HTML5 SVG vs Canvas for big number of lines? - javascript

Question:
Is canvas more suitable than svg in the following case?
Case:
I'm drawing a chart (using d3js library) similar to this one (but with much more data):
http://mbostock.github.com/d3/talk/20111116/iris-parallel.html
It's based on an svg and it works fine for several thousands of lines (up to 5000), adding more lines (svg path) decreases the performance dramatically (scrolling in the page becomes slow)
Keep in mind: That I need to add mouse events (which is handy in svg)

Generally svg is better suited for vector images, like in your example. However canvas has a lot of benefits in modern browsers such as hardware acceleration, so for drawing the lines, as long as zooming, panning ect. isn't required performance will be using canvas.
Mouse events can be a pain using canvas, since you have to manually keep track of everything, so with 5000+ points using canvas it wont be fun. The trade off however will be once the points are drawn, assuming you only draw them once the page will behave fine regardless of the number of lines, since they are all drawn to a raster image and aren't part of the DOM.
Honestly though the best way to find it is to test what you currently have using canvas.

When performance becomes a problem, switching to canvas might be an option. In this case you can draw the canvas once. Afterwards it's pretty much treated like an image. Drawing might take some time, but afterwards it can be scaled pretty quickly. Note that it is possible to draw a rendered SVG to a canvas using the context.drawImage method (example). So you could keep your SVG generation code to create an SVG in the background, and then draw it to the canvas.
But keep in mind that it won't scale as beautiful as an SVG as soon as it is on the canvas. When the user zooms in, it will get blurry or pixely, depending on how the browser scales graphics.
Click events on canvas can be handled in two ways. Either keep an array of click targets, and add an onclick event handler to the canvas. When a click occurs, iterate the array and check which one is closest to the click coordinates.
The other option is to use hit regions. These have to be defined as polygonal paths.

+1 to everything said above. I've seen some amazing performance increases when using canvas over SVG and over compositing images using the DOM.
About manipulating the canvas image with mouse events, I imagine the best approach for an image such as you are describing is to abstract it away using a library like the following:
http://paperjs.org
http://kineticjs.com
http://www.createjs.com/#!/EaselJS
Keep your code away from the canvas itself and let a library do the thinking for you.

Related

Can this sequence be done in HTML5?

I certainly don't expect anyone to actually provide a working solution for this. My question at this point is a simple one: can this be done with an HTML5 canvas, or would I be spinning my wheels in the attempt?
I'm a programmer, but my forte is in PHP, JavaScript, traditional HTML, etc. ...I haven't had a chance to play with HTML5 yet.
The elements you see in the example, I can save out as individually as necessary. So to make the blocks rotate around the center, I was thinking I save a square image with the block in the appropriate corner, respectively. Then rotating the image would pivot around center appropriately, unless you can set a point of origin on an image a la PhotoShop.
The KineticJS library looks promising for this type of animation as well, but I'll leave the recommendations to you fine folks.
Anyway, here is the example I want to replicate:
I won't give any library recommendations for the same reasons that #Diodeus points out, but maybe I can help your selection process. What you're trying to do can be done multiple ways in the browser right now: Canvas, SVG, and/or CSS3 animations.
Your example above is basically a few vector graphics composed together with a gradient on your center "pie timer". Because of this I would lean towards using S V G, especially if you want to allow interactions with your component (each SVG element can have event handlers).
The canvas element is better for "pixel by pixel" control of your visual content on the page. Adding content in the canvas doesn't grow the DOM (like with SVG) so it will normally perform better, but you lose things like native event handlers and animations that you will end up having to re-implement on your own.
More about the choice between SVG and Canvas, and an SVG animation example
Once you have the components in the page, they'll need to be wired up and animated. The animation can be broken down into:
Scaling
Background color fading
Rotation
"Weird gradient pie timer" example with CSS3
These can be done with CSS animations, SVG animations, or with plain old javascript. The choice depends on what you'll be animating. If I was selecting a library I would want to find one that tried to use the newer methods (SVG/CSS3) when it can, and gracefully degrade when it cannot.
I would be weary of libraries that try to re-implement things that are already available natively in the browser. Relying more on the browser instead of your own code to do things like animations means that the browser can optimize its operations and use things like hardware acceleration to improve your performance.
Hopefully this can aid your library selection. Remember, libraries come and go all the time so don't get too attached to one. An ideal implementation should allow for you to easily swap out your animation or display code without having to touch other unrelated pieces.
Sure, it's not all that difficult when you break it down into pieces.
Here are some technologies and techniques to get you started.
You use Canvas by (1) displaying some drawings, (2) erasing, (3) displaying some new drawings
When you do this redrawing rapidly, you get animated effects like your image shows.
Html Canvas uses a context to draw with (think of it as the pen for the canvas)
drawing a path: context.beginPath + context.moveTo + context.lineTo will define a path that creates your "fan blade" polygons. You can use context.fillStyle to fill the polygons with you colors.
fading: context.globalAlpha will change the opacity of new drawings
rotating: context.translate(centerX,centerY) + context.rotate(radianAngle) will rotate new drawings (like your rotating polygons, your tick-marks, )
scaling: context.translate(centerX,centerY) + context.scale(scaleX,scaleY) will scale your polygons.
arcs: context.arc(centerX,centerY,radius,beginningAngle,endingAngle) will draw an arc with a specified centerpoint and sweeping from a beginning angle to an ending angle.
math: circleCircumferenceX = centerX+radius*Math.cos(radianAngle) circleCircumferenceY = centerY+radius*Math.sin(radianAngle) uses trigonometry to calculate an xy coordinate on the circumference of a circle. You can combine this trig + Math.random to place your "speckles" in an arc around your centerpoint.

Combine Vector advantages with Bitmap in an HTML canvas element - how?

What I am trying to do is create a game that has an extreme amount of zoom-ability on a canvas element. I would like to make use of the advantage that vector graphics have insofar as being able to be programmatically created at runtime, with the high performance of bitmap images.
What I would like to do is programmatically create the first-frame image of a game "sprite"... this would be a vector image. After the first frame though, I do not want to keep wasting CPU cycles on drawing the image though.. i would like to cache it as a bitmap/high performance image for that zoom level.
Following this, if the user zooms in by >20%, I then redraw the image with a higher level of detail vector image. As above, this vector image would then be cached and optimized.
As you can see here, this would be a pretty basic space ship.. I would first render it programmatically as a vector and then.. raster it I guess? Goal is to avoid wasting CPU.
If the user zooms in...
A new vector image of the same shape would be drawn, albeit with a much higher level of detail. This is basically a Level Of Detail system. In this case as well, after the initial programmatic draw, I would "raster" the image for maximum performance.
Does anyone have ideas on what tools I would need to make this a reality inside of a HTML canvas? (The rest of the game will be running inside of the canvas element..)
Thank you very much for your thoughts.
**Edit: I wanted to add... perhaps the route of rendering an image via SVG (programmatically), then pushing that png file into the canvas using drawimage(), might provide some success? Something similar? Hmm...
Check out that article , but it seems there is no standard method to do what you want and it may fail in IE.
http://svgopen.org/2010/papers/62-From_SVG_to_Canvas_and_Back/#svg_to_canvas
You should perhaps go with an all SVG game , or provide a maximum zooming rate to your game and use big images as sprite assets. it would not have been a problem using flash,but i guess you wont go with flash anyway.
Maybe there is a framework that can translate SVG into a "canvas drawing sequence" but i would not bet on high performances in that case.
I managed to answer my own question.
The way to do this is to first create an SVG file, and then convert it to a PNG file on the client using "canvg". The PNG can be created at different levels of details based on what you want, and in this way you could create a dynamic LOD system.
Flash does something similar automatically by cashing a bitmap image of the SVG file... it's called "pre-rendering". If the SVG isn't scaled or the alpha isn't changed, flash will just use the bitmap instead (much faster then continuously re-rendering the SVG file, in complex cases). Size (and thus detail) of the PNG output can be modified however you like, and so pre-rendering could be done based on events as well.
From this information, I have decided to implement the LOD system such that SVG is used whilst the user is actively zooming (scaling the target "sprite"), and then as the zoom slows down, compute a PNG pre-render. Also, at extremely high levels of zoom, I simply use the SVG, as it is much easier for the CPU to compute SVG's at high resolution, then bitmap images that cover most of the screen. (just take a look at some of the HTML5 icon tests that put lots of icons on the screen... the bigger the icons are, the slower it runs).
Thanks very much to everyone's comments here and I hope that my question/answer has helped someone.

HTML5 <canvas>: Performance implications of drawImage()

I was wondering if there were any performance differences in using drawImage() on a dynamically created canvas (i.e. document.createElement("canvas")) versus a canvas already created in the DOM (i.e. tags on a HTML page).
My thinking is that the "slow" part of drawImage() occurs when it actually has to display visuals to the user, though I could be wrong (can't find too much information on this).
Would it be substantially more expensive to draw a group of objects to a canvas in memory followed by a final draw to the "main" canvas than just drawing straight to the latter? I feel like it'd be better to have multiple canvases, at least for organizational purposes.
Related: Does the size of the canvas impact performance if you're only drawing to a subsection of it?
Talking about Chrome and Firefox I could not find any difference between static and dynamic canvas elements. Mainly the amount of pixels drawImage() handles makes it slow + the current globalCompositeOperation (copy, source-over are fastest). However, the browser has to render the full page, so it is a bad idea to place a stretched (background) image below the canvas.
There is a difference between the canvas attributes width/height and its style width/height attributes. You may have a 300*200 pixels canvas with a style size set to 100%. Then internal drawing speed is same what ever the browsers window size is. Of course display quality is a concern.
You may want to separate drawing (lines, boxes, arcs etc) from blitting (drawImage) and find out what consumes more time in your application. As long there is no need for multiple canvas (image processing, blending videos, etc.) try to avoid drawImage(). Your code - not elements - should help you to deal with 'organizational purposes'.
A fullscreen drawImage() on a 1 GHZ Netbook with 1024x600 pixels takes about 10msec. Doing it twice means there is no way to achieve a display rate of 50Hz. Things getting worse if you target iPhone or Android smartphones.
There is no need to do good-old-double-buffering with canvas, it's already implemented. You are free to update only relevant (dirty) subparts of your canvas element whenever you want and gain essential msecs.
Instead of using multiple canvas there is an option to do all invisible operations on a huge one in different sections - drawImage() with target and source the same. It is easier then to see what is happening while debugging.

Redraw lots of objects on Canvas HTML

Is there a quick and efficient way to move lots of objects in canvas? Basically if there are around 1000 objects and I want to move all of them at once to emulate scrolling, it is very slow to redraw every single object by calling drawImage() 1000+ times.
Is there anyway to optimize this? I have an example link of the problem (and that's only with 100 objects): http://craftyjs.com/isometric/
Since canvas doesn't provide fast low level bitmap copying it's hard to do stuff in multiple layers and scroll for example the whole background at once and then only render the edges.
So what can you do? In short, nothing. Especially not when scrolling, sure you can do tricks with multiple canvases when you have a more or less static background but for moving objects there are hardly any performance improving tricks.
So, you've go to wait for Hardware Acceleration shipping in all majors browsers, I know this sounds ridiculous but I'm too waiting for that :/
The problem is that the canvas was never designed for game stuff. It was designed as, well, basically some kind of on the fly drawing thing, guess the designers had Photoshop clones in mind, but definitely not games, let alone the fact that there's no fast clear operation proves that, there's not even optimization in place when clearing the whole canvas with the same color.
If the images are already composited, not moving relative to one another, and defined by a rectangular region, then using canvas.drawImage() with a canvas as the first parameter and drawing to a sub-region should be significantly faster than re-drawing all the objects.
You could also just layer multiple canvases and slide the top canvas with the objects in HTML to scroll them.
Edit: Having really looked at your example, it seems to me that it should be implemented similar to Google Maps: create tiles of canvases and slide them left/right on the HTML page; once a canvas has been slid off the screen entirely (for example, off the left edge), move it to the other side (to the right edge) and re-use it for drawing. With this you will only need to re-draw whatever objects overlap the canvases that are moving on the edges.
You can draw all objects on a second, off-screen canvas and then only blit the whole canvas (drawImage() accepts canvas element).
However, if you're targeting desktop browsers, then this shouldn't be necessary. I've implemented tile engine (source) that simply redraws whole scene and naive implementation turned out to be pretty fast.
What I did to solve this problem was I had 10 squares on my screen and I wanted to animate them on a white background. So I drew a white rectangle over the canvas to clear the canvas so the animation would work. Does that make sense?
#Ivo By the way I read on http://www.w3.org/TR/html5/the-canvas-element.html that canvas was made for applications like games because it was a solution to get rid of the dependency on a external engine. Canvas is built in so it's kind of like a flash player built into your browser powered by JavaScript. I think it's fascinating.
You can use tiled rendering.
http://www.gamesfrommars.fr/demojsv2/ (better viewed with Chrome)

Choosing right technology (SVG vs Canvas)

I'm writing an app for shape manipulation, such that after creating simple shapes the user can create more complex ones by clipping the shapes against each other (i.e. combining two circles together into a figure 8 stored using a single path rather than a group, or performing intersection of two circles to create a "bite" mark), and am trying to decide on a graphics library to use.
SVG seems to handle 80% of the functionality I need out of the box (shape storage, movement, rotation, scaling). The problem is that the other 20% (using clipping to create a new set of complex polygons) seems impossible to achieve without recreating SVG functionality in my own modules (I'd have to store the shape once for drawing inside SVG, and once for processing clipping myself). I could be wrong about SVG, but by reading about Raphael library (based on SVG), it seems like it only handles clipping using a rectangle, and even that clipping is temporary (it only renders part of the shape, but still stores entire shape to be rerendered once the clipping rectangle is moved). Perhaps I'm just confused about SVG standard, but even retrieving/parsing the paths to compute a new path using subsets of previous paths seems non-obvious in SVG (there is a Subpath() function, but I don't see anything to find the points of intersection of two polygon perimeters, or combine several subpaths into a single path).
As a result, Canvas seems like a better alternative since it doesn't introduce the extra overhead by keeping track of shapes I'd already have to keep track of to make my own clipping implementation work. Not only that, I've already implemented the polygon class that can be moved, rotated, and scaled. Canvas has some other issues, however (I'd have to implement my own redraw method, which I'm sure will not be as efficient as SVG one that takes advantage of browser-specific frameworks in Chrome and Firefox; and I'd have to accept IE incompatibility which is handled for free with libraries like Raphael).
Thanks
This may address what you're mentioning.
Clipping can be done using non-rectangular objects using the 'clipPath' element.
For example, I have element with id of 'clipper' that defines what to clip out, and a path that is subject to the clipping. Not sure if they intersect in this snippet.
<g clip-rule="nonzero">
<clipPath id="clipper">
<ellipse rx="70" ry="95" clip-rule="evenodd"/>
</clipPath>
<!-- stuff to be clipped -->
<path clip-path="url(#clipper)" d="M-100 0 a100 50"/>
</g>
This is just a snippet from something I have. Hope it helps.
Seems to me that you are trying to do 2D constructive geometry. Since SVG runs in retained mode, the objects you draw are stored and then the various operations performed. With Canvas you are running against a bit map so the changes are effected immediately. Since your users will in turn perform more operations on your simpler shapes to create ever more complex ones Canvas should in the long term be a better fit.
The only outstanding question is what will be done with those objects once your users are finished with them. If you zoom the image it will get the jaggies. SVG will avoid that problem but you trade-off with greater complexity and performance impact.
Both svg and canvas are a vector graphical technology.Each one having some different functionality.
Canvas
Canvas is a bitmap with an immediate modegraphics application programming interface (API) for drawing on it. Canvas is a “fire and forget” model that renders its graphics directly to its bitmap and then subsequently has no sense of the shapes that were drawn; only the resulting bitmap stays around.
More Information about canvas - http://www.queryhome.com/51054/about-html5-canvas
SVG
SVG is used to describe Scalable Vector Graphics
SVG is known as a retained mode graphics model persisting in an in-memory model. Analogous to HTML, SVG builds an object model of elements, attributes, and styles. When the element appears in an HTML5 document, it behaves like an inline block and is part of the HTML document tree.
More Information about SVG - http://www.queryhome.com/50869/about-svg-part-1
See here for more information about canvas vs svg in detail - Comparing svg vs canvas
You're right - you'll have to mathematically perform the clipping and creation of new shapes regardless of whether you use SVG or Canvas. I'm biased, it seems like it would be more useful to use SVG since you also get things like DOM events on the shapes (mouse, dragging) and serialization into a graphical format for free.

Categories

Resources