reusable javascript objects, prototypes and scope - javascript

MyGlobalObject;
function TheFunctionICanUseRightAwaySingleForAllInstansesAndWithoutInstanse() {
function() {
alert('NO CONSTRUCTOR WAS CALLED');
}
};
The Long-named function must be callable from MyGlobalObject, which in turn must be available as a global (to window) variable in all times after script was loaded. It should support extensibility in accordance with latest standards.
I'm at architectural dilemma of how to built JS base for an application (almost 100% JS).
We need an object i.e. window.MyObject (like a module, like jQuery) so
It can be created with
VAR1
var MyGlobalObjConstructor = function(){
this.GlobalFunctionInObject = function(){
alert('called with MyGlobalObj.GlobalFunctionInObject()');
}
};
window.MyGlobalObj = new MyGlobalObjConstructor();
Is MyGlobalObj extensible? Can I create child objects, which will inherit current state of MyGlobalObj (extended functions/properties MyGlobalObj.NewFunc e.g.)? What is the main difference between using prototype (VAR3)?
By GlobaldFunction I mean single instance for all initialized/instantiated (possibly instantializable) instances..
Or with
VAR2
var MyGlobalObj = {
GlobalFunctionInObject: function...
GlobalFunctionInObject2: function...
};
MyGlobalObj.GlobalFunctionInObject();
// here I lose all hierarchy elements, no prototype,
// can I use GlobalFunctionInObject2 in GlobalFunctionInObject?
Or with
VAR3
var MyGlobalConstuctor = function(){} // already 'well-formed' object
MyGlobalConstuctor.prototype.GlobalFunctionInObject = function...
};
var MyGlobalObj = new MyGlobalConstuctor();
// so I'm sceptical to NEW, because I have ALREADY wrote my functions
// which I expect to be in memory, single instance of each of them,
// so creating MyObject2,3,4 with NEW MyGC() makes no sense to me.
// DO I REALLY HAVE TO USE "MyGlobalConstuctor.prototype." FOR EACH FUNCTION?!!!!
What's the difference defining MyGlobalObj as a function and as an object (result of func or VAR2)?
OR VAR4?
I see in Chrome Debugger both prototype and __proto__ special fields. I've read that that's OK, but why are they not saved in a single prototype?
So, what is the correct/optimal way to implement window.MyObject, so one could MyObject.MyFunction(); What are the differences (pro/contra) of variants 1 2 and 3?

Variation 1 - Mixin
function SomeType() {
var priv = "I'm private";
this.publ = "I'm public";
this.action = function() {
return priv + this.publ;
};
}
var obj = new SomeType();
With this method you are creating a new object every time you call new SomeType(), creating all its methods and adding all this method to the new object. Every time you create an object.
Pros
It looks like classical inheritance so it's easy to understand to Java-C#-C++-etc people.
It can have private variables per instance since you have one function closure per each object you create
It allows multiple inheritance, also known as Twitter-mixins or functional mixins
obj instanceof SomeType will return true
Cons
It consumes more memory as more objects you create because with each object you are creating a new closure and creating each of it's methods again.
Private properties are private, not protected, subtypes can't access them
No easy way to know if a object has some Type as superclass.
Inheritance
function SubType() {
SomeType.call(this);
this.newMethod = function() {
// can't access priv
return this.publ;
};
}
var child = new SubType();
child instanceof SomeType will return false there is no other way to know if child has SomeType methods than look if it has them one by one.
Variation 2 - Object literal with prototyping
var obj = {
publ: "I'm public",
_convention: "I'm public too, but please don't touch me!",
someMethod: function() {
return this.publ + this._convention;
}
};
In this case you are creating a single object. If you are going to need only one instance of this type it can be the best solution.
Pros
It's quick and easy to understand.
Performant
Cons
No privacy, every property is public.
Inheritance
You can inherit a object prototyping it.
var child = Object.create(obj);
child.otherMethod = function() {
return this._convention + this.publ;
};
If you are on a old browser you will need to garantee Object.create works:
if (!Object.create) {
Object.create = function(obj) {
function tmp() { }
tmp.prototype = obj;
return new tmp;
};
}
To know if a object is a prototype of another you can use
obj.isPrototypeOf(child); // true
Variation 3 - Constructor pattern
UPDATE: This is the pattern ES6 classes are sugar syntax of. If you use ES6 classes you are following this pattern under the hood.
class SomeType {
constructor() {
// REALLY important to declare every non-function property here
this.publ = "I'm public";
this._convention = "I'm public too, but please don't touch me!";
}
someMethod() {
return this.publ + this._convention;
}
}
class SubType extends SomeType {
constructor() {
super(/* parent constructor parameters here */);
this.otherValue = 'Hi';
}
otherMethod() {
return this._convention + this.publ + this.otherValue;
}
}
function SomeType() {
// REALLY important to declare every non-function property here
this.publ = "I'm public";
this._convention = "I'm public too, but please don't touch me!";
}
SomeType.prototype.someMethod = function() {
return this.publ + this._convention;
};
var obj = new SomeType();
You can re-assign the prototype insteadd of adding each method if you are not inheriting and remember to re-assign the constructor property:
SomeType.prototype = {
constructor: SomeType,
someMethod = function() {
return this.publ + this._convention;
}
};
Or use _.extend or $.extend if you have underscore or jquery in your page
_.extend(SomeType.prototype, {
someMethod = function() {
return this.publ + this._convention;
}
};
The new keyword under the hood simply does this:
function doNew(Constructor) {
var instance = Object.create(Constructor.prototype);
instance.constructor();
return instance;
}
var obj = doNew(SomeType);
What you have is a function than has no methods; it just has a prototype property with a list of functions, the new operator means to create a new object and use this function's prototype (Object.create) and constructor property as initializer.
Pros
Performant
Prototype chain will allow you to know if a object inherits from some type
Cons
Two-step inheritance
Inheritance
function SubType() {
// Step 1, exactly as Variation 1
// This inherits the non-function properties
SomeType.call(this);
this.otherValue = 'Hi';
}
// Step 2, this inherits the methods
SubType.prototype = Object.create(SomeType.prototype);
SubType.prototype.otherMethod = function() {
return this._convention + this.publ + this.otherValue;
};
var child = new SubType();
You may think it looks like a super-set of Variation 2... and you'll be right. It's like variation 2 but with a initializer function (the constructor);
child instanceof SubType and child instanceof SomeType will return both true
Curiosity: Under the hood instanceof operator does is
function isInstanceOf(obj, Type) {
return Type.prototype.isPrototypeOf(obj);
}
Variation 4 - Overwrite __proto__
When you do Object.create(obj) under the hood it does
function fakeCreate(obj) {
var child = {};
child.__proto__ = obj;
return child;
}
var child = fakeCreate(obj);
The __proto__ property modifies directly the object's hidden [Prototype] property. As this can break JavaScript behaviour, it's not standard. And the standard way is preferred (Object.create).
Pros
Quick and performant
Cons
Non-standard
Dangerous; you can't have a hashmap since the __proto__ key can change the object's prototype
Inheritance
var child = { __proto__: obj };
obj.isPrototypeOf(child); // true
Comment questions
1. var1: what happens in SomeType.call(this)? Is 'call' special function?
Oh, yes, functions are objects so they have methods, I will mention three: .call(), .apply() and .bind()
When you use .call() on a function, you can pass one extra argument, the context, the value of this inside the function, for example:
var obj = {
test: function(arg1, arg2) {
console.log(this);
console.log(arg1);
console.log(arg2);
}
};
// These two ways to invoke the function are equivalent
obj.test('hi', 'lol');
// If we call fn('hi', 'lol') it will receive "window" as "this" so we have to use call.
var fn = obj.test;
fn.call(obj, 'hi', 'lol');
So when we do SomeType.call(this) we are passing the object this to function SomeCall, as you remember this function will add methods to object this.
2. var3: With your "REALLY define properties" do you mean if I use them in functions? Is it a convention? Because getting this.newProperty without it being defined at the same level with other member functions is not a problem.
I mean any property your object will have that is not a function must be defined on the constructor, not on the prototype, otherwise you will face one of the more confusing JS problems. You can see it here, but it's outside of the focus of this question.
3. Var3: what happens if I don't re-assign constructor?
Actually you might not see the difference and this is what makes it a dangerous bug. Every function's prototype object has a constructor property so you can access the constructor from an instance.
function A() { }
// When you create a function automatically, JS does this:
// A.prototype = { constructor: A };
A.prototype.someMethod = function() {
console.log(this.constructor === A); // true
this.constructor.staticMethod();
return new this.constructor();
};
A.staticMethod = function() { };
It's not a best practice because not everybody knows about it, but sometimes it helps. But if you reassign the prototype...
A.prototype = {
someMethod = function() {
console.log(this.constructor === A); // false
console.log(this.constructor === Object); // true
this.constructor.staticMethod();
return new this.constructor();
}
};
A.prototype is a new object, a instance of Object than prototypes Object.prototype and Object.prototype.constructor is Object. Confusing, right? :P
So if you overwrite the prototype and don't reset the "constructor" property, it will refer to Object instead of A, and if you try to use the "constructor" property to access some static method you may get crazy.

I usually settle with returning an object with functions as properties:
var newCat = function (name) {
return {name: name, purr: function () {alert(name + ' purrs')}};
};
var myCat = newCat('Felix');
myCat.name; // 'Felix'
myCat.purr(); // alert fires
You can have inheritance by calling the newCat function and extend the object you get:
var newLion = function (name) {
var lion = newCat(name);
lion.roar = function () {
alert(name + ' roar loudly');
}
return lion;
}
If you want a global cats object:
var cats = (function () {
var newCat = function (name) {
return {
name: name,
purr: function () {
alert(name + ' is purring')
}
};
};
return {
newCat: newCat
};
}());
Now you can call:
var mySecondCat = cats.newCat('Alice');

Related

Whats the equivalent of ES6 methods(class) in es5?

How would we polyfill es6 class methods into ES5?
I am reading a book and it says the following:
class Ninja {
constructor(name) {
this.name = name;
}
swingSword() {
return true;
}
}
is the same as
function Ninja(name) {
this.name = name;
}
Ninja.prototype.swingSword = function() {
return true;
};
I am just asking why are we adding the swingSword on the prototype and not inside the constructor function?
Because the function should be on the object and not on the prototype chain.
Am i right or wrong?
It should be on the prototype, methods are not per-instance data. Can't think of any language that implements it that way, the whole idea of classes is to have a whole class of objects that have the same set of methods.
If it was put it inside the constructor function, it would be a unique function per instance made with the constructor. e.g, 1000 objects == 1000 functions, per "method".
Adding the function to just the object would only work for a Ninja. To create a class that extends Ninja, for example Kunoichi, you would normally copy the Ninja prototype. Unfortunately, because swingSword is not in the prototype, your Kunoichi cannot swing swords.
You must add the function in prototype to allow the class to be extended.
If we add a method to the prototype, only one instance of that method exists in memory, and it’s shared between all objects created from the constructor.
If we add the swingSword method directly to the Ninja constructor function, then every object would have its own copy of that method, taking up more memory.
var $class = function ($superclass, config) {
// All classes have a superclass with the root
// of this $class hierarchy being Object.
var self = function (config) {
// Object.assign or $.extend or ...
config && Object.assign(this, config);
};
self.prototype = new $superclass(config);
return self;
};
var A = $class(Object, {
sayWhat: "Hello, I'm an A",
say: function () {
console.log(this.sayWhat);
}
});
var B = $class(A, {
sayWhat: "Hello, I'm a B"
});
var C = $class(B, {
say: function () {
console.log("C SAYS: " + this.sayWhat);
},
superSay: function () {
// how to call a superclass method
B.prototype.say.call(this);
}
});
var a = new A();
a.say();  // Hello, I'm an A
var b = new B();
b.say();  // Hello, I'm a B
var c = new C();
c.say();  // C SAYS: Hello, I'm a B
// create a "one-off" object
var d = new C({
sayWhat: "I'm special!",
say: function () {
console.log("hey!");
}
});
d.say();  // hey!
d.superSay();  // I'm special!
C.prototype.say.call(d);  // C SAYS: I'm special!

Object Oriented JavaScript programming

I have been trying to learn OOP with JavaScript before I start attempting to learn backbone.js.
I want to be able to data bind but I can't seem to get it to work.
I've just made a simple protoype of a budget website that you can put in a budget and input how much you've spent, and it will show if you've gone over.
function BudgetItem(spent, budget){
this.setSpent = function(spent){
this.spent = spent;
}
this.setBudget = function(budget){
this.budget = budget;
}
this.getSpent = function(){
return this.spent;
}
this.getBudget = function(){
return this.budget;
}
}
function BudgetType(type){
this.getType = function(){
return type;
}
}
BudgetType.prototype = new BudgetItem();
$(document).ready(function(){
var food = new BudgetType('food');
$('.budget').html(food.getBudget());
$('.editbudget').change(function(){
food.setBudget($('.editbudget').data())
});
})
That's my code thus far. I'm not sure if I'm doing it right. Am I supposed to extend things? Also, can someone explain how to dynamically data bind without a library?
First I'll give you some theory. A Javascript function is a dynamic object, just like Object is, and a new instance can be created using the new keyword much like you are doing in your listener. When this happens, the function itself will run as a constructor while the this keyword will be bound to the newly created object. What you're doing above then is in fact adding new properties on the fly as you're passing in their values for the first time... which is fine, but not very clear to another reader.
Now for the tricky part. Every function has a link to a "hidden" Prototype object. This is an anonymous (not accessible by name) object created by the JavaScript runtime and passed as a reference to the user object through the prototype property. This Prototype object also has a reference to the function through its constructor property. To test what I'm saying for yourself, try the following:
BudgetItem.prototype.constructor === BudgetItem // true
Putting it all together, you can now think of functions as constructors to (hidden) classes that are created for you behind the scenes, accessible through the function's prototype property. So, you could add the fields to the Prototype object directly as so:
function BudgetItem(spent) {
this.spent = spent
}
BudgetItem.prototype.setSpent = function(spent) { this.spent = spent };
BudgetItem.prototype.getSpent = function() { return this.spent };
Another problem is inheritance and passing parameters to the constructor. Again, your version is valid but you lose the ability to pass the spent and budget values when initializing a BudgetType. What I would do is forget prototypes and go:
function BudgetType(type, spent) {
var instance = new BudgetItem(spent);
instance.type = type;
return instance;
}
This is close to what Scott Sauyet suggested above but more powerful. Now you can pass both parameters (and more) and have a more complicated inheritance tree.
Finally, what you can do is create private (or pseudo-private, more accurately) properties by providing a getter to an otherwise automatic variable (one passed as an argument or initialised inside the function). This is a special feature of the language and it works like so:
function BudgetType(type, spent) {
var instance = new BudgetItem(spent);
instance.getType = function() {
return type;
}
return instance;
}
Now you can access the 'type' passed in the constructor by obj.getType() but cannot override the initial value. Even if you define obj.type = 'New Value' the getType() will return the initial parameter passed because it has a reference to another context which was created when the object was initialised and never got released due to the closure.
Hope that helps...
if you want all instances of objects to reference the same members/values you can use a closure:
// create a constrctor for you object wrapped in a closure
myCon = (function() {
// define shared members up here
var mySharedObj = new function () {
this.member = "a";
}();
// return the actual constructor
return function () {
this.mySharedObj = mySharedObj;
}
}());
// create two instances of the object
var a = new myCon();
var b = new myCon();
// Altering the shared object from one
a.mySharedObj.member = "b";
// Alters it for all
console.log(b.mySharedObj.member);
If you want to build objects from other objects(sort of like other languages' class whatever extends baseClass), but do not want them to share values via reference(instead a clone of values), you can use something like the following:
Object.prototype.extendsUpon = (function (_prop, _args) {
return function (base) {
for (var key in base) {
if (_prop.call(base, key)) {
this[key] = base[key];
}
}
function con(child){
this.constructor = child;
}
con.prototype = base.prototype;
this.prototype = new con(this);
this.__base__ = base.prototype;
var args = _args.call(arguments);
args.shift();
base.constructor.apply(this, args);
}
}(Object.prototype.hasOwnProperty, Array.prototype.slice));
Then to build objects ontop of objects:
// Base Object Constructor
function Fruit(name) {
this.fruitname = name;
}
Fruit.prototype.yum = function() {
return "I had an " + this.fruitname;
}
// Object constructor that derives from the Base Object
function Favorite() {
// Derive this object from a specified base object:
// #arg0 -> Object Constructor to use as base
// #arg1+ -> arguments passed to the BaseObject's constructor
this.extendsUpon(Fruit, "apple");
// From here proceed as usual
// To access members from the base object that have been over-written,
// use "this.__base__.MEMBER.apply(this, arguments)"
}
Favorite.prototype.yum = function() {
return this.__base__.yum.apply(this) + " and it was my favorite";
}
var mmm = new Favorite();
// Outputs: "I had an apple and it was my favorite"
mmm.yum();

javascript class inherit from Function class

I like that in javascript, I can create a function, and then add further methods and attributes to that function
myInstance = function() {return 5}
myInstance.attr = 10
I would like to create a class to generate these objects. I assume I have to inherit from the Function base class.
In other words, I would like to:
var myInstance = new myFunctionClass()
var x = myInstance()
// x == 5
But I don't know how to create the myFunctionClass. I have tried the following, but it does not work:
var myFunctionClass = function() {Function.call(this, "return 5")}
myFunctionClass.prototype = new Function()
myInstance = new myFunctionClass()
myInstance()
// I would hope this would return 5, but instead I get
// TypeError: Property 'myInstance' of object #<Object> is not a function
I also tried the more complicated (and more proper?) inheritance method found here: How to "properly" create a custom object in JavaScript?, with no more luck. I have also tried using the util.inherits(myFunctionClass, Function) found in node.js. Still no luck
I have exhausted Google, and therefore feel that I must be missing something fundamental or obvious. Help would be greatly appreciated.
Your trying to inherit from Function. This is a right pain to do. I suggest you do the following instead
Live Example
var Proto = Object.create(Function.prototype);
Object.extend(Proto, {
constructor: function (d) {
console.log("construct, argument : ", d);
this.d = d;
// this is your constructor logic
},
call: function () {
console.log("call", this.d);
// this get's called when you invoke the "function" that is the instance
return "from call";
},
method: function () {
console.log("method");
// some method
return "return from method";
},
// some attr
attr: 42
});
You want to create a prototype object that forms the basis of your "class". It has your generic methods/attributes. It also has a constructor that gets invoked on object construction and a call method that gets invoked when you call the function
var functionFactory = function (proto) {
return function () {
var f = function () {
return f.call.apply(f, arguments);
};
Object.keys(proto).forEach(function (key) {
f[key] = proto[key];
});
f.constructor.apply(f, arguments);
return f;
}
}
A function factory takes a prototype object and returns a factory for it. The returned function when called will give you a new function object that "inherits" from your prototype object.
var protoFactory = functionFactory(proto);
var instance = protoFactory();
Here you create your factory and then create your instance.
However this isn't proper prototypical OO. we are just shallow copying properties of a prototype into a new object. So changes to the prototype will not reflect back to the original object.
If you want real prototypical OO then you need to use a hack.
var f = function () {
// your logic here
};
f.__proto__ = Proto;
Notice how we use the non-standard deprecated .__proto__ and we are mutating the value of [[Prototype]] at run-time which is considered evil.
JS does not allow a constructor to return a function, even though functions are objects. So you cant have an instantiation of a prototype that is itself executable. (Am I right in this? please correct if I'm not, it's an interesting question).
Though you could do a factory function:
var makeCoolFunc = function() {
var f = function() { return 5 };
f.a = 123;
f.b = 'hell yes!'
return f;
};
var func = makeCoolFunc();
var x = func();
You can extend Function and pass the wanted function body as String to the super constructor. The context of the function can be accessed with arguments.callee.
Example for an observable Attribute class:
export default class Attribute extends Function {
constructor(defaultValue){
super("value", "return arguments.callee.apply(arguments);");
this.value = defaultValue;
this.defaultValue = defaultValue;
this.changeListeners = [];
}
apply([value]){
if(value!==undefined){
if(value!==this.value){
var oldValue = this.value;
this.value=value;
this.changeListeners.every((changeListener)=>changeListener(oldValue, value));
}
}
return this.value;
}
clear(){
this.value=undefined;
}
reset(){
this.value=this.defaultValue;
}
addChangeListener(listener){
this.changeListeners.push(listener);
}
removeChangeListener(listener){
this.changeListeners.remove(listener);
}
clearChangeListeners(){
this.changeListeners = [];
}
}
Example usage:
import Attribute from './attribute.js';
var name= new Attribute();
name('foo'); //set value of name to 'foo'
name.addChangeListener((oldValue, newValue)=>{
alert('value changed from ' +oldValue+ ' to ' +newValue);
});
alert(name()); //show value of name: 'foo'
name('baa'); //set value of name to new value 'baa' and trigger change listener

is it possible to assign a prototype on an existing object in javascript?

if i have:
function Base (){
this.sayHi = function(){
alert('hi');
}
}
function Thing (val){
this.value = val;
}
var bob = new Thing("bob");
Is there some way I can now say that bob inherits from Base so that I could call:
bob.sayHi();
Basically have all the methods and properties of the Base class available on that instance?
A more relevant example with solution based on CMS's post:
Here Items could represent data returned by the server..
var Items = [
{ sku: 123, type:'buggy', title:'This is a title', description: 'this is a description' },
{ sku: 234, type: 'baby-monitor', title: 'This is a title 2', description: 'this is a description 2' }
]
function ItemMethods() {
this.BannerHTML = function () {
return '<div class="banner _item_' + this.type + '_' + this.sku + '"><h2>' +
this.title + '</h2><p>' +
this.description + '</p></div>';
};
}
Items.GetBySKU = function (code) {
for (var i = 0; i < Items.length; i++) {
if (Items[i].sku == code) {
return Items[i];
}
}
};
$.each(Items, function (i, item) {
ItemMethods.apply(item);
});
alert(Items.GetBySKU(234).BannerHTML());
Any further comments or solutions gladly accepted.. always interested in potential solutions to a problem ;-)
No. There is no way to assign a different [[prototype]] of an existing object, at least according the the specification. The [[prototype]] is the object resulting from the evaluation (aka "contained in") of the constructors prototype property at time of new object creation and cannot be reassigned later. (I wish it could be officially changed, but alas it is an unsupported operation and can generally be emulated via different methods.)
Some browsers/environments may choose to expose post-creation [[prototype]] assignment with non-standard approaches. The [[prototype]] object(s) can be modified (e.g. adding to String.prototype), or singleton functions can be added to the target object (see CMS's answer), or existing objects can be wrapped (essentially a dynamic "subclass") -- depending upon requirements and restrictions.
Also, there are no "classes" in Javascript: while "classical single-inheritance objected oriented classes" can be implemented in Javascript, I find it limiting to restrict oneself to the model or use such terminology in general. A language wants to be what it is.
Happy coding.
In javascript you can create a subclass of an other by setting the subclass' prototype to an instance of the base class:
function BaseClass() {
this.baseFunction = function() {
};
};
function SubClass() {
};
SubClass.prototype = new BaseClass;
SubClass.prototype.someFunction = function() {
};
// create an instance of SubClass
var obj = new SubClass;
// SubClass truly extends BaseClass
obj instanceof BaseClass // true
obj instanceof SubClass // true
// the instance has both methods of BaseClass and SubClass
typeof obj.someFunction // Function
typeof obj.baseFunction // Function
This is the equivalent of class SubClass extends BaseClass in java.
If you also modify the prototypes after that.
If you add functions and properties to the prototype of the object's constructor, the functions and properties will be available on all the instances.
Here is an example:
function Thing (val){
this.value = val;
}
var bob = new Thing("bob");
console.log(bob.foo); // undefined
Thing.prototype.foo = function() {
console.log('foo!');
};
console.log(bob.foo); // function()
bob.foo(); // foo!
Now if you want to extend all Thing instances with Base, you can do it like this:
var base = new Base;
for (var k in base) {
Thing.prototype[k] = base[k];
}
Or if you want to make Thing instances extend Base: (i.e. don't override methods that are already in Thing)
var base = new Base;
for (var k in base) {
if (Thing.prototype[k]) continue;
Thing.prototype[k] = base[k];
}
If you only want to extend a unique object instance, just assign to it:
var bob = new Thing("bob");
var base = new Base();
bob.sayHi = base.sayHi;
bob.sayHi();
You can also call a function in the context of an object, without even assign the function to the object:
var base = new Base();
base.sayHi.call(bob);
Note that the properties that you create within the constructor, have nothing to do with the constructor's prototype, they are own properties of the object you create using new Base();, they are not inherited. However, I think what you want to do it to apply the Base constructor function on the newly created object of Thing:
function Base (){
this.sayHi = function(){
alert('hi');
}
}
function Thing (val){
Base.apply(this, arguments);
this.value = val;
}
var bob = new Thing("bob");
bob.sayHi();
Note that bob will not inherit from Base (it won't have access to properties added to Base.prototype)
bob instanceof Base; // false
bob instanceof Thing; // true
Yes.
1) You can add Base's constructor definition directly to the bob instance
Base.call(bob);
bob.sayHi(); //hi
2) Or you can augment Thing.prototype with Base's constructor definition. The bob instance can access its prototype's new properties even if it was created before they were added
var bob = new Thing("bob");
Base.call(Thing.prototype);
bob.sayHi(); //hi

Crockford-style prototypal pattern gotcha; looking for an elegant solution

I often use Crockford's prototypal pattern when writing JavaScript programs. I thought I understood all the "gotchas" involved, but I discovered one I didn't think about before. I'd like to know if anyone has a best practice for handling it.
Here's a simple example:
// Here's the parent object
var MyObject = {
registry: {},
flatAttribute: null,
create: function () {
var o, F = function () {};
F.prototype = this;
o = new F();
return o;
}
};
// instance is an empty object that inherits
// from MyObject
var instance = MyObject.create();
// Attributes can be set on instance without modifying MyObject
instance.flatAttribute = "This is going to be applied to the instance";
// registry doesn't exist on instance, but it exists on
// instance.prototype. MyObject's registry attribute gets
// dug up the prototype chain and altered. It's not possible
// to tell that's happening just by examining this line.
instance.registry.newAttribute = "This is going to be applied to the prototype";
// Inspecting the parent object
// prints "null"
console.log(MyObject.flatAttribute);
// prints "This is going to be applied to the prototype"
console.log(MyObject.registry.newAttribute);
I want to feel safe that any changes that appear to be made to the instance don't propagate up the inheritance change. This is not the case when the attribute is an object and I'm setting a nested property.
A solution is to re-initialize all object attributes on the instance. However, one of the stated advantages of using this pattern is removing re-initialization code from the constructor. I'm thinking about cloning all the object attributes of the parent and setting them on the instance within the create() function:
{ create: function () {
var o, a, F = function () {};
F.prototype = this;
o = new F();
for (a in this) {
if (this.hasOwnProperty(a) && typeof this[a] === 'object') {
// obviously deepclone would need to be implemented
o[a] = deepclone(this[a]);
}
}
return o;
} };
Is there a better way?
There is a very simple solution to ensuring that they are instance variables only, which is to use the this keyword in the constructor.
var MyObject = {
flatAttribute: null,
create: function () {
var o, F = function () {
this.registry = {}
};
F.prototype = this;
o = new F();
return o;
}
};
this ensures that all properties of "instance.registry.*" are local to the instance because the lookup order for javascript opjects is as follows.
object -> prototype -> parent prototype ...
so by adding a variable to the instance in the constructor function named "registry" that will always be found first.
another solution, which I think is more elegant is to not use crockford's (java style) constructors and use a layout that reflects javascripts object system more naturally. most of those gotchas are from the misfit between practice and language.
// instance stuff
var F = function () {
this.registry = {}
};
F.prototype = {
// static attributes here
flatAttribute: null,
methodA: function(){
// code here 'this' is instance object
this.att = 'blah';
}
};
var instanceA = new F();
instanceA.registry['A'] = 'hi';
var instanceB = new F();
instanceB.registry['B'] = 'hello';
instanceA.registry.A == 'hi'; // true
instanceB.registry.B == 'hello'; // true
F.prototype.registry == undefined; // true
Will this give you the expected result? Here I am not using an Object literal, but an instantly instantiated constructor function for the parent object (Base):
var Base = ( function(){
function MyObject(){
this.registry = {},
this.flatAttribute = null;
if (!MyObject.prototype.create)
MyObject.prototype.create = function(){
return new this.constructor();
};
}
return new MyObject;
} )(),
// create 2 instances from Base
instance1 = Base.create(),
instance2 = Base.create();
// assign a property to instance1.registry
instance1.registry.something = 'blabla';
// do the instance properties really belong to the instance?
console.log(instance1.registry.something); //=> 'blabla'
console.log(instance2.registry.something === undefined); //=> true
But it's all a bit virtual. If you don't want to use the new operator (I think that was te whole idea of it), the following offers you a way to do that without the need for a create method :
function Base2(){
if (!(this instanceof Base2)){
return new Base2;
}
this.registry = {},
this.flatAttribute = null;
if (!Base2.prototype.someMethod){
var proto = Base2.prototype;
proto.someMethod = function(){};
//...etc
}
}
//now the following does the same as before:
var instance1 = Base2(),
instance2 = Base2();
// assign a property to instance1.registry
instance1.registry.something = 'blabla';
// do the instance properties really belong to the instance?
console.log(instance1.registry.something); //=> 'blabla'
console.log(instance2.registry.something === undefined); //=> true
Example in a jsfiddle
I always like to keep in mind that object.Create is one option, and not the only way of achieving non-classical inheritance in javascript.
For myself, I always find that Object.create works best when I want to inherit elements from the parent objects prototype chain (i.e. methods that I'd like to be able to apply to the inheriting object).
--
For simple "Own Property" inheritance, Object.create is largely unnecessary. When I want to inherit own properties, i prefer to use the popular Mixin & Extend patterns (which simply copy one object's own properties to another, without worrying about prototype or "new").
In the Stoyan Stefanov book "Javascript Patterns" he gives an example of a deep extend function that does what you're looking for recursively, and includes support for properties that are arrays as well as standard key/value objects:
function extendDeep(parent, child){
var i,
toStr = Object.prototype.toString,
astr = "[object Array]";
child = child || {};
for (i in parent) {
if (parent.hasOwnProperty(i)) {
if (typeof parent[i] === "object") {
child[i] = (toStr.call(parent[i]) === astr) ? [] : {};
extendDeep(parent[i], child[i]);
} else {
child[i] = parent[i];
}
}
}
return child;
}
If you're using jQuery, jQuery.extend() has an optional "deep" argument that lets you extend an object in near-identical fashion.
i think you're using prototypal inheritance to simulate a classic, Object Oriented inheritance.
What are you trying to do is to stop the prototype method lookup which limits its expressiveness, so why using it? You can achieve the same effect by using this functional pattern:
var MyObject = function() {
// Declare here shared vars
var global = "All instances shares me!";
return {
'create': function() {
var flatAttribute;
var register = {};
return {
// Declare here public getters/setters
'register': (function() {
return register;
})(),
'flatAttribute': (function() {
return flatAttribute;
})(),
'global': (function() {
return global;
})()
};
}
};
}();
var instance1 = MyObject.create();
var instance2 = MyObject.create();
instance1.register.newAttr = "This is local to instance1";
instance2.register.newAttr = "This is local to instance2";
// Print local (instance) var
console.log(instance1.register.newAttr);
console.log(instance2.register.newAttr);
// Print global var
console.log(instance1.global);
console.log(instance2.global);
Code on jsFiddle

Categories

Resources