To see the problem in action, see this jsbin. Clicking on the button triggers the buttonHandler(), which looks like this:
function buttonHandler() {
var elm = document.getElementById("progress");
elm.innerHTML = "thinking";
longPrimeCalc();
}
You would expect that this code changes the text of the div to "thinking", and then runs longPrimeCalc(), an arithmetic function that takes a few seconds to complete. However, this is not what happens. Instead, "longPrimeCalc" completes first, and then the text is updated to "thinking" after it's done running, as if the order of the two lines of code were reversed.
It appears that the browser does not run "innerHTML" code synchronously, but instead creates a new thread for it that executes at its own leisure.
My questions:
What is happening under the hood that is leading to this behavior?
How can I get the browser to behave the way I would expect, that is, force it to update the "innerHTML" before it executes "longPrimeCalc()"?
I tested this in the latest version of chrome.
Your surmise is incorrect. The .innerHTML update does complete synchronously (and the browser most definitely does not create a new thread). The browser simply does not bother to update the window until your code is finished. If you were to interrogate the DOM in some way that required the view to be updated, then the browser would have no choice.
For example, right after you set the innerHTML, add this line:
var sz = elm.clientHeight; // whoops that's not it; hold on ...
edit — I might figure out a way to trick the browser, or it might be impossible; it's certainly true that launching your long computation in a separate event loop will make it work:
setTimeout(longPrimeCalc, 10); // not 0, at least not with Firefox!
A good lesson here is that browsers try hard not to do pointless re-flows of the page layout. If your code had gone off on a prime number vacation and then come back and updated the innerHTML again, the browser would have saved some pointless work. Even if it's not painting an updated layout, browsers still have to figure out what's happened to the DOM in order to provide consistent answers when things like element sizes and positions are interrogated.
I think the way it works is that the currently running code completes first, then all the page updates are done. In this case, calling longPrimeCalc causes more code to be executed, and only when it is done does the page update change.
To fix this you have to have the currently running code terminate, then start the calculation in another context. You can do that with setTimeout. I'm not sure if there's any other way besides that.
Here is a jsfiddle showing the behavior. You don't have to pass a callback to longPrimeCalc, you just have to create another function which does what you want with the return value. Essentially you want to defer the calculation to another "thread" of execution. Writing the code this way makes it obvious what you're doing (Updated again to make it potentially nicer):
function defer(f, callback) {
var proc = function() {
result = f();
if (callback) {
callback(result);
}
}
setTimeout(proc, 50);
}
function buttonHandler() {
var elm = document.getElementById("progress");
elm.innerHTML = "thinking...";
defer(longPrimeCalc, function (isPrime) {
if (isPrime) {
elm.innerHTML = "It was a prime!";
}
else {
elm.innerHTML = "It was not a prime =(";
}
});
}
Related
I was under the impression that all DOM manipulations were synchronous.
However, this code is not running as I expect it to.
RecordManager.prototype._instantiateNewRecord = function(node) {
this.beginLoad();
var new_record = new Record(node.data.fields, this);
this.endLoad();
};
RecordManager.prototype.beginLoad = function() {
$(this.loader).removeClass('hidden');
};
RecordManager.prototype.endLoad = function() {
$(this.loader).addClass('hidden');
};
The Record constructor function is very large and it involves instantiating a whole bunch of Field objects, each of which instantiates some other objects of their own.
This results in a 1-2 second delay and I want to have a loading icon during this delay, so it doesn't just look like the page froze.
I expect the flow of events to be:
show loading icon
perform record instantiation operation
hide loading icon
Except the flow ends up being:
perform record instantiation operation
show loading icon
hide loading icon
So, you never even see the loading icon at all, I only know its loading briefly because the updates in the chrome development tools DOM viewer lag behind a little bit.
Should I be expecting this behavior from my code? If so, why?
Yes, this is to be expected. Although the DOM may have updated, until the browser has a chance to repaint, you won't see it. The repaint will get queued the same way as all other things get queued in the browser (ie it won't happen until the current block of JavaScript has finished executing), though pausing in a debugger will generally allow it to happen.
In your case, you can fix it using setTimeout with an immediate timeout:
RecordManager.prototype._instantiateNewRecord = function(node) {
this.beginLoad();
setTimeout(function() {
var new_record = new Record(node.data.fields, this);
this.endLoad();
}, 0);
};
This will allow the repaint to happen before executing the next part of your code.
JavaScript is always synchronous. It mimics multi-threaded behavior when it comes to ajax calls and timers, but when the callback gets returned, it will be blocking as usual.
That said, you most likely have a setTimeout in that constructor somewhere (or a method you're using does). Even if it's setTimeout(fnc, 0).
I'm prerendering my HTML pages for the search engines bots via PhantomJS through Selenium, so that they can see the fully loaded content. Currently, after PhantomJS reached the page, I'm waiting 5 seconds so that I'm sure everything is loaded.
Instead of waiting those 5 seconds every time, one solution I contemplate is to wait until an attribute html-ready on the <body /> tag is set to true:
<html ng-app>
<head>...</head>
<body html-ready="{{htmlReady}}">
...
</body>
</html>
.controller("AnyController", function($scope, $rootScope, AnyService) {
$rootScope.htmlReady = false;
AnyService.anyLongAction(function(anyData) {
$scope.anyData = anyData;
$rootScope.htmlReady = true;
});
})
The question is: will the html-ready attribute always be set to true after any view update has been done (e.g. displaying the anyData)? In other words, is it possible that during a laps, the html-ready attribute is true while the page is not fully loaded yet? If yes, how can it be handled?
It should be done after the digest, thus it has more chances to work as expected.
AnyService.anyLongAction(function(anyData) {
$scope.anyData = anyData;
$timeout(function () {
$rootScope.htmlReady = true;
}, 0, false);
});
But it is useless in terms of the app. You have to watch for changes in every single place, Angular doesn't offer anything to make the task easier.
Fortunately, you are free to abstract from Angular and keep it simple.
var ignoredElements = [];
ignoredElements = ignoredElements.concat($('.continuously-updating-widget').toArray());
var delay = 200; // add to taste
var timeout;
var ready = function () {
$('body').off('DOMSubtreeModified');
clearTimeout(timeoutLimit);
alert('ready');
};
$('body').on('DOMSubtreeModified', function (e) {
if (ignoredElements.indexOf(e.target) < 0) {
clearTimeout(timeout);
timeout = setTimeout(ready, delay);
}
});
var timeoutLimit = setTimeout(ready, 5000);
Feel free to angularify it if needed, though it isn't the production code anyway.
It is a good idea to put the handler into throttle wrapper function (the event will spam all the way). If you use remote requests on the page that can potentially exceed timeout delay, it may be better to combine this approach with several promises from async services and resolve them with $q.all. Still, much better than looking after every single directive and service.
DOMSubtreeModified is considered to be obsolete (it never was really acknowledged, MutationObserver is recommended instead), but current versions of FF and Chrome support it, and it should be ok for Selenium.
Short answer
No. It isn't guaranteed that your markup will be completely rendered when html-ready is set.
Long answer
To the best of my knowledge it's not possible to accurately determine when Angular has finished updating the DOM after the model changed. In general it happens very fast and it doesn't take more than a few cycles to finish, but that's not always the case.
Correctly detecting when a page has finished loading/rendering is actually quite a challenge, and if you take a look at the source code of specialized tools, like prerender, you'll see that they use several different checks in order to try to decide whether a page is ready or not. And even so it doesn't work 100% of the time (Phantom may crash, a request may take longer than usual to complete, and so on).
If you really want to come up with your own solution for this problem, I suggest that you take a look at prerender's source code (or another similar project) to get some inspiration.
This is a very simple use case. Show an element (a loader), run some heavy calculations that eat up the thread and hide the loader when done. I am unable to get the loader to actually show up prior to starting the long running process. It ends up showing and hiding after the long running process. Is adding css classes an async process?
See my jsbin here:
http://jsbin.com/voreximapewo/12/edit?html,css,js,output
To explain what a few others have pointed out: This is due to how the browser queues the things that it needs to do (i.e. run JS, respond to UI events, update/repaint how the page looks etc.). When a JS function runs, it prevents all those other things from happening until the function returns.
Take for example:
function work() {
var arr = [];
for (var i = 0; i < 10000; i++) {
arr.push(i);
arr.join(',');
}
document.getElementsByTagName('div')[0].innerHTML = "done";
}
document.getElementsByTagName('button')[0].onclick = function() {
document.getElementsByTagName('div')[0].innerHTML = "thinking...";
work();
};
(http://jsfiddle.net/7bpzuLmp/)
Clicking the button here will change the innerHTML of the div, and then call work, which should take a second or two. And although the div's innerHTML has changed, the browser doesn't have chance to update how the actual page looks until the event handler has returned, which means waiting for work to finish. But by that time, the div's innerHTML has changed again, so that when the browser does get chance to repaint the page, it simply displays 'done' without displaying 'thinking...' at all.
We can, however, do this:
document.getElementsByTagName('button')[0].onclick = function() {
document.getElementsByTagName('div')[0].innerHTML = "thinking...";
setTimeout(work, 1);
};
(http://jsfiddle.net/7bpzuLmp/1/)
setTimeout works by putting a call to a given function at the back of the browser's queue after the given time has elapsed. The fact that it's placed at the back of the queue means that it'll be called after the browser has repainted the page (since the previous HTML changing statement would've queued up a repaint before setTimeout added work to the queue), and therefore the browser has had chance to display 'thinking...' before starting the time consuming work.
So, basically, use setTimeout.
let the current frame render and start the process after setTimeout(1).
alternatively you could query a property and force a repaint like this: element.clientWidth.
More as a what is possible answer you can make your calculations on a new thread using HTML5 Web Workers
This will not only make your loading icon appear but also keep it loading.
More info about web workers : http://www.html5rocks.com/en/tutorials/workers/basics/
When looking to improve a page's performance, one technique I haven't heard mentioned before is using setTimeout to prevent javascript from holding up the rendering of a page.
For example, imagine we have a particularly time-consuming piece of jQuery inline with the html:
$('input').click(function () {
// Do stuff
});
If this code is inline, we are holding up the perceived completion of the page while the piece of jquery is busy attaching a click handler to every input on the page.
Would it be wise to spawn a new thread instead:
setTimeout(function() {
$('input').click(function () {
// Do stuff
})
}, 100);
The only downside I can see is that there is now a greater chance the user clicks on an element before the click handler is attached. However, this risk may be acceptable and we have a degree of this risk anyway, even without setTimeout.
Am I right, or am I wrong?
The actual technique is to use setTimeout with a time of 0.
This works because JavaScript is single-threaded. A timeout doesn't cause the browser to spawn another thread, nor does it guarantee that the code will execute in the specified time. However, the code will be executed when both:
The specified time has elapsed.
Execution control is handed back to the browser.
Therefore calling setTimeout with a time of 0 can be considered as temporarily yielding to the browser.
This means if you have long running code, you can simulate multi-threading by regularly yielding with a setTimeout. Your code may look something like this:
var batches = [...]; // Some array
var currentBatch = 0;
// Start long-running code, whenever browser is ready
setTimeout(doBatch, 0);
function doBatch() {
if (currentBatch < batches.length) {
// Do stuff with batches[currentBatch]
currentBatch++;
setTimeout(doBatch, 0);
}
}
Note: While it's useful to know this technique in some scenarios, I highly doubt you will need it in the situation you describe (assigning event handlers on DOM ready). If performance is indeed an issue, I would suggest looking into ways of improving the real performance by tweaking the selector.
For example if you only have one form on the page which contains <input>s, then give the <form> an ID, and use $('#someId input').
setTimeout() can be used to improve the "perceived" load time -- but not the way you've shown it. Using setTimeout() does not cause your code to run in a separate thread. Instead setTimeout() simply yields the thread back to the browser for (approximately) the specified amount of time. When it's time for your function to run, the browser will yield the thread back to the javascript engine. In javascript there is never more than one thread (unless you're using something like "Web Workers").
So, if you want to use setTimeout() to improve performance during a computation-intensive task, you must break that task into smaller chunks, and execute them in-order, chaining them together using setTimeout(). Something like this works well:
function runTasks( tasks, idx ) {
idx = idx || 0;
tasks[idx++]();
if( idx < tasks.length ) {
setTimeout( function(){ runTasks(tasks, idx); },1);
}
}
runTasks([
function() {
/* do first part */
},
function() {
/* do next part */
},
function() {
/* do final part */
}
]);
Note:
The functions are executed in order. There can be as many as you need.
When the first function returns, the next one is called via setTimeout().
The timeout value I've used is 1. This is sufficient to cause a yield, and the browser will take the thread if it needs it, or allow the next task to proceed if there's time. You can experiment with other values if you feel the need, but usually 1 is what you want for these purposes.
You are correct, there is a greater chance of a "missed" click, but with a low timeout value, its pretty unlikely.
i'm trying to get my script to wait for user input (click of a button) before continuing, this is v feasible in other languages, but seems impossible in js. basically, i want the user to select an option within a given time frame, if the user selects the wrong option, they're told..script then conts...otherwise, if after a certain amount of time theres no response...script just continues again sowing them the correct ans, but there seems to be nothing in js to make the script wait for that user input! ive tried a while loop, but that is just a big no no in js, ive used settimeout but has no real effect because the script just continues like normal then performs an action after x amount of time, ive tried setting variables and letting the script cont only if it is of a particular value, which is set only if the user clicks...eg var proceed=false, this is only set to true if the user clicks a button, but it still doesn't work... ive tried sooo many other solutions but nothing actually seems to be working. i like the idea of a while loop, because it doeas exactly what i want it to so, but if completly freezes my browser, is there a more effecient type of loop that will will peroform in the same manner with crashing my browser?
heres my code below that compltely freezes my computer. this method is called within a for loop which calls another method after it.
function getUserResp(){
$("#countdown").countdown({seconds: 15});
setTimeout("proceed=true", 16000);
$("#ans1").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
$("#ans2").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
$("#ans3").click(function(){
ansStr=$(this).text();
checkAns(ansStr);
});
would like something like this.....or just some sort of loop to make the script wait before going ahead so at least it gives the user some time to respond rather than running straight though!
do{
$(".ans").mouseover(function(){
$(this).addClass("hilite").fadeIn(800);
});
$(".ans").mouseout(function(){
$(this).removeClass("hilite");
});
}while(proceed==false);
}
You're doing it wrong.
JavaScript in the browser uses an event-driven model. There's no main function, just callbacks that are called when an event happens (such as document ready or anchor clicked). If you want something to happen after a user clicks something, then put a listener on that thing.
What you've done just keeps adding an event listener every time round the loop.
If you want to wait for user input then just don't do anything - the browser waits for user input (it's got an internal event loop). The worst thing you can do is try to reimplement your own event loop on top of the browser's.
You need to learn JavaScript. Trying to write JavaScript like you would another language only leads to pain and suffering. Seriously.
Douglas Crockford said it best:
JavaScript is a language that most people don’t bother to learn before they use. You can’t do that with any other language, and you shouldn’t want to, and you shouldn’t do that with this language either. Programming is a serious business, and you should have good knowledge about what you’re doing, but most people feel that they ought to be able to program in this language without any knowledge at all, and it still works. It’s because the language has enormous expressive power, and that’s not by accident.
You can't block the Javascript from running in the same way that you can in some other imperative languages. There's only one thread for Javascript in the browser, so if you hang it in a loop, nothing else can happen.
You must use asynchronous, event-driven programming. Setting a click handler (or whatever) combined with a timeout is the right way to start. Start a 15 second setTimeout. Inside the click handler for the answers, cancel the timeout. This way the timeout's handler only happens if the user doesn't click an answer.
For example:
var mytimeout = setTimeout(15000, function() {
// This is an anonymous function that will be called when the timer goes off.
alert("You didn't answer in time.");
// Remove the answer so the user can't click it anymore, etc...
$('#ans').hide();
});
$('#ans').click(function() {
// Clear the timeout, so it will never fire the function above.
clearTimeout(mytimeout);
alert("You picked an answer!");
});
See how the code must be structured such that it's event-driven. There's no way to structure it to say "do this thing, and wait here for an answer."
You're looking at client-side javascript as if it wasn't already in an event-driven loop. All you need to do is wait for the appropriate event to happen, and if it hasn't happened yet, continue to wait, or else perform some default action.
You don't need to:
create main loop: // All
wait for user input // Of
timer = start_timer() // This
// Is done for you
if [user has input data]:
process_data()
else if [timer > allowed_time]:
process_no_data()
else:
wait() // By the Browser
You only need the middle part. All you need to do is (Actual javascript follows, not pseudo-code):
// First, store all of the answer sections,
// so you're not grabbing them every time
// you need to check them.
var answers = {};
answers.ans1 = $("#ans1");
answers.ans2 = $("#ans2");
answers.ans3 = $("#ans3");
// This is a flag. We'll use it to check whether we:
// A. Have waited for 16 seconds
// B. Have correct user input
var clear_to_proceed = false;
var timer_id;
// Now we need to set up a function to check the answers.
function check_answers() {
if ( ! clear_to_proceed ) {
clear_to_proceed = checkAns(answers.ans1.text());
clear_to_proceed = checkAns(answers.ans2.text());
clear_to_proceed = checkAns(answers.ans3.text());
// I assume checkAns returns
// true if the answer is correct
// and false if it is wrong
}
if ( clear_to_proceed ) {
clearTimeout(timer_id);
return true; // Or do whatever needs be done,
// as the client has answered correctly
} else {
// If we haven't set a timer yet, set one
if ( typeof timer_id === 'undefined' ) {
timer_id = setTimeout(function(){
// After 16 seconds have passed we'll check their
// answers one more time and then force the default.
check_answers();
clear_to_proceed = true;
check_answers();
}, 16000);
}
return false; // We're just waiting for now.
}
}
// Finally, we check the answers any time the user interact
// with the answer elements.
$("#ans1,#ans2,#ans3").bind("focus blur", function() {
check_answers();
});