Javascript defining functions - javascript

I've been learning Javascript with Khan Academy. I'm looking at : http://www.khanacademy.org/cs/speed-circles/964929070
there is a line that reads "var draw = function() {...}" is he defining a function called draw? Or is the variable draw calling some function (which I don't see defined)?
Thanks!

Yes, a function expression is being assigned to the variable named draw. You can even call it:
var draw = function() {
console.log('xyz');
};
draw(); // 'xyz'

In JavaScript, functions are objects, just like arrays and -logically- objects are. As you may have found out already these objects can be assigned to a multitude of variables, but as soon as you change one of these variables, they all change. That's because JS always assigns by value, but a variable is never assigned an object directly: it's assigned a reference to an object:
var obj = {iam: 'an object'};
var reassign = obj;
console.log(obj);//shows object
console.log(reassign);//surprize, shows the same thing
reassign.bar = 'foobar';
console.log(obj.bar);//logs foobar, the variable obj has gained the same property, because it is the same object.
The same applies to functions, being objects, the can be assigned to variables/properties all over the place, but it'll still be the same object/function:
var foo = function()
{
console.log('I am an object');
};
var second = foo;
second();//logs I am an object
console.log(second === foo);//logs true, because they both reference the same thing
Why, then, you might ask is an anonymous function being assigned to a variable, instead of just declaring a function as you'd expect? Well:
function foo(){}
is hoisted, prior to running any code, JS moves all function declarations and variable declarations to the very top of the scope, but in your case, you're not simply defining a function, or declaring a variable: JS has to do something, too: assign a reference to a variable. The function won't be hoisted:
var foo = function()
{
console.log('foo');
};
foo();//logs foo
foo = function()
{
console.log('bar');
};
foo();//logs bar now
If foo were undefined prior to the assignment, you'd get an error. If any code preceded the code above, JS would hoist the variable declaration of foo, but it's value would still be undefined.
What's the point? This will prove useful when you start playing with closures, or if you need the function to differ, depending on a branch (if (x){ foo = functionX} else { foo = functionY;}). These are just 2 reasons why you'd want to avoid scope hoisting... but the most important reason of all ATM has to be redefining a function on the fly

Note that in processing.js (as used by this Khan academy demo), the function draw is automatically called every frame reference doc.
This bit of code overrides the default (empty) implementation of draw so that the given code is called every frame.
Khan academy has a tutorial about this use of the draw function here.

function draw(){ return "Sample"; };
var draw = function(){ return "Sample"; };
are same meaning.

function () { ... } creates a function value. That is, something that can be passed around just as easily as a number, or any other object in javascript.
He then binds it to the name draw for future reference.
He could as well have written
function draw() {
...
}
For these purposes they are equivalent.

Related

Nested .bind not working as expected

Unfortunately .bind has been giving me grief when creating more complex closures.
I am quite interested in why .bind seems to work differently once you nest functions.
For example :
function t(){
t = t.bind({}); //correctly assigns *this* to t
function nested_t(){
nested_t = nested_t.bind({}); // fails to assign *this* to nested_t
return nested_t;
}
return nested_t();
}
//CASE ONE
alert(t());
// alerts the whole function t instead of nested_t
//CASE TWO
aleft(t.call(t));
// alerts the global object (window)
In both cases I was expecting a behavior like this:
function t(){
var nested_t = function nested_t(){
return this;
};
return nested_t.call(nested_t);
}
alert(t.call(t));
If someone could explain the behavior of .bind in the first (and/or) second case it would be much appreciated!
So, i'm not entirely reproducing your issue here (both cases return the global object), but i'll try and explain the code as i see it.
function t(){
t = t.bind({}); //correctly assigns *this* to t
function nested_t(){
nested_t = nested_t.bind({}); // fails to assign *this* to nested_t
return this;
}
return nested_t();
}
//CASE ONE
alert(t());
Let's take it step by step.
First, the function t() is defined. Then, upon call, it gets overwritten with a clean context. However, i don't see any usage of this context.
Now, a nested function (nested_t) is defined. Upon call, it is overwritten with a clean context. It then returns the context it had when it was called.
Back to t(). You then return the result of nested_t(), not nested_t itself. In the original function call, nested_t is still being called with global context.
Therefore, when you run t(), it returns the global object.
How your code works
It's very unclear, what your code is trying to do. You can find the documentation for .bind() here. It looks like you might be somehow misunderstanding what this is and how to use it. Anyway, what happens when you run your code is this:
A t function is created in global scope.
[case one] The t function is called.
Global scope t is replaced with a new value (original t bound to a specific context - anonymous empty object), which doesn't affect the current call in any way. Also, while the global t is overwritten, the local t is behaving as read-only. You can check it out by trying the following code: (function foo () { return (function bar () { bar = window.bar = 'baz'; return bar; })(); })() and comparing return value with window.bar.
The same thing happens with nested_t in the nested context (instead of global context).
Result of nested_t call is returned. nested_t returns the context it was called with, which was window, as no context was specified. Specifically, it was not called with an empty object context, because the .bind() inside didn't affect the call itself.
[case two] The exact same thing happens once again. Now you're just calling t with itself as context. Since t doesn't use its context (this) anywhere in its code, nothing really changes.
What your misconceptions might be
Basically, you're mixing up two things - function instance and function call context. A function is a "first-class citizen" in JavaScript - it's an object and you can assign values to its properties.
function foo () {
foo.property = 'value';
}
foo(); // foo.property is assigned a value
This has nothing to do with function call context. When you call a function a context is assigned to that call, which can be accessed using this (inside function body)
function foo () {
this.property = 'value';
}
var object = {};
foo.call(object); // object.property is assigned a value
When you use .bind(), you just create a new function with the same code, that is locked to a specific context.
function foo () {
this.property = 'value';
}
var fixedContext = {},
object = {};
bar = foo.bind(fixedContext);
foo.call(object); // fixedContext.property is set instead of object.property
But in this case, there are also function instances foo and bar, which can also be assigned properties, and which have nothing to do with contexts of calls of those functions.
Let's look at how bind works. First, one level of nesting:
var foo = function() { return this.x; };
alert(foo()); // undefined
alert(foo.bind({x: 42})()); // 42
Now we can add the next level of nesting:
var bar = function() { return foo.bind(this)(); };
alert(bar()); // undefined
alert(bar.bind({x: 42})());
We pass our this context to foo with - guess what? - bind. There is nothing different about the way bind works between scopes. The only difference is that we've already bound this within bar, and so the body of bar is free to re-bind this within foo.
As a couple of commenters have noted, functions that overwrite themselves are a huge code smell. There is no reason to do this; you can bind context to your functions when you call them.
I highly, highly recommend reading the documentation on bind, and trying to understand it to the point where you can write a basic version of Function.prototype.bind from scratch.

Javascript Scope/Closure: Why can I access internal vars here?

I am currently working on a relatively simple project and discovered something:
var test = (function() {
var internal = 5;
return {
init: function() {
$(document).on('click', function() {
alert(internal);
});
}
};
}());
test.init();
I thought closure and javascript scope (as I understood it) meant that a function can only access its own variables, and those 1 level above it. So Why does this work? When I click on the document I get an alert of "5", I expected to get undefined.
Here is a JSFiddle showing what I'm doing:
http://jsfiddle.net/mcraig_brs/m644L/1/
I thought closure and javascript scope (as I understood it) meant that a function can only access its own variables, and those 1 level above it.
Nope, it's all levels above it. In fact, that's how global variables work in JavaScript; they're just an example of closures in action.
So Why does this work?
When the JavaScript engine needs to resolve a symbol, it looks first (loosely) in the execution context that the symbol appears in (in this case, the one created by the call to the anonymous function you're passing into on). If it doesn't find a matching variable there, it looks at the execution context that surrounds that one (in this case, the one created by calling init). If it doesn't find it there, it looks at the next one out (the one created by calling your outermost anonymous function). And if not there, the next level out, until it reaches the global execution context.
More about closures (on my blog): Closures are not complicated
Note that I kept saying "...created by the call to..." above. This is a critical point: There can be (almost always are) multiple execution contexts created for a given scope as a program runs. Consider:
function foo(name) {
return function() {
alert(name);
};
}
(This is only two levels again, but it applies to as many levels as you like.)
foo, when called, creates and returns a function that, when called, shows us the name that was passed into foo when that function was created:
var f1 = foo("one");
var f2 = foo("two");
f1(); // "one"
f2(); // "two"
Calling foo creates an execution context. The function foo creates has an enduring reference to the part of that context that contains variables for that call (the spec calls it the "variable binding object"). That binding object still exists after foo returns, which is why when we call the function foo creates, it still has access to the relevant name variable.
It's important to remember that it isn't that closures get a copy of the value of the variable. They get an enduring reference to that variable. Which is why this works:
function foo(a) {
return function() {
alert(++a);
};
}
var f = foo(0);
f(); // 1
f(); // 2
f(); // 3
Javascript is statically scoped. when you are writing a function, you will have access to all the variables available to you inside the function as they are available from where you are accessing it.
var a = 10;
function foo() {
// now i have access in a
var b = 20;
// i have access to both a and b
function bar() {
// still have access to both a and b
var c = 30;
// any more nested function will have access to a,b and c
}
}

This in Private context

I would like to access variables created inside a private context. I'm creating a private context like this:
(new Function("var a = 'hello'; console.log('this', this);")).call({});
// outputs -> this Object {}
I'm call'ing the function with an empty context. But this doesn't holds the a variable. And anyway how is it possible that console.log works with an empty context?
jsFiddle Demo
Inside of the scope for the function which creates the object var a is present. However, once that scope is lost, so is the variable. If you would like a to persist, you would need to attach it to the object that is created using the this keyword:
(new Function("this.a = 'hello'; console.log(this);")).call({});
However, this is an obfuscated way of doing it. There are elements which are not required here. Mainly that the new keyword is not needed (Function implies a function object). Function also comes with methods, such as call.
Function("this.a = 'hello'; console.log(this);").call({});
This will also work. Moreover, if you would like to retain what is in the variable a, you could always do this (demo):
var obj = {};
Function("this.a = 'hello'").call(obj);
obj.a;//hello
As for why it works with an empty context. You have actually given it a freshly constructed object with {}. So that is the scope that is used inside of the function when the reference this is encountered. In fact, call() does not need arguments if you are not intending to use scope. Something like this:
Function("console.log(5);").call();
will log 5 to the console without error.
The approach used in your question is to build a function from a magic string. That approach is pretty cool I must say, very similar to eval. But what you are looking for boils down to this difference I think:
function ball(){
var color = "red";
return color;
}
function Ball(){
this.color = "red";
}
console.log(ball());//logs red
console.log(new Ball().color);//logs red

Peculiar JavaScript construct: variable of object type in object definition

Okay, I stumbled upon this piece of code..
How come this works? What sort of evil scheme does JavaScript use to resolve variables?
The way I see it, as a C++ kind of guy: the class/object definition contains a non-existent reference to an object of the class being defined. Seriously, how?
(To be honest, I understand partially - I could deduce a strawman concept of how and when JS resolves names.. but maybe this way the question will be of more use to someone else, someday)
Guilty code:
function Sio() {
this.someValue = 5;
this.doStuff = function() {
console.log("look: "+howDoYouResolveThisYouFoulCreature.someValue);
};
}
var howDoYouResolveThisYouFoulCreature = new Sio();
That seems so wrong.
Lots of concepts here, and I'm not sure which one is giving you troubles…
The two most likely ones are new / this and var.
new / this
When you call a function the value of this is determined by the context in which you call it.
If you use the new keyword, you create an instance of the function and make that instance the context.
When you call howDoYouResolveThisYouFoulCreature.doStuff() you are accessing that instance as a global. It would usually make more sense to:
this.doStuff = function() {
console.log("look: "+ this.someValue);
};
Since foo.doStuff() makes foo the context for that invokation of doStuff() (which makes the function reusable between different instances of Sio)
var
Scope in JavaScript is at the function level.
Using var something anywhere inside a function will scope that variable to that function
It is considered good practise to use a single var statement at the top of a function to avoid confusion
Also, the doStuff function is not called before howDoYouResolveThisYouFoulCreature has a value. Until that point all that matters is that the function is syntactically correct, it doesn't matter what type the variable is.
It works because the function() this.doStuff isn't executed before howDoYouResolveThisYouFoulCreature is created. Keep in mind for as many new Sio()'s that you make this will always console.log the howDoYouResolveThisYouFoulCreature.someValue regardless of the variable name that doStuff() is called from.
This works because:
var howDoYouResolveThisYouFoulCreature = new Sio();
... actually resolves into:
var howDoYouResolveThisYouFoulCreature;
howDoYouResolveThisYouFoulCreature = new Sio();
So at the time the function doStuff is assigned, the var is already declared.
Edit: Forget that, I was being foolish. It turns out pimvdb is right, and here's the proof (also on jsfiddle):
function A() {
this.logValue = function() {
if (b === undefined) {
console.log('Wah, wah, wah...');
} else {
console.log(b.someValue);
}
};
}
function B() {
this.someValue = 42;
}
var a = new A();
a.logValue(); // Wah, wah, wah...
var b = new B();
a.logValue(); // 42
So the execution context is the key. When Sio (or, in this case, A) is constructed, it's scoped to where b might, at some point, be defined. The variable isn't resolved until the function is called, at which point it might be defined. Or not. No biggie. :-)

Two functions with the same name in JavaScript - how can this work?

As far as I know, function foo() { aaa(); } is just var foo = function(){ aaa() } in JavaScript. So adding function foo() { bbb(); } should either overwrite the foo variable, or ignore the second definition - that's not the point. The point is that there should be one variable foo.
So, in this example the me variable should not be correctly resolved from inside the methods and it is not in Explorer 8 :-). I came to this example by trying to wrap them into another closure where (var) me would be, but I was surprised that it's not necessary:
var foo = {
bar1 : function me() {
var index = 1;
alert(me);
},
bar2 : function me() {
var index = 2;
alert(me);
}
};
foo.bar1(); // Shows the first one
foo.bar2(); // Shows the second one
Demo: http://jsfiddle.net/W5dqy/5/
AFAIK function foo() { aaa(); } is just var foo = function(){ aaa() } in JavaScript.
Not quite; they're similar, but also quite different. JavaScript has two different but related things: Function declarations (your first example there), and function expressions (your second, which you then assign to a variable). They happen at different times in the parsing cycle and have different effects.
This is a function declaration:
function foo() {
// ...
}
Function declarations are processed upon entry into the enclosing scope, before any step-by-step code is executed.
This is a function expression (specifically, an anonymous one):
var foo = function() {
// ...
};
Function expressions are processed as part of the step-by-step code, at the point where they appear (just like any other expression).
Your quoted code is using a named function expression, which look like this:
var x = function foo() {
// ...
};
(In your case it's within an object literal, so it's on the right-hand side of an : instead of an =, but it's still a named function expression.)
That's perfectly valid, ignoring implementation bugs (more in a moment). It creates a function with the name foo, doesn't put foo in the enclosing scope, and then assigns that function to the x variable (all of this happening when the expression is encountered in the step-by-step code). When I say it doesn't put foo in the enclosing scope, I mean exactly that:
var x = function foo() {
alert(typeof foo); // alerts "function" (in compliant implementations)
};
alert(typeof foo); // alerts "undefined" (in compliant implementations)
Note how that's different from the way function declarations work (where the function's name is added to the enclosing scope).
Named function expressions work on compliant implementations. Historically, there were bugs in implementations (early Safari, IE8 and earlier). Modern implementations get them right, including IE9 and up. (More here: Double take and here: Named function expressions demystified.)
So, in this example the me variable shoudl not be corectly resolved from inside the methods
Actually, it should be. A function's true name (the symbol between function and the opening parenthesis) is always in-scope within the function (whether the function is from a declaration or a named function expression).
NOTE: The below was written in 2011. With the advances in JavaScript since, I no longer feel the need to do things like the below unless I know I'm going to be dealing with IE8 (which is very rare these days).
Because of implementation bugs, I used to avoid named function expressions. You can do that in your example by just removing the me names, but I prefer named functions, and so for what it's worth, here's how I used to write your object:
var foo = (function(){
var publicSymbols = {};
publicSymbols.bar1 = bar1_me;
function bar1_me() {
var index = 1;
alert(bar1_me);
}
publicSymbols.bar2 = bar2_me;
function bar2_me() {
var index = 2;
alert(bar2_me);
}
return publicSymbols;
})();
(Except I'd probably use a shorter name than publicSymbols.)
Here's how that gets processed:
An anonymous enclosing function is created when the var foo = ... line is encountered in the step-by-step code, and then it is called (because I have the () at the very end).
Upon entry into the execution context created by that anonymous function, the bar1_me and bar2_me function declarations are processed and those symbols are added to the scope inside that anonymous function (technically, to the variable object for the execution context).
The publicSymbols symbol is added to the scope inside the anonymous function. (More: Poor misunderstood var)
Step-by-step code begins by assigning {} to publicSymbols.
Step-by-step code continues with publicSymbols.bar1 = bar1_me; and publicSymbols.bar2 = bar2_me;, and finally return publicSymbols;
The anonymous function's result is assigned to foo.
These days, though, unless I'm writing code I know needs to support IE8 (sadly, as I write this in November 2015 it still has significant global market share, but happily that share is plummetting), I don't worry about it. All modern JavaScript engines understand them just fine.
You can also write that like this:
var foo = (function(){
return {
bar1: bar1_me,
bar2: bar2_me
};
function bar1_me() {
var index = 1;
alert(bar1_me);
}
function bar2_me() {
var index = 2;
alert(bar2_me);
}
})();
...since those are function declarations, and thus are hoisted. I don't usually do it like that, as I find it easier to do maintenance on large structures if I do the declaration and the assignment to the property next to each other (or, if not writing for IE8, on the same line).
Both me lookups, are only visible/available inside the function expression.
Infact those two are named function expressions, and the ECMAscript specification tells us, that the name of an expression is not exposed to the such called Variable object.
Well I tried to put that only in a few words, but while trying to find the right words, this ends up in pretty deep chain of ECMAscript behavior. So, function expression are not stored in a Variable / Activation Object. (Would lead to the question, who those guys are...).
Short: Every time a function is called, a new Context is created. There is some "blackmagic" kind of guy that is called, Activation object which stores some stuff. For instance, the
arguments of the function
the [[Scope]]
any variables created by var
For instance:
function foo(test, bar) {
var hello = "world";
function visible() {
}
(function ghost() {
}());
}
The Activation Object for foo would look like:
arguments: test, bar
variables: hello (string), visible (function)
[[Scope]]: (possible parent function-context), Global Object
ghost is not stored in the AO! it would just be accesssible under that name within the function itself. While visible() is a function declaration (or function statement) it is stored in the AO. This is because, a function declaration is evaluated when parsing and function expression is evaluated at runtime.
What happens here is that function() has many different meanings and uses.
When I say
bar1 : function me() {
}
then that's 100% equivalent to
bar1 : function() {
}
i.e. the name doesn't matter when you use function to assign the variable bar1. Inside, me is assigned but as soon as the function definition is left (when you assign bar2), me is created again as a local variable for the function definition that is stored in bar2.

Categories

Resources