Physics formula implementation issues - javascript

I'm trying to implement the formulas necessary to calculate the global radiation incident on an inclined solar panel.
The formulas I use were found in the following research paper :
--> ipac.kacst.edu.sa/eDoc/2010/191048_1.pdf
Here is the commented JavaScript code :
var config = require('./configuration.json'),
pi = Math.PI;
function solar_efficiency(angle, day) {
var R_mD, // average sun-earth distance (m)
a, // semi-major axis (km)
e, // oval orbit eccentricity (km)
theta, // angle with the perihelion
n, // current nth day of the year (int)
R_D, // actual sun-earth distance (m)
I_o; // extraterrestrial radiation (indice)
R_mD = config.avg_sun_earth_dist;
a = config.semi_major_axis;
e = config.eccentricity;
n = day;
theta = n * 365.25 / 360;
R_D = a * (1 - e * e) / (1 + e * Math.cos(theta));
I_o = 1367 * Math.pow(R_mD / R_D, 2);
var axis, // angle of the earth's axis
D; // sun declination (radian)
axis = config.earth_axis;
D = ((axis * pi) / 180) * Math.sin(((2 * pi) * (284 + n)) / 365);
var Eq_t; // solar time correction (float)
if((1 <= n) && (n <= 106)) {
Eq_t = -14.2 * Math.sin((pi * (n + 7)) / 111);
}
else if((107 <= n) && (n <= 166)) {
Eq_t = 4.0 * Math.sin((pi * (n - 106)) / 59);
}
else if((167 <= n) && (n <= 246)) {
Eq_t = -6.5 * Math.sin((pi * (n - 166)) / 80);
}
else if((247 <= n) && (n <= 365)) {
Eq_t = 16.4 * Math.sin((pi * (n - 247)) / 113);
}
var Long_sm, // longitude of the standard meridian (longitude)
Long_local, // longitude of the panels (longitude)
T_local, // local time (h)
T_solar; // solar time (h)
Long_sm = config.std_meridian_long;
Long_local = config.current_longitutde;
T_local = config.local_time;
T_solar = T_local + (Eq_t / 60) + ((Long_sm - Long_local) / 15);
var W; // hour angle (radian)
W = pi * ((12 - T_solar) / 12);
var Lat_local, // latitude of the panels (latitude)
W_sr, // sunrise hour angle (°)
W_ss; // sunset hour angle (°)
Lat_local = config.current_latitude;
W_sr = W_ss = Math.acos(-1 * Math.tan(Lat_local) * Math.tan(D));
var alpha, // angle between solar panel and horizontal (°) -FIND!!!
R_b; // ratio of avg. beam radiation on horiz. / inclined surface
alpha = angle; // /!\ TESTING ONLY /!\
var num_1 = Math.cos(Lat_local - alpha) * Math.cos(D) * Math.sin(W_ss);
var num_2 = W_ss * Math.sin(Lat_local - alpha) * Math.sin(D);
var det_1 = Math.cos(Lat_local) * Math.cos(D) * Math.sin(W_ss);
var det_2 = W_ss * Math.sin(Lat_local) * Math.sin(D);
R_b = (num_1 + num_2) / (det_1 + det_2); // in the northern hemisphere
var H_g, // global radiation on horizontal surface (W h/m^2/day) ---DB!!!
H_d, // diffuse radiation on horizontal surface (W h/m^2/day) ---DB!!!
H_B; // beam radiation on inclined surface (W h/m^2/day)
H_g = 700;
H_d = 500;
H_B = (H_g - H_d) / R_b;
var R_d; // ratio of avg. daily diffuse radiation tilted / horiz. surface
R_d = (3 + Math.cos(2 * alpha)) / 2; // isotropic Badesco model
var H_D; // sky-diffuse radiation on inclined surface (W h/m^2/day)
H_D = R_d * H_d;
var p, // albedo std. = 0.2 (soil = 0.17, grass = 0.25, concrete = 0.55)
H_R; // ground reflected radiation on inclined surface (W h/m^2/day)
p = config.ground_albedo;
H_R = H_g * p * ((1 - Math.cos(alpha)) / 2);
var H_T; // daily global radiation on a tilted surface (W h/m^2/day)
H_T = H_B + H_D + H_R;
return H_T;
}
var results = {}, current_day;
for(var i = 0; i < 365; i++) {
current_day = [];
for(var k = 0; k <= 90; k++) {
current_day.push([k, solar_efficiency(k, i)]);
}
current_day.sort(function(a, b) { return b[1] - a[1]; });
current_day.length = 1;
results[i] = current_day[0];
}
console.log(results);
The configurations like latitude and longitude are situated in a JSON file.
Here are the values I'm testing the program with :
{
"avg_sun_earth_dist" : 149597870.7,
"earth_axis" : 23.45,
"eccentricity" : 0.0167,
"semi_major_axis" : 149598261,
"local_time" : 12,
"std_meridian_long" : 0,
"current_longitude" : 2.294351,
"current_latitude" : 48.858844,
"ground_albedo" : 0.2
}
If you change the latitude a little bit you will see that you either get NaNs or the values stabilize but suddenly for certain values of "i" just skyrocket.
The problem seems to be this line :
W_sr = W_ss = Math.acos(-1 * Math.tan(Lat_local) * Math.tan(D));
I'm not sure if the input data is wrong and thus crashes the program or if I just implemented the formulas wrong.

Use that library , floats aren't good for such calculations. You'll always end up with errors. In every language for such arithmetics are used BigDecimals

Related

Adding up Total Distance traveled in javascript

Using the geolocation plugin for apache cordova / phonegap
Originally from, DaveAlden + Chris Veness
I'm simply trying to sum up the deltaDistMetres. Have been working at it all day but can't figure it out. Tried the push and reduce method with arrays, for loops, try troubleshooting with isNaN(). I'm at your mercy stack overflow pros.
My understanding of deltaDistMetres is the distance between the current gps location and the one before. So summing them up would be the total distance correct?
Thanks for any help!
var currentUpdate, lastUpdate;
function onPositionUpdate(position) {
if (currentUpdate) lastUpdate = currentUpdate;
currentUpdate = {
position: new LatLon(position.coords.latitude, position.coords.longitude),
time: new Date()
};
if (!lastUpdate) return;
currentUpdate.deltaDistMetres = lastUpdate.position.distanceTo(currentUpdate.position) * 1000;
currentUpdate.deltaTimeSecs = (currentUpdate.time - lastUpdate.time) * 1000;
currentUpdate.speed = (currentUpdate.deltaDistMetres / currentUpdate.deltaTimeSecs);
currentUpdate.accelerationGPS = (currentUpdate.speed - lastUpdate.speed) / currentUpdate.deltaTimeSecs;
/* THIS IS MY LITTLE CODE
(I have an element id="log" in my html)
*/
var distanceTotal= 0;
var distanceChange = currentUpdate.deltaDistMetres;
distanceTotal += distanceChange;
document.getElementById("log").innerHTML = "Total distance " + distanceTotal + " m";
}
function onPositionError(error) {
console.log("Error: " + error.message);
}
$(document).on("deviceready", function () {
navigator.geolocation.watchPosition(onPositionUpdate, onPositionError, { frequency:3000, timeout: 30000, enableHighAccuracy: true });
});
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy formulae & scripts (c) Chris Veness 2002-2012 */
/* - www.movable-type.co.uk/scripts/latlong.html */
/* */
/* Sample usage: */
/* var p1 = new LatLon(51.5136, -0.0983); */
/* var p2 = new LatLon(51.4778, -0.0015); */
/* var dist = p1.distanceTo(p2); // in km */
/* var brng = p1.bearingTo(p2); // in degrees clockwise from north */
/* ... etc */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Note that minimal error checking is performed in this example code! */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Object LatLon: tools for geodetic calculations
*
* #requires Geo
*/
/**
* Creates a point on the earth's surface at the supplied latitude / longitude
*
* #constructor
* #param {Number} lat: latitude in degrees
* #param {Number} lon: longitude in degrees
* #param {Number} [radius=6371]: radius of earth if different value is required from standard 6,371km
*/
function LatLon(lat, lon, radius) {
if (typeof (radius) == 'undefined') radius = 6371; // earth's mean radius in km
this.lat = Number(lat);
this.lon = Number(lon);
this.radius = Number(radius);
}
/**
* Returns the distance from this point to the supplied point, in km
* (using Haversine formula)
*
* from: Haversine formula - R. W. Sinnott, "Virtues of the Haversine",
* Sky and Telescope, vol 68, no 2, 1984
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #param {Number} [precision=4]: number of significant digits to use for returned value
* #returns {Number} distance in km between this point and destination point
*/
LatLon.prototype.distanceTo = function (point, precision) {
// default 4 sig figs reflects typical 0.3% accuracy of spherical model
if (typeof precision == 'undefined') precision = 4;
var R = this.radius;
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
var Δφ = φ2 - φ1;
var Δλ = λ2 - λ1;
var a = Math.sin(Δφ / 2) * Math.sin(Δφ / 2) +
Math.cos(φ1) * Math.cos(φ2) *
Math.sin(Δλ / 2) * Math.sin(Δλ / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
return d.toPrecisionFixed(Number(precision));
}
/**
* Returns the (initial) bearing from this point to the supplied point, in degrees
* see http://williams.best.vwh.net/avform.htm#Crs
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {Number} initial bearing in degrees from North
*/
LatLon.prototype.bearingTo = function (point) {
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δλ = (point.lon - this.lon).toRadians();
var y = Math.sin(Δλ) * Math.cos(φ2);
var x = Math.cos(φ1) * Math.sin(φ2) -
Math.sin(φ1) * Math.cos(φ2) * Math.cos(Δλ);
var θ = Math.atan2(y, x);
return (θ.toDegrees() + 360) % 360;
}
/**
* Returns final bearing arriving at supplied destination point from this point; the final bearing
* will differ from the initial bearing by varying degrees according to distance and latitude
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {Number} final bearing in degrees from North
*/
LatLon.prototype.finalBearingTo = function (point) {
// get initial bearing from supplied point back to this point...
var φ1 = point.lat.toRadians(), φ2 = this.lat.toRadians();
var Δλ = (this.lon - point.lon).toRadians();
var y = Math.sin(Δλ) * Math.cos(φ2);
var x = Math.cos(φ1) * Math.sin(φ2) -
Math.sin(φ1) * Math.cos(φ2) * Math.cos(Δλ);
var θ = Math.atan2(y, x);
// ... & reverse it by adding 180°
return (θ.toDegrees() + 180) % 360;
}
/**
* Returns the midpoint between this point and the supplied point.
* see http://mathforum.org/library/drmath/view/51822.html for derivation
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {LatLon} midpoint between this point and the supplied point
*/
LatLon.prototype.midpointTo = function (point) {
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians();
var Δλ = (point.lon - this.lon).toRadians();
var Bx = Math.cos(φ2) * Math.cos(Δλ);
var By = Math.cos(φ2) * Math.sin(Δλ);
var φ3 = Math.atan2(Math.sin(φ1) + Math.sin(φ2),
Math.sqrt((Math.cos(φ1) + Bx) * (Math.cos(φ1) + Bx) + By * By));
var λ3 = λ1 + Math.atan2(By, Math.cos(φ1) + Bx);
λ3 = (λ3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given initial bearing (bearing may vary before destination is reached)
*
* see http://williams.best.vwh.net/avform.htm#LL
*
* #this {LatLon} latitude/longitude of origin point
* #param {Number} brng: initial bearing in degrees
* #param {Number} dist: distance in km
* #returns {LatLon} destination point
*/
LatLon.prototype.destinationPoint = function (brng, dist) {
var θ = Number(brng).toRadians();
var δ = Number(dist) / this.radius; // angular distance in radians
var φ1 = this.lat.toRadians();
var λ1 = this.lon.toRadians();
var φ2 = Math.asin(Math.sin(φ1) * Math.cos(δ) +
Math.cos(φ1) * Math.sin(δ) * Math.cos(θ));
var λ2 = λ1 + Math.atan2(Math.sin(θ) * Math.sin(δ) * Math.cos(φ1),
Math.cos(δ) - Math.sin(φ1) * Math.sin(φ2));
λ2 = (λ2 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
return new LatLon(φ2.toDegrees(), λ2.toDegrees());
}
/**
* Returns the point of intersection of two paths defined by point and bearing
*
* see http://williams.best.vwh.net/avform.htm#Intersection
*
* #param {LatLon} p1: first point
* #param {Number} brng1: initial bearing from first point
* #param {LatLon} p2: second point
* #param {Number} brng2: initial bearing from second point
* #returns {LatLon} destination point (null if no unique intersection defined)
*/
LatLon.intersection = function (p1, brng1, p2, brng2) {
var φ1 = p1.lat.toRadians(), λ1 = p1.lon.toRadians();
var φ2 = p2.lat.toRadians(), λ2 = p2.lon.toRadians();
var θ13 = Number(brng1).toRadians(), θ23 = Number(brng2).toRadians();
var Δφ = φ2 - φ1, Δλ = λ2 - λ1;
var δ12 = 2 * Math.asin(Math.sqrt(Math.sin(Δφ / 2) * Math.sin(Δφ / 2) +
Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ / 2) * Math.sin(Δλ / 2)));
if (δ12 == 0) return null;
// initial/final bearings between points
var θ1 = Math.acos((Math.sin(φ2) - Math.sin(φ1) * Math.cos(δ12)) /
(Math.sin(δ12) * Math.cos(φ1)));
if (isNaN(θ1)) θ1 = 0; // protect against rounding
var θ2 = Math.acos((Math.sin(φ1) - Math.sin(φ2) * Math.cos(δ12)) /
(Math.sin(δ12) * Math.cos(φ2)));
if (Math.sin(λ2 - λ1) > 0) {
θ12 = θ1;
θ21 = 2 * Math.PI - θ2;
} else {
θ12 = 2 * Math.PI - θ1;
θ21 = θ2;
}
var α1 = (θ13 - θ12 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 2-1-3
var α2 = (θ21 - θ23 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 1-2-3
if (Math.sin(α1) == 0 && Math.sin(α2) == 0) return null; // infinite intersections
if (Math.sin(α1) * Math.sin(α2) < 0) return null; // ambiguous intersection
//α1 = Math.abs(α1);
//α2 = Math.abs(α2);
// ... Ed Williams takes abs of α1/α2, but seems to break calculation?
var α3 = Math.acos(-Math.cos(α1) * Math.cos(α2) +
Math.sin(α1) * Math.sin(α2) * Math.cos(δ12));
var δ13 = Math.atan2(Math.sin(δ12) * Math.sin(α1) * Math.sin(α2),
Math.cos(α2) + Math.cos(α1) * Math.cos(α3))
var φ3 = Math.asin(Math.sin(φ1) * Math.cos(δ13) +
Math.cos(φ1) * Math.sin(δ13) * Math.cos(θ13));
var Δλ13 = Math.atan2(Math.sin(θ13) * Math.sin(δ13) * Math.cos(φ1),
Math.cos(δ13) - Math.sin(φ1) * Math.sin(φ3));
var λ3 = λ1 + Δλ13;
λ3 = (λ3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance from this point to the supplied point, in km, travelling along a rhumb line
*
* see http://williams.best.vwh.net/avform.htm#Rhumb
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {Number} distance in km between this point and destination point
*/
LatLon.prototype.rhumbDistanceTo = function (point) {
var R = this.radius;
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δφ = φ2 - φ1;
var Δλ = Math.abs(point.lon - this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Math.abs(Δλ) > Math.PI) Δλ = Δλ > 0 ? -(2 * Math.PI - Δλ) : (2 * Math.PI + Δλ);
// on Mercator projection, longitude gets increasing stretched by latitude; q is the 'stretch factor'
var Δψ = Math.log(Math.tan(φ2 / 2 + Math.PI / 4) / Math.tan(φ1 / 2 + Math.PI / 4));
// the stretch factor becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it
var q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1);
// distance is pythagoras on 'stretched' Mercator projection
var δ = Math.sqrt(Δφ * Δφ + q * q * Δλ * Δλ); // angular distance in radians
var dist = δ * R;
return dist.toPrecisionFixed(4); // 4 sig figs reflects typical 0.3% accuracy of spherical model
}
/**
* Returns the bearing from this point to the supplied point along a rhumb line, in degrees
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {Number} bearing in degrees from North
*/
LatLon.prototype.rhumbBearingTo = function (point) {
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δλ = (point.lon - this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Math.abs(Δλ) > Math.PI) Δλ = Δλ > 0 ? -(2 * Math.PI - Δλ) : (2 * Math.PI + Δλ);
var Δψ = Math.log(Math.tan(φ2 / 2 + Math.PI / 4) / Math.tan(φ1 / 2 + Math.PI / 4));
var θ = Math.atan2(Δλ, Δψ);
return (θ.toDegrees() + 360) % 360;
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given bearing along a rhumb line
*
* #this {LatLon} latitude/longitude of origin point
* #param {Number} brng: bearing in degrees from North
* #param {Number} dist: distance in km
* #returns {LatLon} destination point
*/
LatLon.prototype.rhumbDestinationPoint = function (brng, dist) {
var δ = Number(dist) / this.radius; // angular distance in radians
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var θ = Number(brng).toRadians();
var Δφ = δ * Math.cos(θ);
var φ2 = φ1 + Δφ;
// check for some daft bugger going past the pole, normalise latitude if so
if (Math.abs(φ2) > Math.PI / 2) φ2 = φ2 > 0 ? Math.PI - φ2 : -Math.PI - φ2;
var Δψ = Math.log(Math.tan(φ2 / 2 + Math.PI / 4) / Math.tan(φ1 / 2 + Math.PI / 4));
var q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1); // E-W course becomes ill-conditioned with 0/0
var Δλ = δ * Math.sin(θ) / q;
var λ2 = λ1 + Δλ;
λ2 = (λ2 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
return new LatLon(φ2.toDegrees(), λ2.toDegrees());
}
/**
* Returns the loxodromic midpoint (along a rhumb line) between this point and the supplied point.
* see http://mathforum.org/kb/message.jspa?messageID=148837
*
* #this {LatLon} latitude/longitude of origin point
* #param {LatLon} point: latitude/longitude of destination point
* #returns {LatLon} midpoint between this point and the supplied point
*/
LatLon.prototype.rhumbMidpointTo = function (point) {
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
if (Math.abs(λ2 - λ1) > Math.PI) λ1 += 2 * Math.PI; // crossing anti-meridian
var φ3 = (φ1 + φ2) / 2;
var f1 = Math.tan(Math.PI / 4 + φ1 / 2);
var f2 = Math.tan(Math.PI / 4 + φ2 / 2);
var f3 = Math.tan(Math.PI / 4 + φ3 / 2);
var λ3 = ((λ2 - λ1) * Math.log(f3) + λ1 * Math.log(f2) - λ2 * Math.log(f1)) / Math.log(f2 / f1);
if (!isFinite(λ3)) λ3 = (λ1 + λ2) / 2; // parallel of latitude
λ3 = (λ3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
return new LatLon(φ3.toDegrees(), λ3.toDegrees());
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns a string representation of this point; format and dp as per lat()/lon()
*
* #this {LatLon} latitude/longitude of origin point
* #param {String} [format]: return value as 'd', 'dm', 'dms'
* #param {Number} [dp=0|2|4]: number of decimal places to display
* #returns {String} comma-separated latitude/longitude
*/
LatLon.prototype.toString = function (format, dp) {
if (typeof format == 'undefined') format = 'dms';
return Geo.toLat(this.lat, format, dp) + ', ' + Geo.toLon(this.lon, format, dp);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
// ---- extend Number object with methods for converting degrees/radians
/** Converts numeric degrees to radians */
if (typeof Number.prototype.toRadians == 'undefined') {
Number.prototype.toRadians = function () {
return this * Math.PI / 180;
}
}
/** Converts radians to numeric (signed) degrees */
if (typeof Number.prototype.toDegrees == 'undefined') {
Number.prototype.toDegrees = function () {
return this * 180 / Math.PI;
}
}
/**
* Formats the significant digits of a number, using only fixed-point notation (no exponential)
*
* #param {Number} precision: Number of significant digits to appear in the returned string
* #returns {String} A string representation of number which contains precision significant digits
*/
if (typeof Number.prototype.toPrecisionFixed == 'undefined') {
Number.prototype.toPrecisionFixed = function (precision) {
// use standard toPrecision method
var n = this.toPrecision(precision);
// ... but replace +ve exponential format with trailing zeros
n = n.replace(/(.+)e\+(.+)/, function (n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
l = sig.length - 1;
while (exp-- > l) sig = sig + '0'; // append zeros from exponent
return sig;
});
// ... and replace -ve exponential format with leading zeros
n = n.replace(/(.+)e-(.+)/, function (n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
while (exp-- > 1) sig = '0' + sig; // prepend zeros from exponent
return '0.' + sig;
});
return n;
}
}
/** Trims whitespace from string (q.v. blog.stevenlevithan.com/archives/faster-trim-javascript) */
if (typeof String.prototype.trim == 'undefined') {
String.prototype.trim = function () {
return String(this).replace(/^\s\s*/, '').replace(/\s\s*$/, '');
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (!window.console) window.console = { log: function () { } };
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Geodesy representation conversion functions (c) Chris Veness 2002-2012 */
/* - www.movable-type.co.uk/scripts/latlong.html */
/* */
/* Sample usage: */
/* var lat = Geo.parseDMS('51° 28′ 40.12″ N'); */
/* var lon = Geo.parseDMS('000° 00′ 05.31″ W'); */
/* var p1 = new LatLon(lat, lon); */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
var Geo = {}; // Geo namespace, representing static class
/**
* Parses string representing degrees/minutes/seconds into numeric degrees
*
* This is very flexible on formats, allowing signed decimal degrees, or deg-min-sec optionally
* suffixed by compass direction (NSEW). A variety of separators are accepted (eg 3º 37' 09"W)
* or fixed-width format without separators (eg 0033709W). Seconds and minutes may be omitted.
* (Note minimal validation is done).
*
* #param {String|Number} dmsStr: Degrees or deg/min/sec in variety of formats
* #returns {Number} Degrees as decimal number
* #throws {TypeError} dmsStr is an object, perhaps DOM object without .value?
*/
Geo.parseDMS = function (dmsStr) {
if (typeof deg == 'object') throw new TypeError('Geo.parseDMS - dmsStr is [DOM?] object');
// check for signed decimal degrees without NSEW, if so return it directly
if (typeof dmsStr === 'number' && isFinite(dmsStr)) return Number(dmsStr);
// strip off any sign or compass dir'n & split out separate d/m/s
var dms = String(dmsStr).trim().replace(/^-/, '').replace(/[NSEW]$/i, '').split(/[^0-9.,]+/);
if (dms[dms.length - 1] == '') dms.splice(dms.length - 1); // from trailing symbol
if (dms == '') return NaN;
// and convert to decimal degrees...
switch (dms.length) {
case 3: // interpret 3-part result as d/m/s
var deg = dms[0] / 1 + dms[1] / 60 + dms[2] / 3600;
break;
case 2: // interpret 2-part result as d/m
var deg = dms[0] / 1 + dms[1] / 60;
break;
case 1: // just d (possibly decimal) or non-separated dddmmss
var deg = dms[0];
// check for fixed-width unseparated format eg 0033709W
//if (/[NS]/i.test(dmsStr)) deg = '0' + deg; // - normalise N/S to 3-digit degrees
//if (/[0-9]{7}/.test(deg)) deg = deg.slice(0,3)/1 + deg.slice(3,5)/60 + deg.slice(5)/3600;
break;
default:
return NaN;
}
if (/^-|[WS]$/i.test(dmsStr.trim())) deg = -deg; // take '-', west and south as -ve
return Number(deg);
}
/**
* Convert decimal degrees to deg/min/sec format
* - degree, prime, double-prime symbols are added, but sign is discarded, though no compass
* direction is added
*
* #private
* #param {Number} deg: Degrees
* #param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* #param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* #returns {String} deg formatted as deg/min/secs according to specified format
* #throws {TypeError} deg is an object, perhaps DOM object without .value?
*/
Geo.toDMS = function (deg, format, dp) {
if (typeof deg == 'object') throw new TypeError('Geo.toDMS - deg is [DOM?] object');
if (isNaN(deg)) return null; // give up here if we can't make a number from deg
// default values
if (typeof format == 'undefined') format = 'dms';
if (typeof dp == 'undefined') {
switch (format) {
case 'd': dp = 4; break;
case 'dm': dp = 2; break;
case 'dms': dp = 0; break;
default: format = 'dms'; dp = 0; // be forgiving on invalid format
}
}
deg = Math.abs(deg); // (unsigned result ready for appending compass dir'n)
switch (format) {
case 'd':
d = deg.toFixed(dp); // round degrees
if (d < 100) d = '0' + d; // pad with leading zeros
if (d < 10) d = '0' + d;
dms = d + '\u00B0'; // add º symbol
break;
case 'dm':
var min = (deg * 60).toFixed(dp); // convert degrees to minutes & round
var d = Math.floor(min / 60); // get component deg/min
var m = (min % 60).toFixed(dp); // pad with trailing zeros
if (d < 100) d = '0' + d; // pad with leading zeros
if (d < 10) d = '0' + d;
if (m < 10) m = '0' + m;
dms = d + '\u00B0' + m + '\u2032'; // add º, ' symbols
break;
case 'dms':
var sec = (deg * 3600).toFixed(dp); // convert degrees to seconds & round
var d = Math.floor(sec / 3600); // get component deg/min/sec
var m = Math.floor(sec / 60) % 60;
var s = (sec % 60).toFixed(dp); // pad with trailing zeros
if (d < 100) d = '0' + d; // pad with leading zeros
if (d < 10) d = '0' + d;
if (m < 10) m = '0' + m;
if (s < 10) s = '0' + s;
dms = d + '\u00B0' + m + '\u2032' + s + '\u2033'; // add º, ', " symbols
break;
}
return dms;
}
/**
* Convert numeric degrees to deg/min/sec latitude (suffixed with N/S)
*
* #param {Number} deg: Degrees
* #param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* #param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* #returns {String} Deg/min/seconds
*/
Geo.toLat = function (deg, format, dp) {
var lat = Geo.toDMS(deg, format, dp);
return lat == null ? '–' : lat.slice(1) + (deg < 0 ? 'S' : 'N'); // knock off initial '0' for lat!
}
/**
* Convert numeric degrees to deg/min/sec longitude (suffixed with E/W)
*
* #param {Number} deg: Degrees
* #param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* #param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* #returns {String} Deg/min/seconds
*/
Geo.toLon = function (deg, format, dp) {
var lon = Geo.toDMS(deg, format, dp);
return lon == null ? '–' : lon + (deg < 0 ? 'W' : 'E');
}
/**
* Convert numeric degrees to deg/min/sec as a bearing (0º..360º)
*
* #param {Number} deg: Degrees
* #param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* #param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* #returns {String} Deg/min/seconds
*/
Geo.toBrng = function (deg, format, dp) {
deg = (Number(deg) + 360) % 360; // normalise -ve values to 180º..360º
var brng = Geo.toDMS(deg, format, dp);
return brng == null ? '–' : brng.replace('360', '0'); // just in case rounding took us up to 360º!
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (!window.console) window.console = { log: function () { } };
You have placed the declaration var distanceTotal= 0; inside onPositionUpdate() which means it will be reset to zero on every position update.
To preserve the previous value, declare it outside of onPositionUpdate:
var currentUpdate, lastUpdate;
var distanceTotal= 0;
function onPositionUpdate(position) {
if (currentUpdate) lastUpdate = currentUpdate;
currentUpdate = {
position: new LatLon(position.coords.latitude, position.coords.longitude),
time: new Date()
};
if (!lastUpdate) return;
currentUpdate.deltaDistMetres = lastUpdate.position.distanceTo(currentUpdate.position) * 1000;
currentUpdate.deltaTimeSecs = (currentUpdate.time - lastUpdate.time) * 1000;
currentUpdate.speed = (currentUpdate.deltaDistMetres / currentUpdate.deltaTimeSecs);
currentUpdate.accelerationGPS = (currentUpdate.speed - lastUpdate.speed) / currentUpdate.deltaTimeSecs;
/* THIS IS MY LITTLE CODE
(I have an element id="log" in my html)
*/
var distanceChange = currentUpdate.deltaDistMetres;
distanceTotal += distanceChange;
document.getElementById("log").innerHTML = "Total distance " + distanceTotal + " m";
}
function onPositionError(error) {
console.log("Error: " + error.message);
}
$(document).on("deviceready", function () {
navigator.geolocation.watchPosition(onPositionUpdate, onPositionError, { frequency:3000, timeout: 30000, enableHighAccuracy: true });
});

Function to find point of intersection between a ray and a sphere? (Javascript)

I was going to stop at intervals on the ray and check if they were within the radius of the sphere. I found much more efficient mathematical ways to do this but they are all written in C++.
Something like this should work (inefficient version but without any dependency and easy to follow):
function dotProduct(v1, v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
function squaredLength(v) {
return dotProduct(v, v);
}
// Returns whether the ray intersects the sphere
// #param[in] center center point of the sphere (C)
// #param[in] radius radius of the sphere (R)
// #param[in] origin origin point of the ray (O)
// #param[in] direction direction vector of the ray (D)
// #param[out] intersection closest intersection point of the ray with the sphere, if any
function intersectRayWithSphere(center, radius,
origin, direction,
intersection) {
// Solve |O + t D - C|^2 = R^2
// t^2 |D|^2 + 2 t < D, O - C > + |O - C|^2 - R^2 = 0
var OC = intersection; // Use the output parameter as temporary workspace
OC.x = origin.x - center.x;
OC.y = origin.y - center.y;
OC.z = origin.z - center.z;
// Solve the quadratic equation a t^2 + 2 t b + c = 0
var a = squaredLength(direction);
var b = dotProduct(direction, OC);
var c = squaredLength(OC) - radius * radius;
var delta = b * b - a * c;
if (delta < 0) // No solution
return false;
// One or two solutions, take the closest (positive) intersection
var sqrtDelta = Math.sqrt(delta);
// a >= 0
var tMin = (-b - sqrtDelta) / a;
var tMax = (-b + sqrtDelta) / a;
if (tMax < 0) // All intersection points are behind the origin of the ray
return false;
// tMax >= 0
var t = tMin >= 0 ? tMin : tMax;
intersection.x = origin.x + t * direction.x;
intersection.y = origin.y + t * direction.y;
intersection.z = origin.z + t * direction.z;
return true;
}

How to "push out "XYZ coordinates forming a 3D orbit with an offset in the middle

I have a orbit of length 200. But it is centered around a sun of radius 0 (length 0). Now I want to expand the sun to have a radius of 1 and "push" out the outer orbits as well.
The XYZ coordinates look like this:
[-6.76, 5.75, -1.06],
[-6.95, 5.54, -0.91],
[-7.13, 5.33, -0.75],
[-7.31, 5.11, -0.58]
... followed by 196 more coordinates
I tried tried a lot of things to make the circle bigger * radius and / someNumbers. To at least try to do it myself.
But i lost it when i made an if like this:
If(the x coordination > 0)
the x coordination += 1;
}
Else{
the x coordination += 1;
}
And also for Y and Z but when they came close to the 1 and -1 position of that axis they skipped to the other side.
Creating a line (with the width of 1 on both sides) of emptiness along the axis.
Result of MBo's awnser(view from above):
// arrayIndex is a number to remember at which point it is in the orbit array
satellites.forEach(function (element) {
if (element.arrayIndex>= element.satellite.coordinates.length) {
element.arrayIndex= 0;
}
var posX = element.satellite.coordinates[element.arrayIndex][0];
var posY = element.satellite.coordinates[element.arrayIndex][1];
var posZ = element.satellite.coordinates[element.arrayIndex][2];
R = Math.sqrt(posX^2 + posY^2 + posZ^2);
cf = (R + earthRadius) / R;
xnew = posX * cf;
ynew = posY * cf;
znew = posZ * cf;
// var posX = earthRadius * (element.satellite.coordinates[element.test][0] / (200 * earthRadius) * earthRadius);
// var posY = earthRadius * (element.satellite.coordinates[element.test][1] / (200 * earthRadius) * earthRadius);
// var posZ = earthRadius * (element.satellite.coordinates[element.test][2] / (200 * earthRadius) * earthRadius);
// divide by 100 to scale it down some more
element.position.x = xnew / 100;
element.position.y = ynew / 100;
element.position.z = znew / 100;
element.arrayIndex= element.arrayIndex+ 1;
});
You have orbit radius
/////////R = Sqrt(x^2 + y^2 + z^2)
Edit to avoid confusion:
R = Sqrt(x * x + y * y + z * z)
You need to modify coordinates to make orbit radius R+r. To preserve orbit form, for every point find it's R, and multiply all components by coefficient (R+r)/R
R = Sqrt(x^2 + y^2 + z^2)
cf = (R + r) / R
xnew = x * cf
ynew = y * cf
znew = z * cf

Translating pixels in canvas on sine wave

I am trying to create an image distortion effect on my canvas, but nothing appears to be happening. Here is my code:
self.drawScreen = function (abilityAnimator, elapsed) {
if (!self.initialized) {
self.initialized = true;
self.rawData = abilityAnimator.context.getImageData(self.targetX, self.targetY, self.width, self.height);
self.initialImgData = self.rawData.data;
}
abilityAnimator.drawBackground();
self.rawData = abilityAnimator.context.getImageData(self.targetX, self.targetY, self.width, self.height);
var imgData = self.rawData.data, rootIndex, translationIndex, newX;
for (var y = 0; y < self.height; y++) {
for (var x = 0; x < self.width; x++) {
rootIndex = (y * self.height + x) * 4;
newX = Math.ceil(self.amplitude * Math.sin(self.frequency * (y + elapsed)));
translationIndex = (y * self.width + newX) * 4;
imgData[translationIndex + 0] = self.initialImgData[rootIndex + 0];
imgData[translationIndex + 1] = self.initialImgData[rootIndex + 1];
imgData[translationIndex + 2] = self.initialImgData[rootIndex + 2];
imgData[translationIndex + 3] = self.initialImgData[rootIndex + 3];
}
}
abilityAnimator.context.putImageData(self.rawData, self.targetX, self.targetY);
};
abilityAnimator is a wrapper for my canvas object:
abilityAnimator.context = //canvas.context
abilityAnimator.drawBackground = function(){
this.canvas.width = this.canvas.width;
}
elapsed is simply the number of milliseconds since the animation began (elapsed is always <= 2000)
My member variables have the following values:
self.width = 125;
self.height = 125;
self.frequency = 0.5;
self.amplitude = self.width / 4;
self.targetX = //arbitrary value within canvas
self.targetY = //arbitrary value within canvas
I can translate the image to the right very easily so long as there is no sine function, however, introducing these lines:
newX = Math.ceil(self.amplitude * Math.sin(self.frequency * (y + elapsed)));
translationIndex = (y * self.width + newX) * 4;
Causes nothing to render at all. The translation indexes don't appear to be very strange, and the nature of the sinusoidal function should guarantee that the offset is no greater than 125 / 4 pixels.
Your formula using sin is wrong, the frequency will be so high it will be seen as noise.
The typical formula to build a sinusoid is :
res = sin ( 2 * PI * frequency * time ) ;
where frequency is in Hz and time in s.
So in js that would translate to :
res = Math.sin ( 2 * Math.PI * f * time_ms * 1e-3 ) ;
you can obviously compute just once the constant factor :
self.frequency = 0.5 * ( 2 * Math.PI * 1e-3 );
// then use
res = Math.sin ( self.frequency * time_ms ) ;
So you see you were 1000 times too fast.
Second issue :
Now that you have your time frequency ok, let's fix your spatial frequency : when multiplying time frequency by y, you're quite adding apples and cats.
To build the formula, think that you want to cross n time 2*PI during the height of the canvas.
So :
spatialFrequency = ( n ) * 2 * Math.PI / canvasHeight ;
and your formula becomes :
res = Math.sin ( self.frequency * time_ms + spatialFrequency * y ) ;
You can play with various values with this jsbin i made so you can visualize the effect :
http://jsbin.com/ludizubo/1/edit?js,output

How do I draw x number of circles around a central circle, starting at the top of the center circle?

I'm trying to create a UI that has a lot of items in circles. Sometimes these circles will have related circles that should be displayed around them.
I was able to cobble together something that works, here.
The problem is that the outer circles start near 0 degrees, and I'd like them to start at an angle supplied by the consumer of the function/library. I was never a star at trigonometry, or geometry, so I could use a little help.
As you can see in the consuming code, there is a setting: startingDegree: 270 that the function getPosition should honor, but I haven't been able to figure out how.
Update 04/02/2014:
as I mentioned in my comment to Salix alba, I wasn't clear above, but what I needed was to be able to specify the radius of the satellite circles, and to have them go only partly all the way around. Salix gave a solution that calculates the size the satellites need to be to fit around the center circle uniformly.
Using some of the hints in Salix's answer, I was able to achieve the desired result... and have an extra "mode," thanks to Salix, in the future.
The working, though still rough, solution is here: http://jsfiddle.net/RD4RZ/11/. Here is the entire code (just so it's all on SO):
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title></title>
<script type="text/javascript" src="//code.jquery.com/jquery-1.10.1.js"></script>
<style type="text/css">
.circle
{
position: absolute;
width: 100px;
height: 100px;
background-repeat: no-repeat;background-position: center center;
border: 80px solid #a19084;
border-radius: 50%;
-moz-border-radius: 50%;
}
.sm
{
border: 2px solid #a19084;
}
</style>
<script type="text/javascript">//<![CDATA[
$(function () {
function sind(x) {
return Math.sin(x * Math.PI / 180);
}
/*the law of cosines:
cc = aa + bb - 2ab cos(C), where c is the satellite diameter a and b are the legs
solving for cos C, cos C = ( aa + bb - cc ) / 2ab
Math.acos((a * a + b * b - c * c) / (2 * a * b)) = C
*/
function solveAngle(a, b, c) { // Returns angle C using law of cosines
var temp = (a * a + b * b - c * c) / (2 * a * b);
if (temp >= -1 && temp <= 1)
return radToDeg(Math.acos(temp));
else
throw "No solution";
}
function radToDeg(x) {
return x / Math.PI * 180;
}
function degToRad(x) {
return x * (Math.PI / 180);
}
var satellite = {
//settings must have: collection (array), itemDiameter (number), minCenterDiameter (number), center (json with x, y numbers)
//optional: itemPadding (number), evenDistribution (boolean), centerPadding (boolean), noOverLap (boolean)
getPosition: function (settings) {
//backwards compat
settings.centerPadding = settings.centerPadding || settings.itemPadding;
settings.noOverLap = typeof settings.noOverLap == 'undefined' ? true : settings.noOverLap;
settings.startingDegree = settings.startingDegree || 270;
settings.startSatellitesOnEdge = typeof settings.startSatellitesOnEdge == 'undefined' ? true : settings.startSatellitesOnEdge;
var itemIndex = $.inArray(settings.item, settings.collection);
var itemCnt = settings.collection.length;
var satelliteSide = settings.itemDiameter + (settings.itemSeparation || 0) + (settings.itemPadding || 0);
var evenDistribution = typeof settings.evenDistribution == 'undefined' ? true : settings.evenDistribution;
var degreeOfSeparation = (360 / itemCnt);
/*
we know all three sides:
one side is the diameter of the satellite itself (plus any padding). the other two
are the parent radius + the radius of the satellite itself (plus any padding).
given that, we need to find the angle of separation using the law of cosines (solveAngle)
*/
//if (!evenDistribution) {
var side1 = ((satelliteSide / 2)) + ((settings.minCenterDiameter + (2 * settings.centerPadding)) / 2);
var side2 = satelliteSide;;
var degreeOfSeparationBasedOnSatellite = solveAngle(side1, side1, side2); //Math.acos(((((side1 * side1) + (side2 * side2)) - (side2 * side2)) / (side2 * side2 * 2)) / 180 * Math.PI) * Math.PI;
degreeOfSeparation = evenDistribution? degreeOfSeparation: settings.noOverLap ? Math.min(degreeOfSeparation, degreeOfSeparationBasedOnSatellite) : degreeOfSeparationBasedOnSatellite;
//}
//angle-angle-side
//a-A-B
var a = satelliteSide;
var A = degreeOfSeparation;
/*
the three angles of any triangle add up to 180. We know one angle (degreeOfSeparation)
and we know the other two are equivalent to each other, so...
*/
var B = (180 - A) / 2;
//b is length necessary to fit all satellites, might be too short to be outside of base circle
var b = a * sind(B) / sind(A);
var offset = (settings.itemDiameter / 2) + (settings.itemPadding || 0); // 1; //
var onBaseCircleLegLength = ((settings.minCenterDiameter / 2) + settings.centerPadding) + offset;
var offBase = false;
if (b > onBaseCircleLegLength) {
offBase = true;
}
b = settings.noOverLap ? Math.max(b, onBaseCircleLegLength) : onBaseCircleLegLength;
var radianDegree = degToRad(degreeOfSeparation);
//log('b=' + b);
//log('settings.center.x=' + settings.center.x);
//log('settings.center.y=' + settings.center.y);
var degreeOffset = settings.startingDegree;
if (settings.startSatellitesOnEdge) {
degreeOffset += ((offBase ? degreeOfSeparation : degreeOfSeparationBasedOnSatellite) / 2);
}
var i = ((Math.PI * degreeOffset) / 180) + (radianDegree * itemIndex);// + (degToRad(degreeOfSeparationBasedOnSatellite) / 2); //(radianDegree) * (itemIndex);
var x = (Math.cos(i) * b) + (settings.center.x - offset);
var y = (Math.sin(i) * b) + (settings.center.y - offset);
return { 'x': Math.round(x), 'y': Math.round(y) };
}
,
/* if we ever want to size satellite by how many need to fit tight around the base circle:
x: function calcCircles(n) {
circles.splice(0); // clear out old circles
var angle = Math.PI / n;
var s = Math.sin(angle);
var r = baseRadius * s / (1 - s);
console.log(angle);
console.log(s);
console.log(r);
console.log(startAngle);
console.log(startAngle / (Math.PI * 2));
for (var i = 0; i < n; ++i) {
var phi = ((Math.PI * startAngle) / 180) + (angle * i * 2);
var cx = 150 + (baseRadius + r) * Math.cos(phi);
var cy = 150 + (baseRadius + r) * Math.sin(phi);
circles.push(new Circle(cx, cy, r));
}
},
*/
//settings must have: collection (array), itemDiameter (number), minCenterDiameter (number), center (json with x, y numbers)
//optional: itemPadding (number), evenDistribution (boolean), centerPadding (boolean), noOverLap (boolean)
getAllPositions: function (settings) {
var point;
var points = [];
var collection = settings.collection;
for (var i = 0; i < collection.length; i++) {
settings.item = collection[i]
points.push(satellite.getPosition(settings));
}
return points;
}
};
var el = $("#center"), cnt = 10, arr = [], itemDiameter= 100;
for (var c = 0; c < cnt; c++) {
arr.push(c);
}
var settings = {
collection: arr,
itemDiameter: itemDiameter,
minCenterDiameter: el.width(),
center: { x: el.width() / 2, y: el.width() / 2 },
itemPadding: 2,
evenDistribution: false,
centerPadding: parseInt(el.css("border-width")),
noOverLap: false,
startingDegree: 270
};
var points = satellite.getAllPositions(settings);
for (var i = 0; i < points.length; i++) {
var $newdiv1 = $("<div></div>");
var div = el.append($newdiv1);
$newdiv1.addClass("circle").addClass("sm");
$newdiv1.text(i);
$newdiv1.css({ left: points[i].x, top: points[i].y, width: itemDiameter +'px', height: itemDiameter +'px' });
}
});//]]>
</script>
</head>
<body>
<div id="center" class="circle" style="left:250px;top:250px" >
</div>
</body>
</html>
The central bit you need to work out is radius of the small circles. If you have R for radius of the central circle and you want to fit n smaller circles around it. Let the as yet unknown radius of the small circle be r. We can construct a right angle triangle with one corner in the center of the big circle one in the center of the small circle and one which is where a line from the center is tangent to the small circle. This will be a right angle. The angle at the center is a the hypotenuse has length R+r the opposite is r and we don't need the adjacent. Using trig
sin(a) = op / hyp = r / (R + r)
rearrange
(R+r) sin(a) = r
R sin(a) + r sin(a) = r
R sin(a) = r - r sin(a)
R sin(a) = (1 - sin(a)) r
r = R sin(a) / ( 1 - sin(a))
once we have r we are pretty much done.
You can see this as a fiddle http://jsfiddle.net/SalixAlba/7mAAS/
// canvas and mousedown related variables
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var $canvas = $("#canvas");
var canvasOffset = $canvas.offset();
var offsetX = canvasOffset.left;
var offsetY = canvasOffset.top;
var scrollX = $canvas.scrollLeft();
var scrollY = $canvas.scrollTop();
// save canvas size to vars b/ they're used often
var canvasWidth = canvas.width;
var canvasHeight = canvas.height;
var baseRadius = 50;
var baseCircle = new Circle(150,150,50);
var nCircles = 7;
var startAngle = 15.0;
function Circle(x,y,r) {
this.x = x;
this.y = y;
this.r = r;
}
Circle.prototype.draw = function() {
ctx.beginPath();
ctx.arc(this.x,this.y,this.r, 0, 2 * Math.PI, false);
ctx.stroke();
}
var circles = new Array();
function calcCircles(n) {
circles.splice(0); // clear out old circles
var angle = Math.PI / n;
var s = Math.sin(angle);
var r = baseRadius * s / (1-s);
console.log(angle);
console.log(s);
console.log(r);
for(var i=0;i<n;++i) {
var phi = startAngle + angle * i * 2;
var cx = 150+(baseRadius + r) * Math.cos(phi);
var cy = 150+(baseRadius + r) * Math.sin(phi);
circles.push(new Circle(cx,cy,r));
}
}
function draw() {
baseCircle.draw();
circles.forEach(function(ele){ele.draw()});
}
calcCircles(7);
draw();

Categories

Resources