I have a signed value given as a hex number, by example 0xffeb and want convert it into -21 as a "normal" Javascript integer.
I have written some code so far:
function toBinary(a) { //: String
var r = '';
var binCounter = 0;
while (a > 0) {
r = a%2 + r;
a = Math.floor(a/2);
}
return r;
}
function twoscompl(a) { //: int
var l = toBinaryFill(a).length;
var msb = a >>> (l-1);
if (msb == 0) {
return a;
}
a = a-1;
var str = toBinary(a);
var nstr = '';
for (var i = 0; i < str.length; i++) {
nstr += str.charAt(i) == '1' ? '0' : '1';
}
return (-1)*parseInt(nstr);
}
The problem is, that my function returns 1 as MSB for both numbers because only at the MSB of the binary representation "string" is looked. And for this case both numbers are 1:
-21 => 0xffeb => 1111 1111 1110 1011
21 => 0x15 => 1 0101
Have you any idea to implement this more efficient and nicer?
Greetings,
mythbu
Use parseInt() to convert (which just accepts your hex string):
parseInt(a);
Then use a mask to figure out if the MSB is set:
a & 0x8000
If that returns a nonzero value, you know it is negative.
To wrap it all up:
a = "0xffeb";
a = parseInt(a, 16);
if ((a & 0x8000) > 0) {
a = a - 0x10000;
}
Note that this only works for 16-bit integers (short in C). If you have a 32-bit integer, you'll need a different mask and subtraction.
I came up with this
function hexToInt(hex) {
if (hex.length % 2 != 0) {
hex = "0" + hex;
}
var num = parseInt(hex, 16);
var maxVal = Math.pow(2, hex.length / 2 * 8);
if (num > maxVal / 2 - 1) {
num = num - maxVal
}
return num;
}
And usage:
var res = hexToInt("FF"); // -1
res = hexToInt("A"); // same as "0A", 10
res = hexToInt("FFF"); // same as "0FFF", 4095
res = hexToInt("FFFF"); // -1
So basically the hex conversion range depends on hex's length, ant this is what I was looking for. Hope it helps.
Based on #Bart Friederichs I've come with:
function HexToSignedInt(num, numSize) {
var val = {
mask: 0x8 * Math.pow(16, numSize-1), // 0x8000 if numSize = 4
sub: -0x1 * Math.pow(16, numSize) //-0x10000 if numSize = 4
}
if((parseInt(num, 16) & val.mask) > 0) { //negative
return (val.sub + parseInt(num, 16))
}else { //positive
return (parseInt(num,16))
}
}
so now you can specify the exact length (in nibbles).
var numberToConvert = "CB8";
HexToSignedInt(numberToConvert, 3);
//expected output: -840
function hexToSignedInt(hex) {
if (hex.length % 2 != 0) {
hex = "0" + hex;
}
var num = parseInt(hex, 16);
var maxVal = Math.pow(2, hex.length / 2 * 8);
if (num > maxVal / 2 - 1) {
num = num - maxVal
}
return num;
}
function hexToUnsignedInt(hex){
return parseInt(hex,16);
}
the first for signed integer and
the second for unsigned integer
As I had to turn absolute numeric values to int32 values that range from -2^24 to 2^24-1,
I came up with this solution, you just have to change your input into a number through parseInt(hex, 16), in your case, nBytes is 2.
function toSignedInt(value, nBytes) { // 0 <= value < 2^nbytes*4, nBytes >= 1,
var hexMask = '0x80' + '00'.repeat(nBytes - 1);
var intMask = parseInt(hexMask, 16);
if (value >= intMask) {
value = value - intMask * 2;
}
return value;
}
var vals = [ // expected output
'0x00', // 0
'0xFF', // 255
'0xFFFFFF', // 2^24 - 1 = 16777215
'0x7FFFFFFF', // 2^31 -1 = 2147483647
'0x80000000', // -2^31 = -2147483648
'0x80000001', // -2^31 + 1 = -2147483647
'0xFFFFFFFF', // -1
];
for (var hex of vals) {
var num = parseInt(hex, 16);
var result = toSignedInt(num, 4);
console.log(hex, num, result);
}
var sampleInput = '0xffeb';
var sampleResult = toSignedInt(parseInt(sampleInput, 16), 2);
console.log(sampleInput, sampleResult); // "0xffeb", -21
Based on the accepted answer, expand to longer number types:
function parseSignedShort(str) {
const i = parseInt(str, 16);
return i >= 0x8000 ? i - 0x10000 : i;
}
parseSignedShort("0xffeb"); // -21
function parseSignedInt(str) {
const i = parseInt(str, 16);
return i >= 0x80000000 ? i - 0x100000000 : i;
}
parseSignedInt("0xffffffeb"); // -21
// Depends on new JS feature. Only supported after ES2020
function parseSignedLong(str) {
if (!str.toLowerCase().startsWith("0x"))
str = "0x" + str;
const i = BigInt(str);
return Number(i >= 0x8000000000000000n ? i - 0x10000000000000000n : i);
}
parseSignedLong("0xffffffffffffffeb"); // -21
Related
I'm trying to make a function which extracts the bits from a byte array and returns decimal output from it.
function to_uint(x) {
return x >>> 0;
}
function trunc(v){
v = +v;
if (!isFinite(v)) return v;
return (v - v % 1) || (v < 0 ? -0 : v === 0 ? v : 0);
}
function extract_bytes(chunk, startBit, endBit) {
var totalBits = startBit - endBit + 1;
var totalBytes = totalBits % 8 === 0 ? to_uint(totalBits / 8) : to_uint(totalBits / 8) + 1;
var bitOffset = endBit % 8;
var arr = new Array(totalBytes);
for (var byte = totalBytes-1; byte >= 0; byte--) {
var chunkIndex = byte + (chunk.length - 1 - trunc(startBit / 8));
var lo = chunk[chunkIndex] >> bitOffset;
var hi = 0;
if (byte !== 0) {
var hi_bitmask = (1 << bitOffset) - 1
var bits_to_take_from_hi = 8 - bitOffset
hi = (chunk[chunkIndex - 1] & (hi_bitmask << bits_to_take_from_hi));
} else {
lo = lo & ((1 << (totalBits % 8 ? totalBits % 8 : 8)) - 1);
}
arr[byte] = hi | lo;
}
return arr;
}
These are the functions I'm using for this.
For example I will be calling it like so:
chunk = [0x0C, 0x47, 0x14, 0x76]
startBit = 1;
endBit = 0;
console.log(extract_bytes(chunk, startBit, endBit));
This functions works fine when the bits (start and end) for most cases. But when I try to read bits where the data is in two different bytes then it fails.
Here is a bit view of the chunk I will be using:
// 0x0C 0x47 0x14 0x76
// [byte 0 ] [byte 1 ] [byte 2 ] [byte 3 ]
// 0000 1100 0100 0111 0001 0100 0111 0110
For example:
chunk = [0x0C, 0x47, 0x14, 0x76]
startBit = 8
endBit = 0
This works and returns:
[ 0, 118 ]
Which means from byte3 (0x76) it exacted the whole thing ( index 7-0) and in byte2 (0x14) it extracted index 8.
But when I try:
chunk = [0x0C, 0x47, 0x14, 0x76]
startBit = 11
endBit = 6
it returns [0] instead of [17]
You can try this one :
function extract_bytes(chunk, startBit, endBit) {
var arr = new Array(0);
var word = 0x0;
var wordCount = 0;
var l = chunk.length;
for (var i = startBit; i <= endBit; i++) {
if (wordCount == 7) {
arr.unshift(word);
word = 0x0;
wordCount = 0;
}
var work_ck = parseInt((l*8 - 1 - i)/8,10);
var bit_word_ck = parseInt((l*8 - 1 - i) % 8,10);
var next_bit = (chunk[work_ck] >> ( 7 - bit_word_ck)) & 0x1;
word = word | (next_bit << 7);
word = word >> 1;
if (i != endBit) {
wordCount += 1;
}
}
if (wordCount != 0) {
while (wordCount < 7) {
word = word >> 1;
wordCount += 1;
}
arr.unshift(word)
}
return arr;
}
It works for 2 of examples you explained; BUT you should invert startBit and endBit durring the call;
This is my attempt to fix the JavaScript toFixed() function...
Any input, ideas, corrections for possible errors are much appreciated!
Fix floating point inacurracy (example (35.355).toFixed(2) = 35.36, not 35.35)
No big additional libraries
Comprehensive function (readable by humans)
Mimics toFixed / i.e. outputs exactly the same (albeit with correction for floating point inac. or course)
This is my attempt -> Demo below (see console log)
Number.prototype.toFixed = function(fractionDigits) {
var digits = parseInt(fractionDigits) || 0;
var num = Number(this);
if( isNaN(num) ) {
return 'NaN';
}
var sign = num < 0 ? -1 : 1;
if (sign < 0) { num = -num; }
digits = Math.pow(10, digits);
num *= digits;
num = Math.round( Math.round(num * Math.pow(10,12)) / Math.pow(10,12) );
var finalNumber = sign * num / digits;
// add 0 after last decimal number (not 0) for as many as requested (fractionDigits)
// in else case, check if requested digits exceed actual, then add 0 (avoid 10.1 for toFixed(2))
if(fractionDigits > 0 && finalNumber.toString().indexOf('.') == -1){
// check that .00 is present
finalNumber = finalNumber.toString() + '.' + '0'.repeat(fractionDigits);
} else if(fractionDigits > finalNumber.toString().split('.')[1]?.length){
finalNumber = finalNumber.toString() + '0'.repeat((fractionDigits - finalNumber.toString().split('.')[1]?.length));
}
return finalNumber.toString(); // tofixed returns as string always, do the same
}
console.log('(35.355).toFixed(2)', (35.355).toFixed(2));
console.log('(35.1).toFixed(2)', (35.1).toFixed(2));
console.log('(35).toFixed(2)', (35).toFixed(2));
Number.prototype.toFixed = function(fractionDigits) {
//function toFixed(numberInput, fractionDigits){
var digits = parseInt(fractionDigits) || 0;
var num = Number(this);
if( isNaN(num) ) {
return 'NaN';
}
var sign = num < 0 ? -1 : 1;
if (sign < 0) { num = -num; }
digits = Math.pow(10, digits);
num *= digits;
num = Math.round( Math.round(num * Math.pow(10,12)) / Math.pow(10,12) );
var finalNumber = sign * num / digits;
// add 0 after last decimal number (not 0) for as many as requested (fractionDigits)
if(fractionDigits > 0 && finalNumber.toString().indexOf('.') == -1){
// check that .00 is present
finalNumber = finalNumber.toString() + '.' + '0'.repeat(fractionDigits);
} else if(fractionDigits > finalNumber.toString().split('.')[1]?.length){
finalNumber = finalNumber.toString() + '0'.repeat((fractionDigits - finalNumber.toString().split('.')[1]?.length));
}
return finalNumber.toString(); // tofixed returns as string always, do the same
}
console.log('post-fix | (35.355).toFixed(2)', (35.355).toFixed(2));
console.log('post-fix | (35.1).toFixed(2)', (35.1).toFixed(2));
console.log('post-fix | (35).toFixed(2)', (35).toFixed(2));
If it were me, I might have this string manipulation approach:
Number.prototype.toFixed = function(fractionDigits) {
var number = String(this);
var digits = fractionDigits || 0, length;
if(digits < 0 && digits > 100)
throw 'RangeError: toFixed() digits argument must be between 0 and 100';
var decimal = number.match(/(?<=\.)(\d*)/g);
var factor = Math.pow(10, digits);
if (decimal && decimal[0].length >= digits)
return String(Math.round(Number(number + '1') * factor) / factor);
else {
var length = digits - (decimal ? decimal[0].length : 0);
var delimiter = number.includes('.') || !length ? '' : '.';
return String(number) + delimiter + '0'.repeat(length);
}
}
function test() {
console.log((-35.555).toFixed(2))
console.log((-35.35).toFixed(2))
console.log((-35.9).toFixed(2))
console.log((-35).toFixed(2))
}
Note:
I think you're not going to encounter a string in your toFixed since it will not be triggered by it so you don't need isNaN check.
Catch beforehand when the parameter is less than 0 or greater than 100. This should throw an error like the original one.
Output:
Instead of rounding number num = Math.round( Math.round(num * Math.pow(10,12)) / Math.pow(10,12) ); here you try parsing it to integer.
Math.round will round the value depending on its factorial part greater or less than 0.5. parseInt will simply fetch integer part without rounding, as you are expecting here.
console.log('(35.355).toFixed(2)', (35.355).toFixed(2));
console.log('(35.1).toFixed(2)', (35.1).toFixed(2));
console.log('(35).toFixed(2)', (35).toFixed(2));
Number.prototype.toFixed = function(fractionDigits) {
//function toFixed(numberInput, fractionDigits){
debugger;
var digits = parseInt(fractionDigits) || 0;
var num = Number(this);
if( isNaN(num) ) {
return 'NaN';
}
var sign = num < 0 ? -1 : 1;
if (sign < 0) { num = -num; }
digits = Math.pow(10, digits);
num *= digits;
num = parseInt( Math.round(num * Math.pow(10,12)) / Math.pow(10,12) );
var finalNumber = sign * num / digits;
// add 0 after last decimal number (not 0) for as many as requested (fractionDigits)
if(fractionDigits > 0 && finalNumber.toString().indexOf('.') == -1){
// check that .00 is present
finalNumber = finalNumber.toString() + '.' + '0'.repeat(fractionDigits);
} else if(fractionDigits > finalNumber.toString().split('.')[1]?.length){
finalNumber = finalNumber.toString() + '0'.repeat((fractionDigits - finalNumber.toString().split('.')[1]?.length));
}
return finalNumber.toString(); // tofixed returns as string always, do the same
}
console.log('post-fix | (35.355).toFixed(2)', (35.355).toFixed(2));
console.log('post-fix | (35.1).toFixed(2)', (35.1).toFixed(2));
console.log('post-fix | (35).toFixed(2)', (35).toFixed(2));
I just had an interview question, where I need to get the binary representation of an integer, this is something I should know how to do.. for example, 5 is represented in binary as 101, and the steps look something like:
// 5 % 2 = 1
// 5 / 2 = 2
// result = 1;
// 2 % 2 = 0
// 2 / 2 = 1
// result = 10
// 1 % 2 = 1
// 1 / 2 = 0
// result = 101
the stopping condition is when ~~(1/2) === 0
so I have this:
const getBinary = (v) => {
let remainder, binary = 1;
while (true) {
remainder = v % 2;
v = ~~(v / 2);
if (v === 0) {
return binary;
}
if (remainder === 0) {
binary = binary * 10 + 1;
}
else {
binary = binary * 10;
}
}
};
console.log(getBinary(5));
so that works, but the binary variable is initialized to 1. Is there a way to improve this so it works with negative numbers, or if 0 is passed as the argument to the function?
var integer = 52;
console.log(integer.toString(2));
Simple function native to javascript, no lengthy code required.
If you want to write it from scratch you can use something like this:
function toBinary(n) {
n = Number(n);
if (n == 0) return '0';
var r = '';
while (n != 0) {
r = ((n&1)?'1':'0') + r;
n = n >>> 1;
}
return r;
}
console.log(toBinary(5));
console.log(toBinary(10));
console.log(toBinary(-5));
console.log(toBinary(0));
So here is one way. It has an inner function that handles the basics and an outer one that extends to your special cases. I preferred to do string representations.
const getBinary = v => {
if (v === 0) return '';
let remainder = v % 2;
let quotient = (v - remainder) / 2;
if (remainder === 0) {
return getBinary(quotient) + '0';
}
else {
return getBinary(quotient) + '1';
}
}
const betterGetBinary = v => {
if (v === 0) return '0';
if (v < 0) return '-' + getBinary(-v);
return getBinary(v);
}
console.log(betterGetBinary(-10));
A quick and dirty solution, although it 'might' have two flaws:
- Math.floor()
- no bitwise operator
let getBinary = number => {
let done = false;
let resultInverted = [];
let acc = number;
while (!done) {
let reminder = acc % 2;
if (acc === 1) {
done = true;
}
acc = Math.floor(acc / 2);
resultInverted.push(reminder);
}
return Number(resultInverted.reverse().join(''));
};
console.log(typeof getBinary(2));
console.log(getBinary(5));
console.log(getBinary(127));
I have the following function that validates a digits input consisted of only numbers based on Luhn Algorithm:
function isCheckdigitCorrect(value) {
// accept only digits, dashes or spaces
if (/[^0-9-\s]+/.test(value)) return false;
var nCheck = 0, nDigit = 0, bEven = false;
value = value.replace(/\D/g, "");
for (var n = value.length - 1; n >= 0; n--) {
var cDigit = value.charAt(n),
nDigit = parseInt(cDigit, 10);
if (bEven) {
if ((nDigit *= 2) > 9) nDigit -= 9;
}
nCheck += nDigit;
bEven = !bEven;
}
return (nCheck % 10) == 0;
}
Is there anyway that I can validate also alphanumerics, so let's suppose I have a valid ID: AC813(6) , () is the checksum. So is there a way that I can prevent users having to type mistakenly AF813(6) so this would tell user incorrect ID.
I appreciate your help
Substituting digits for alphabetic characters to calculate a checksum severely reduces the robustness of the check, and the simplest suggestion I can come up with is to use the Luhn mod N algorithm described on Wikipedia.
Translating the algorithm into JavaScipt was relatively straight forward: the following is not my code but a translation from the wiki article - so I won't pretend it is optimal. It is intended to work with strings of case insensitive ASCII alphabetic characters and decimal digits. For documentation see the wiki.
// based on https://en.wikipedia.org/wiki/Luhn_mod_N_algorithm
var charset = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
function NumberOfValidInputCharacters () { return charset.length; }
function CodePointFromCharacter(character) { return charset.indexOf(character)};
function CharacterFromCodePoint( codePoint) { return charset[codePoint]};
function GenerateCheckCharacter (input) {
var factor = 2;
var sum = 0;
var n = NumberOfValidInputCharacters();
input = input.toUpperCase();
// Starting from the right and working leftwards is easier since
// the initial "factor" will always be "2"
for (var i = input.length - 1; i >= 0; i--) {
var codePoint = CodePointFromCharacter(input[i]);
if( codePoint < 0) {
return "";
}
var addend = factor * codePoint;
// Alternate the "factor" that each "codePoint" is multiplied by
factor = (factor == 2) ? 1 : 2;
// Sum the digits of the "addend" as expressed in base "n"
addend = Math.floor(addend / n) + (addend % n);
sum += addend;
}
// Calculate the number that must be added to the "sum"
// to make it divisible by "n"
var remainder = sum % n;
var checkCodePoint = (n - remainder) % n;
return CharacterFromCodePoint(checkCodePoint);
}
function ValidateCheckCharacter(input) {
var factor = 1;
var sum = 0;
var n = NumberOfValidInputCharacters();
input = input.toUpperCase();
// Starting from the right, work leftwards
// Now, the initial "factor" will always be "1"
// since the last character is the check character
for (var i = input.length - 1; i >= 0; i--) {
var codePoint = CodePointFromCharacter(input[i]);
if( codePoint < 0) {
return false;
}
var addend = factor * codePoint;
// Alternate the "factor" that each "codePoint" is multiplied by
factor = (factor == 2) ? 1 : 2;
// Sum the digits of the "addend" as expressed in base "n"
addend = Math.floor(addend / n) + (addend % n);
sum += addend;
}
var remainder = sum % n;
return (remainder == 0);
}
// quick test:
console.log ("check character for 'abcde234': %s",
GenerateCheckCharacter("abcde234"));
console.log( "validate 'abcde2349' : %s " ,
ValidateCheckCharacter( "abcde2349"));
console.log( "validate 'abcde234X' : %s" ,
ValidateCheckCharacter( "abcde234X"));
If you just want to do the Luhn algorithm with letters replacing some of the numbers, then include an additional step to convert letters to numbers within your function.
So if you wanted to allow say A, B, C, D that convert to 0, 1, 2, 3 then you could do:
function isCheckdigitCorrect(value) {
// Letter to number mapping
var letters = {a:'0', b:'1', c:'2', d:'3'};
// Convert letters to their number equivalents, if they have one
value = value.split('').reduce(function(s, c){
return s += letters[c.toLowerCase()] || c;
},'');
// Continue as currently
// accept only digits, dashes or spaces
if (/[^0-9-\s]+/.test(value)) return false;
var nCheck = 0, nDigit = 0, bEven = false;
value = value.replace(/\D/g, "");
for (var n = value.length - 1; n >= 0; n--) {
var cDigit = value.charAt(n),
nDigit = parseInt(cDigit, 10);
if (bEven) {
if ((nDigit *= 2) > 9) nDigit -= 9;
}
nCheck += nDigit;
bEven = !bEven;
}
return (nCheck % 10) == 0;
}
// In the following, A = 0 and D = 3
console.log(isCheckdigitCorrect('375767AA4D6AA21'));
You can implement other algorithms in a similar way.
I tried below sample code
function sigFigs(n, sig) {
if ( n === 0 )
return 0
var mult = Math.pow(10,
sig - Math.floor(Math.log(n < 0 ? -n: n) / Math.LN10) - 1);
return Math.round(n * mult) / mult;
}
But this function is not working for inputs like
sigFigs(24730790,3) returns 24699999.999999996
and sigFigs(4.7152e-26,3) returns: 4.7200000000000004e-26
If anybody has working example please share.
Thanks.
You can try javascript inbuilt method-
Number( my_number.toPrecision(3) )
For Your case try
Number( 24730790.0.toPrecision(5) )
For your refrence and working example you can see link
First of all thanks to everybody, it would be a hard task without these snippets shared.
My value added, is the following snippet (see below for complete implementation)
parseFloat(number.toPrecision(precision))
Please note that if number is, for instance, 10000 and precision is 2, then number.toPrecision(precision) will be '1.0e+4' but parseFloat understands exponential notation.
It is also worth to say that, believe it or not, the algorithm using Math.pow and logarithms posted above, when run on test case formatNumber(5, 123456789) was giving a success on Mac (node v12) but rising and error on Windows (node v10). It was weird so we arrived at the solution above.
At the end I found this as the definitive implementation, taking advantage of all feedbacks provided in this post. Assuming we have a formatNumber.js file with the following content
/**
* Format number to significant digits.
*
* #param {Number} precision
* #param {Number} number
*
* #return {String} formattedValue
*/
export default function formatNumber (precision, number) {
if (typeof number === 'undefined' || number === null) return ''
if (number === 0) return '0'
const roundedValue = round(precision, number)
const floorValue = Math.floor(roundedValue)
const isInteger = Math.abs(floorValue - roundedValue) < Number.EPSILON
const numberOfFloorDigits = String(floorValue).length
const numberOfDigits = String(roundedValue).length
if (numberOfFloorDigits > precision) {
return String(floorValue)
} else {
const padding = isInteger ? precision - numberOfFloorDigits : precision - numberOfDigits + 1
if (padding > 0) {
if (isInteger) {
return `${String(floorValue)}.${'0'.repeat(padding)}`
} else {
return `${String(roundedValue)}${'0'.repeat(padding)}`
}
} else {
return String(roundedValue)
}
}
}
function round (precision, number) {
return parseFloat(number.toPrecision(precision))
}
If you use tape for tests, here there are some basic tests
import test from 'tape'
import formatNumber from '..path/to/formatNumber.js'
test('formatNumber', (t) => {
t.equal(formatNumber(4, undefined), '', 'undefined number returns an empty string')
t.equal(formatNumber(4, null), '', 'null number return an empty string')
t.equal(formatNumber(4, 0), '0')
t.equal(formatNumber(4, 1.23456789), '1.235')
t.equal(formatNumber(4, 1.23), '1.230')
t.equal(formatNumber(4, 123456789), '123500000')
t.equal(formatNumber(4, 1234567.890123), '1235000')
t.equal(formatNumber(4, 123.4567890123), '123.5')
t.equal(formatNumber(4, 12), '12.00')
t.equal(formatNumber(4, 1.2), '1.200')
t.equal(formatNumber(4, 1.234567890123), '1.235')
t.equal(formatNumber(4, 0.001234567890), '0.001235')
t.equal(formatNumber(5, 123456789), '123460000')
t.end()
})
How about automatic type casting, which takes care of exponential notation?
f = (x, n) => +x.toPrecision(n)
Testing:
> f (0.123456789, 6)
0.123457
> f (123456789, 6)
123457000
> f (-123456789, 6)
-123457000
> f (-0.123456789, 6)
-0.123457
> f (-0.123456789, 2)
-0.12
> f (123456789, 2)
120000000
And it returns a number and not a string.
Unfortunately the inbuilt method will give you silly results when the number is > 10, like exponent notation etc.
I made a function, which should solve the issue (maybe not the most elegant way of writing it but here it goes):
function(value, precision) {
if (value < 10) {
value = parseFloat(value).toPrecision(precision)
} else {
value = parseInt(value)
let significantValue = value
for (let i = value.toString().length; i > precision; i--) {
significantValue = Math.round(significantValue / 10)
}
for (let i = 0; significantValue.toString().length < value.toString().length; i++ ) {
significantValue = significantValue * 10
}
value = significantValue
}
return value
}
If you prefer having exponent notation for the higher numbers, feel free to use toPrecision() method.
if you want to specify significant figures left of the decimal place and replace extraneous placeholders with T B M K respectively
// example to 3 sigDigs (significant digits)
//54321 = 54.3M
//12300000 = 12.3M
const moneyFormat = (num, sigDigs) => {
var s = num.toString();
let nn = "";
for (let i = 0; i <= s.length; i++) {
if (s[i] !== undefined) {
if (i < sigDigs) nn += s[i];
else nn += "0";
}
}
nn = nn
.toString()
.replace(/(\d)(?=(\d\d\d)+(?!\d))/g, "$1,")
.replace(",000,000,000", "B")
.replace(",000,000", "M")
.replace(",000", "k");
if (
nn[nn.length - 4] === "," &&
nn[nn.length - 2] === "0" &&
nn[nn.length - 1] === "0"
) {
let numLetter = "K";
if (parseInt(num) > 999999999999) numLetter = "T";
else if (parseInt(num) > 999999999) numLetter = "B";
else if (parseInt(num) > 999999) numLetter = "M";
console.log("numLetter: " + numLetter);
nn = nn.toString();
let nn2 = ""; // new number 2
for (let i = 0; i < nn.length - 4; i++) {
nn2 += nn[i];
}
nn2 += "." + nn[nn.length - 3] + numLetter;
nn = nn2;
}
return nn;
};