Eval alternative - javascript

This code works as a calculator, but the scratch pad at codeacademy tells me that eval is evil. Is there another way to do the same thing without using eval?
var calculate = prompt("Enter problem");
alert(eval(calculate));

eval evaluates the string input as JavaScript and coincidentally JavaScript supports calculations and understands 1+1, which makes it suitable as a calculator.
If you don't want to use eval, which is good, you have to parse that string yourself and, finally, do the computation yourself (not exactly yourself though). Have a look at this math processor, which does what you want.
Basically what you do is:
Read the input string char by char (with this kind of problem it's still possible)
Building a tree of actions you want to do
At the end of the string, you evaluate the tree and do some calculations
For example you have "1+2/3", this could evaluate to the following data structure:
"+"
/ \
"1" "/"
/ \
"2" "3"
You could then traverse that structure from top to bottom and do the computations.
At first you've got the "+", which has a 1 on the left side and some expression on the right side,
so you have to evaluate that expression first. So you go to the "/" node, which has two numeric children. Knowing that, you can now compute 2/3 and replace the whole "/" node with the result of that. Now you can go up again and compute the result of the "+" node: 1 + 0.66. Now you replace that node with the result and all you've got left is the result of the expression.
Some pseudo code on how this might look in your code:
calculation(operator, leftValue, rightValue):
switch operator {
case '+': return leftValue + rightValue
case '-': return 42
}
action(node):
node.value = calculation(node.operator, action(node.left) action(node.right))
As you might have noticed, the tree is designed in such a way that it honors operator precedence. The / has a lower level than the +, which means it get's evaluated first.
However you do this in detail, that's basically the way to go.

You can use the expression parser that is included in the math.js library:
http://mathjs.org
Example usage:
mathjs.evaluate('1.2 / (2.3 + 0.7)'); // 0.4
mathjs.evaluate('5.08 cm in inch'); // 2 inch
mathjs.evaluate('sin(45 deg) ^ 2'); // 0.5
mathjs.evaluate('9 / 3 + 2i'); // 3 + 2i
mathjs.evaluate('det([-1, 2; 3, 1])'); // -7

You can use eval safely for a simple arithmetic calculator by filtering the input- if you only accept digits, decimal points and operators (+,-,*,/) you won't get in much trouble. If you want advanced Math functions, you are better off with the parser suggestions.
function calculate(){
"use strict";
var s= prompt('Enter problem');
if(/[^0-9()*+\/ .-]+/.test(s)) throw Error('bad input...');
try{
var ans= eval(s);
}
catch(er){
alert(er.message);
}
alert(ans);
}
calculate()

I write some functions when I had a problem like this. Maybe this can help:
data = [
{id:1,val1:"test",val2:"test2",val2:"test3"},
{id:2,val1:"test",val2:"test2",val2:"test3"},
{id:3,val1:"test",val2:"test2",val2:"test3"}
];
datakey = Object.keys(data[0]);
// here's a fix for e['datakey[f]'] >> e[x]
vix = function(e,f){
a = "string";
e[a] = datakey[f];
x = e.string;
end = e[x];
delete e.string;
return end;
};
// here's a fix to define that variable
vox = function(e,f,string){
a = "string";
e[a] = datakey[f];
x = e.string;
end = e[x] = string;
delete e.string;
};
row = 2 // 3th row ==> {id:3,val1:"test",val2:"test2",val2:"test3"}
column = 1 //datakey 2 ==> val1
vox(data[row],column,"new value");
alert(data[2].val1); //the value that we have changed

Related

How to convert K, M, B formatted strings to plain numbers?

Is there a cleaner way to convert the following or is a function that covers each case required? I've found plenty of answers going one way but not the other. And they all seem to point towards requiring switch cases, etc.
Desired input/output:
786 remains 786
2423 remains 2423
1k becomes 1000
5.816k becomes 5816
10.61k becomes 10610
2.5m becomes 2500000
1.250064b becomes 1250064000
etc
Also looking to make it not case-sensitive, so 1k and 1K are both 1000. But that should be an easy enough modification.
Updated with condition for no abbreviation.
I don't think it's too much overhead just use javascript to get there. The below code works, though not as fast as using a straight sheets formula such as:
=If(isnumber(right(A1,1)+0),A1,value(mid(A1,1,len(A1)-1))*
iferror(1000^match(right(A1,1),{"K","M","B","T","Q"},0),1))
or as an array formula:
=filter(if(ISNUMBER(right(A1:A,1)+0),A1:A,value(mid(A1:A,1,
len(A1:A)-1))*iferror(1000^match(right(A1:A,1),
{"K","M","B","T"},0),1)),A1:A<>"")
Using App scripts is slower, but this works. You can add in more conditions to clean your incoming string.
function unabbreviateNumber(someInput) {
const someLetters = ["k", "m", "b", "t", "q"];
var lastLetter = someInput.toString().slice(someInput.length - 1, someInput.length).toLowerCase();
if (isNaN(lastLetter)){
//example string cleanup
someInput = someInput.replace(/ /g, ''); //removes all spaces
someInput = someInput.replace(/\$/g, ''); //removes dollar sign
const zOutput = parseFloat(someInput.slice(0, someInput.length - 1));
const zMultiplier = someLetters.findIndex(x => x == lastLetter) + 1;
return zOutput * 1000 ** zMultiplier;
}else{
return someInput;
}
}
You can try something like this:
=ARRAYFORMULA(if(len(A2:A), IF(REGEXMATCH(lower(A2:A),"k$"),
Value(SUBSTITUTE(lower(A2:A),"k",""))*1000,
IF(REGEXMATCH(lower(A2:A),"m$"),
Value(SUBSTITUTE(LOWER(A2:A),"m",""))*1000000,
IF(REGEXMATCH(lower(A2:A),"b$"),
Value(SUBSTITUTE(lower(A2:A),"b",""))*1000000000,
value(A2:A)))),))

JavaScript - Matching alphanumeric patterns with RegExp

I'm new to RegExp and to JS in general (Coming from Python), so this might be an easy question:
I'm trying to code an algebraic calculator in Javascript that receives an algebraic equation as a string, e.g.,
string = 'x^2 + 30x -12 = 4x^2 - 12x + 30';
The algorithm is already able to break the string in a single list, with all values on the right side multiplied by -1 so I can equate it all to 0, however, one of the steps to solve the equation involves creating a hashtable/dictionary, having the variable as key.
The string above results in a list eq:
eq = ['x^2', '+30x', '-12', '-4x^2', '+12x', '-30'];
I'm currently planning on iterating through this list, and using RegExp to identify both variables and the respective multiplier, so I can create a hashTable/Dictionary that will allow me to simplify the equation, such as this one:
hashTable = {
'x^2': [1, -4],
'x': [30, 12],
' ': [-12]
}
I plan on using some kind of for loop to iter through the array, and applying a match on each string to get the values I need, but I'm quite frankly, stumped.
I have already used RegExp to separate the string into the individual parts of the equation and to remove eventual spaces, but I can't imagine a way to separate -4 from x^2 in '-4x^2'.
You can try this
(-?\d+)x\^\d+.
When you execute match function :
var res = "-4x^2".match(/(-?\d+)x\^\d+/)
You will get res as an array : [ "-4x^2", "-4" ]
You have your '-4' in res[1].
By adding another group on the second \d+ (numeric char), you can retrieve the x power.
var res = "-4x^2".match(/(-?\d+)x\^(\d+)/) //res = [ "-4x^2", "-4", "2" ]
Hope it helps
If you know that the LHS of the hashtable is going to be at the end of the string. Lets say '4x', x is at the end or '-4x^2' where x^2 is at end, then we can get the number of the expression:
var exp = '-4x^2'
exp.split('x^2')[0] // will return -4
I hope this is what you were looking for.
function splitTerm(term) {
var regex = /([+-]?)([0-9]*)?([a-z](\^[0-9]+)?)?/
var match = regex.exec(term);
return {
constant: parseInt((match[1] || '') + (match[2] || 1)),
variable: match[3]
}
}
splitTerm('x^2'); // => {constant: 1, variable: "x^2"}
splitTerm('+30x'); // => {constant: 30, variable: "x"}
splitTerm('-12'); // => {constant: -12, variable: undefined}
Additionally, these tool may help you analyze and understand regular expressions:
https://regexper.com/
https://regex101.com/
http://rick.measham.id.au/paste/explain.pl

I need a JavaScript procedure that reverses the following procedure

I have the following function that encrypts a string and I was hoping for a function that reverses the process.
function encryptStr(thisString)
{
retString = "";
/* Make retString a string of the 8-bit representations of
the ASCII values of its thisCharacters in order.
EXAMPLE: "abc" --> "011000010110001001100011"
since the ASCII values for 'a', 'b' and 'c'
are 97=01100001, 98=01100010 and 99=01100011
respectively
*/
for (i = 0, j = thisString.length; i < j; i++)
{
bits = thisString.charCodeAt(i).toString(2);
retString += new Array(8-bits.length+1).join('0') + bits;
}
/* Compress retString by taking each substring of 3, 4, ..., 9
consecutive 1's or 0's and it by the number of such consecutive
thisCharacters followed by the thisCharacter.
EXAMPLES:
"10101000010111" --> "10101401031"
"001100011111111111111" --> "0011319151"
*/
retString = retString.replace(/([01])\1{2,8}/g, function($0, $1) { return ($0.length + $1);});
return retString;
}
I tried to make a function and I'm probably doing it wrong because it's 50 lines already. I'm realizing that there's tons of error checking that needs to go on. For instance, I just realized a potential problem because JavaScript characters don't span the entire 127 ASCII values. Should I just give up? Is this a futile problem?
First, find the numbers in the string which are not 0 or 1. Then, expand them in the opposite way that the original function collapsed them. You can again use String.prototype.replace() here with a replacement function...
str.replace(/([2-9])([01])/g,
function(all, replacementCount, bit) {
return Array(+replacementCount + 1).join(bit);
});
Then, simply decode the bit stream back into characters with String.fromCharCode(). You'd need to chunk the stream into 8 bit chunks, and then perform the conversion. I chose to use Array.prototype.reduce() as it's quite suited to this task. Alternatively, you could use String.fromCharCode.apply(String, chunks.map(function(byte) { return parseInt(byte, 2); })) to get the resulting string.
Something like...
str.split(/(.{8})/g).reduce(function(str, byte) {
return str + String.fromCharCode(parseInt(byte, 2));
}, "");
Put it together, and you get a function like...
function decryptStr(thisString) {
return thisString.replace(/([2-9])([01])/g,
function (all, replacementCount, bit) {
return Array(+replacementCount + 1).join(bit);
}).split(/(.{8})/g).reduce(function (str, byte) {
return str + String.fromCharCode(parseInt(byte, 2));
}, "");
}
jsFiddle.
Also, remember to place var in front of your variable declarations, otherwise those variable identifiers will leak to the containing scope until they're resolved (which is usually the global object).

javascript parseFloat '500,000' returns 500 when I need 500000

How would it be a nice way of handling this?
I already thought on removing the comma and then parsing to float.
Do you know a better/cleaner way?
Thanks
parseFloat( theString.replace(/,/g,'') );
I don't know why no one has suggested this expression-
parseFloat( theString.replace(/[^\d\.]/g,'') );
Removes any non-numeric characters except for periods. You don't need custom functions/loops for this either, that's just overkill.
Nope. Remove the comma.
You can use the string replace method, but not in a one liner as a regexp allows.
while(str.indexOf(',')!=-1)str= str.replace(',','');
parseFloat(str);
Or to make a single expression without a regexp=
return parseFloat(str.split(',').join(''));
I'd use the regexp.
I don't have enough reputation to add a comment, but for anyone wondering on the performance for regex vs split/join, here's a quick fiddle: https://jsfiddle.net/uh3mmgru/
var test = "1,123,214.19";
var t0 = performance.now();
for (var i = 0; i < 1000000; i++)
{
var a = parseFloat(test.replace(/,/g,''));
}
var t1 = performance.now();
document.write('Regex took: ' + (t1 - t0) + ' ms');
document.write('<br>')
var t0 = performance.now();
for (var i = 0; i < 1000000; i++)
{
var b = parseFloat(test.split(',').join(''));
}
var t1 = performance.now();
document.write('Split/join took: ' + (t1 - t0) + ' ms');
The results I get are (for 1 million loops each):
Regex: 263.335 ms
Split/join: 1035.875 ms
So I think its safe to say that regex is the way to go in this scenario
Building on the idea from #kennebec, if you want to make sure that the commas are correct, and you don't want to replace commas, you could try something like this:
function myParse(num) {
var n2 = num.split(",")
out = 0
for(var i = 0; i < n2.length; i++) {
out *= 1000;
out += parseFloat(n2[i])
}
return out
}
alert(myParse("1,432,85"));
// Returns 1432085, as the comma is misplaced.
It may not be as fast, but you wanted alternatives :)
What about a simple function to solve most of the common problems?
function getValue(obj) {
Value = parseFloat( $(obj).val().replace(/,/g,'') ).toFixed(2);
return +Value;
}
The above function gets values from fields (using jQuery) assuming the entered values are numeric (I rather validate fields while user is entering data, so I know for sure field content is numeric).
In case of floating point values, if well formatted in the field, the function will return a float point value correctly.
This function is far from complete, but it quickly fix the "," (comma) issue for values entered as 1,234.56 or 1,234,567. It will return valid number as far the content is numeric.
The + (plus) sign in front of the variable Value in the return command is a "dirty trick" used in JavaScript to assure the variable content returned will be numeric.
it is easy to modify the function to other purposes, such as (for instance), convert strings to numeric values taking care of the "," (comma) issue:
function parseValue(str) {
Value = parseFloat( str.replace(/,/g,'') ).toFixed(2);
return +Value;
}
Both operations can even be combined in one function. I.e.:
function parseNumber(item,isField=false) {
Value = (isField) ? parseFloat( $(item).val().replace(/,/g,'') ).toFixed(2) : parseFloat( item.replace(/,/g,'') ).toFixed(2)
return +Value;
}
In such case, if function is called result = parseNumber('12,092.98'); it will parse the value as it is a String. But if called as result = parseNumber('#MyField', true); it will try to obtain the value from '#MyField'.
As I said before, such functions are far from complete, and can be expanded in many ways. One idea is to check the first character of the given parameter (string) and decide based on the string format where to obtain the value to be parsed (if 1st character is = '#' then it is an ID from a DOM object, otherwise, if it begins with a number, it must be a string to be parsed).
Try it... Happy coding.

Is there "0b" or something similar to represent a binary number in Javascript

I know that 0x is a prefix for hexadecimal numbers in Javascript. For example, 0xFF stands for the number 255.
Is there something similar for binary numbers ? I would expect 0b1111 to represent the number 15, but this doesn't work for me.
Update:
Newer versions of JavaScript -- specifically ECMAScript 6 -- have added support for binary (prefix 0b), octal (prefix 0o) and hexadecimal (prefix: 0x) numeric literals:
var bin = 0b1111; // bin will be set to 15
var oct = 0o17; // oct will be set to 15
var oxx = 017; // oxx will be set to 15
var hex = 0xF; // hex will be set to 15
// note: bB oO xX are all valid
This feature is already available in Firefox and Chrome. It's not currently supported in IE, but apparently will be when Spartan arrives.
(Thanks to Semicolon's comment and urish's answer for pointing this out.)
Original Answer:
No, there isn't an equivalent for binary numbers. JavaScript only supports numeric literals in decimal (no prefix), hexadecimal (prefix 0x) and octal (prefix 0) formats.
One possible alternative is to pass a binary string to the parseInt method along with the radix:
var foo = parseInt('1111', 2); // foo will be set to 15
In ECMASCript 6 this will be supported as a part of the language, i.e. 0b1111 === 15 is true. You can also use an uppercase B (e.g. 0B1111).
Look for NumericLiterals in the ES6 Spec.
I know that people says that extending the prototypes is not a good idea, but been your script...
I do it this way:
Object.defineProperty(
Number.prototype, 'b', {
set:function(){
return false;
},
get:function(){
return parseInt(this, 2);
}
}
);
100..b // returns 4
11111111..b // returns 511
10..b+1 // returns 3
// and so on
If your primary concern is display rather than coding, there's a built-in conversion system you can use:
var num = 255;
document.writeln(num.toString(16)); // Outputs: "ff"
document.writeln(num.toString(8)); // Outputs: "377"
document.writeln(num.toString(2)); // Outputs: "11111111"
Ref: MDN on Number.prototype.toString
As far as I know it is not possible to use a binary denoter in Javascript. I have three solutions for you, all of which have their issues. I think alternative 3 is the most "good looking" for readability, and it is possibly much faster than the rest - except for it's initial run time cost. The problem is it only supports values up to 255.
Alternative 1: "00001111".b()
String.prototype.b = function() { return parseInt(this,2); }
Alternative 2: b("00001111")
function b(i) { if(typeof i=='string') return parseInt(i,2); throw "Expects string"; }
Alternative 3: b00001111
This version allows you to type either 8 digit binary b00000000, 4 digit b0000 and variable digits b0. That is b01 is illegal, you have to use b0001 or b1.
String.prototype.lpad = function(padString, length) {
var str = this;
while (str.length < length)
str = padString + str;
return str;
}
for(var i = 0; i < 256; i++)
window['b' + i.toString(2)] = window['b' + i.toString(2).lpad('0', 8)] = window['b' + i.toString(2).lpad('0', 4)] = i;
May be this will usefull:
var bin = 1111;
var dec = parseInt(bin, 2);
// 15
No, but you can use parseInt and optionally omit the quotes.
parseInt(110, 2); // this is 6
parseInt("110", 2); // this is also 6
The only disadvantage of omitting the quotes is that, for very large numbers, you will overflow faster:
parseInt(10000000000000000000000, 2); // this gives 1
parseInt("10000000000000000000000", 2); // this gives 4194304
I know this does not actually answer the asked Q (which was already answered several times) as is, however I suggest that you (or others interested in this subject) consider the fact that the most readable & backwards/future/cross browser-compatible way would be to just use the hex representation.
From the phrasing of the Q it would seem that you are only talking about using binary literals in your code and not processing of binary representations of numeric values (for which parstInt is the way to go).
I doubt that there are many programmers that need to handle binary numbers that are not familiar with the mapping of 0-F to 0000-1111.
so basically make groups of four and use hex notation.
so instead of writing 101000000010 you would use 0xA02 which has exactly the same meaning and is far more readable and less less likely to have errors.
Just consider readability, Try comparing which of those is bigger:
10001000000010010 or 1001000000010010
and what if I write them like this:
0x11012 or 0x9012
Convert binary strings to numbers and visa-versa.
var b = function(n) {
if(typeof n === 'string')
return parseInt(n, 2);
else if (typeof n === 'number')
return n.toString(2);
throw "unknown input";
};
Using Number() function works...
// using Number()
var bin = Number('0b1111'); // bin will be set to 15
var oct = Number('0o17'); // oct will be set to 15
var oxx = Number('0xF'); // hex will be set to 15
// making function convTo
const convTo = (prefix,n) => {
return Number(`${prefix}${n}`) //Here put prefix 0b, 0x and num
}
console.log(bin)
console.log(oct)
console.log(oxx)
// Using convTo function
console.log(convTo('0b',1111))

Categories

Resources