trick is not to splice and instead use the super efficient pop. To do this, in place of the typical splice call, you -
select the position to splice, i
swap t[i] with the last element, t[t.length - 1]
add t.pop() to the result
Now we can shuffle one million elements in less than 100 milliseconds -
const shuffle = t =>
Array.from(sample(t, t.length))
function* sample(t, n)
{ let r = Array.from(t)
while (n > 0 && r.length)
{ const i = rand(r.length) // 1
swap(r, i, r.length - 1) // 2
yield r.pop() // 3
n = n - 1
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle via pop")
const result = shuffle(bigarray)
console.timeEnd("shuffle via pop")
document.body.textContent = JSON.stringify(result, null, 2)
body::before {
content: "1 million elements via pop";
font-weight: bold;
display: block;
}
even faster
The two implementations of shuffle above produce a new output array. The input array is not modified. This is my preferred way of working however you can increase the speed even more by shuffling in place.
Below shuffle one million elements in less than 10 milliseconds -
function shuffle (t)
{ let last = t.length
let n
while (last > 0)
{ n = rand(last)
swap(t, n, --last)
}
}
const rand = n =>
0 | Math.random() * n
function swap (t, i, j)
{ let q = t[i]
t[i] = t[j]
t[j] = q
return t
}
const size = 1e6
const bigarray = Array.from(Array(size), (_,i) => i)
console.time("shuffle in place")
shuffle(bigarray)
console.timeEnd("shuffle in place")
document.body.textContent = JSON.stringify(bigarray, null, 2)
body::before {
content: "1 million elements in place";
font-weight: bold;
display: block;
}
var shuffle = function(array) {
temp = [];
originalLength = array.length;
for (var i = 0; i < originalLength; i++) {
temp.push(array.splice(Math.floor(Math.random()*array.length),1));
}
return temp;
};
A recursive solution:
function shuffle(a,b){
return a.length==0?b:function(c){
return shuffle(a,(b||[]).concat(c));
}(a.splice(Math.floor(Math.random()*a.length),1));
};
Fisher-Yates shuffle in javascript. I'm posting this here because the use of two utility functions (swap and randInt) clarifies the algorithm compared to the other answers here.
function swap(arr, i, j) {
// swaps two elements of an array in place
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function randInt(max) {
// returns random integer between 0 and max-1 inclusive.
return Math.floor(Math.random()*max);
}
function shuffle(arr) {
// For each slot in the array (starting at the end),
// pick an element randomly from the unplaced elements and
// place it in the slot, exchanging places with the
// element in the slot.
for(var slot = arr.length - 1; slot > 0; slot--){
var element = randInt(slot+1);
swap(arr, element, slot);
}
}
Modern short inline solution using ES6 features:
['a','b','c','d'].map(x => [Math.random(), x]).sort(([a], [b]) => a - b).map(([_, x]) => x);
(for educational purposes)
Using Fisher-Yates shuffle algorithm and ES6:
// Original array
let array = ['a', 'b', 'c', 'd'];
// Create a copy of the original array to be randomized
let shuffle = [...array];
// Defining function returning random value from i to N
const getRandomValue = (i, N) => Math.floor(Math.random() * (N - i) + i);
// Shuffle a pair of two elements at random position j
shuffle.forEach( (elem, i, arr, j = getRandomValue(i, arr.length)) => [arr[i], arr[j]] = [arr[j], arr[i]] );
console.log(shuffle);
// ['d', 'a', 'b', 'c']
First of all, have a look here for a great visual comparison of different sorting methods in javascript.
Secondly, if you have a quick look at the link above you'll find that the random order sort seems to perform relatively well compared to the other methods, while being extremely easy and fast to implement as shown below:
function shuffle(array) {
var random = array.map(Math.random);
array.sort(function(a, b) {
return random[array.indexOf(a)] - random[array.indexOf(b)];
});
}
Edit: as pointed out by #gregers, the compare function is called with values rather than indices, which is why you need to use indexOf. Note that this change makes the code less suitable for larger arrays as indexOf runs in O(n) time.
All the other answers are based on Math.random() which is fast but not suitable for cryptgraphic level randomization.
The below code is using the well known Fisher-Yates algorithm while utilizing Web Cryptography API for cryptographic level of randomization.
var d = [1,2,3,4,5,6,7,8,9,10];
function shuffle(a) {
var x, t, r = new Uint32Array(1);
for (var i = 0, c = a.length - 1, m = a.length; i < c; i++, m--) {
crypto.getRandomValues(r);
x = Math.floor(r / 65536 / 65536 * m) + i;
t = a [i], a [i] = a [x], a [x] = t;
}
return a;
}
console.log(shuffle(d));
a shuffle function that doesn't change the source array
Update: Here I'm suggesting a relatively simple (not from complexity perspective) and short algorithm that will do just fine with small sized arrays, but it's definitely going to cost a lot more than the classic Durstenfeld algorithm when you deal with huge arrays. You can find the Durstenfeld in one of the top replies to this question.
Original answer:
If you don't wish your shuffle function to mutate the source array, you can copy it to a local variable, then do the rest with a simple shuffling logic.
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source[index]);
source.splice(index, 1);
}
return result;
}
Shuffling logic: pick up a random index, then add the corresponding element to the result array and delete it from the source array copy. Repeat this action until the source array gets empty.
And if you really want it short, here's how far I could get:
function shuffle(array) {
var result = [], source = array.concat([]);
while (source.length) {
let index = Math.floor(Math.random() * source.length);
result.push(source.splice(index, 1)[0]);
}
return result;
}
Here is the EASIEST one,
function shuffle(array) {
return array.sort(() => Math.random() - 0.5);
}
for further example, you can check it here
We're still shuffling arrays in 2019, so here goes my approach, which seems to be neat and fast to me:
const src = [...'abcdefg'];
const shuffle = arr =>
[...arr].reduceRight((res,_,__,s) =>
(res.push(s.splice(0|Math.random()*s.length,1)[0]), res),[]);
console.log(shuffle(src));
.as-console-wrapper {min-height: 100%}
You can do it easily with:
// array
var fruits = ["Banana", "Orange", "Apple", "Mango"];
// random
fruits.sort(function(a, b){return 0.5 - Math.random()});
// out
console.log(fruits);
Please reference at JavaScript Sorting Arrays
A simple modification of CoolAJ86's answer that does not modify the original array:
/**
* Returns a new array whose contents are a shuffled copy of the original array.
* #param {Array} The items to shuffle.
* https://stackoverflow.com/a/2450976/1673761
* https://stackoverflow.com/a/44071316/1673761
*/
const shuffle = (array) => {
let currentIndex = array.length;
let temporaryValue;
let randomIndex;
const newArray = array.slice();
// While there remains elements to shuffle...
while (currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
// Swap it with the current element.
temporaryValue = newArray[currentIndex];
newArray[currentIndex] = newArray[randomIndex];
newArray[randomIndex] = temporaryValue;
}
return newArray;
};
For those of us who are not very gifted but have access to the wonders of lodash, there is such a thing as lodash.shuffle.
I found this useful:
const shuffle = (array: any[]) => {
return array.slice().sort(() => Math.random() - 0.5);
}
console.log(shuffle([1,2,3,4,5,6,7,8,9,10]));
// Output: [4, 3, 8, 10, 1, 7, 9, 2, 6, 5]
yet another implementation of Fisher-Yates, using strict mode:
function shuffleArray(a) {
"use strict";
var i, t, j;
for (i = a.length - 1; i > 0; i -= 1) {
t = a[i];
j = Math.floor(Math.random() * (i + 1));
a[i] = a[j];
a[j] = t;
}
return a;
}

Categories

Resources