JS - Scope chain - javascript

I thought scope chain would make the first "test = new test();" work, but it doesn't. why?
var tool = new Tool();
tool.init();
function Tool(){
var test;
function init(){
//does not work, undefined
test = new Test();
//does work
this.test=new Test();
console.log(test);
}
}
function Test(){
}
EDIT: by not working i mean, it says that test is 'undefined'

It's simple. Your Tool instance does not have a init method. The init function in your code is merely a local function of the Tool constructor. Tool instances do not inherit such functions.
If you want your Tool instances to have a init method, you can:
assign it as a method inside the constructor:
function Tool () {
this.init = function () { ... };
}
or assign it to Tool.prototype (outside of the constructor!):
Tool.prototype.init = function () { ... };
The second option performs better, since all instances share the same init function. (In the first option, each instance gets its own init function which is created during the constructor call.)

Are you trying to access test in the scope of Tool, or on the object returned by it? They are two different variables. I've labeled them A and B:
var tool = new Tool();
function Tool(){
var testA; // Private
this.init = function(){
testA = 1;
this.testB = 9; // Public
}
this.getTestA = function(){ // Public method to access the private testA
return testA;
}
}
tool.init();
console.log( tool.getTestA() ); // 1
console.log( tool.testB ); // 9
testA is known as a Private variable, only accessible through Tool's methods, while testB is public.
Does this cover what you're looking for?
By the way, if you're making a lot of instances of Tool, remember to use Tool's prototype to define the functions instead, so your code is more memory efficient, like so:
function Tool(){
var testA;
}
Tool.prototype.init = function(){
testA = 1;
this.testB = 9;
}
Tool.prototype.getTestA = function(){ return testA; }

Related

access singleton and inner classes each other in javascript

I'm kind of new to javascript. I'm so confused that javascript Objects!!
My code skeleton is bellow...
var jCanvas = new function(){
this.init = function(canvasID){
...
};
var DrawingManager = new function(){
drawInfos = []; // DrawInfo objects will be pushed into this
this.mouseState = MouseState.released;
...
};
function DrawInfo(bm, cl, id, x, y){
...
}
function Point(x, y){
...
}
var MouseState = new function(){
...
};
var Color = new function(){
...
};
var BrushMode = new function(){
...
};
};
I want jCanvas to be singleton class Object.
in jCanvas object, there are many singleton classes such as DrawingManager, MouseState, Color, BrushMode. And 2 more classes which are not singleton classes(Point, DrawInfo)
What I want is that, in DrawingManager, I want to access other classes and singleton class objects.
Problem is browser gives error that "MouseState is undefined".
I think I'm too familiar with Java, C# etc... I want my program to have good structure but this javascript make me so confused and don't know how to make good design pattern..
Please help me out..
To declare functions, don't use the new keyword. Only use it when creating instances of objects.
In JavaScript, you can declare a "class" like this (the body of the function is the constructor):
function MyClass (arg1) {
this.myClassProperty = arg1;
}
And then instantiate it:
var myObj = new MyClass();
If you want to create a singleton, the best method is to use an immediately invoked function:
var MySingleton = (function() {
var myPrivateFunction = function() { ... };
var myExportedFunction = function() { ... };
var myPrivateVar = 5;
return {
myExportedFunction: myExportedFunction
};
})();
Here, you create an anonymous function and immediately run it. It is kind of a more advanced concept though.
Or you can simply create an object:
var MySingleton = {
myProperty: 1,
myFunction: function() { ... },
...
};
Singleton classes in JavaScript make no sense. Either make a constructor ("class" for Java people) to instantiate multiple objects, or make an object. There is no point in making a constructor that you will only ever use once, then have the code to sanity-check whether or not you actually do use it only once. Just make an object.
The reason for the error is probably (but I might be wrong, I'm guessing about the rest of your code) the misunderstanding between var x = function ... and function name() ... forms. To whit:
var a = function() { console.log("a"); }
function b() { console.log("b"); }
a(); // a
b(); // b
c(); // c
d(); // TypeError: d is not a function
function c() { console.log("c"); }
var d = function() { console.log("d"); }
They are identical in effect, but they differ in whether they are hoisted to the top of the scope or not. var d is hoisted, just like function c() { ... } - so the variable d will exist, but will be undefined, since the assignment is not hoisted. Having both styles of function declarations is inconsistent unless you have a good reason for it; pick one of them and stick to it, is what I'd recommend.

Calling private js function from prototype

I've been reading SO posts all day and I haven't come up with anything that is working for me.
I have a JS object
function MyObject(a,b){
this.member_a = a;
this.member_b = b;
function operation1(){
$('#someDiv1').text(this.a);
}
function operation2(){
$('#someDiv1').text(this.b);
}
MyObject.prototype.PublicFunction1 = function(){
//There is an ajax call here
//success
operation1();
//failure
operation2();
}
}
Roughly like that. That's the pattern I'm at right now. It's in an external JS file. My page creates a MyObject(a,b) and the breakpoints show that member_a and member_b are both initialized correctly. After some other magic happens from my page callsMyObject.PublicFunction1();, the ajax executes and I enter operation1() or operation2() but when I am inside of those member_a and member_b are both undefined and I don't understand why. I'm losing the scope or something. I've had the private function and the prototypes outside the object body declaration, combinations of both. How can I call a private function from an object's prototype to work on the object's data?
I've also tried
ClassBody{
vars
private function
}
prototype{
private function call
}
and have been reading this
operation1 and operation2 do not have a context and are thus executed in the global context (where this == window).
If you want to give them a context, but keep them private, then use apply:
operation1.apply(this);
operation2.apply(this);
Further reading on the apply method https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
EDIT
#FelixKing is correct - your code should more appropriately be written like this (using the Module Pattern):
//encapsulating scope
var MyObject = (function() {
function operation1(){
$('#someDiv1').text(this.a);
}
function operation2(){
$('#someDiv1').text(this.b);
}
var MyObject = function(a,b) {
this.member_a = a;
this.member_b = b;
};
MyObject.prototype.PublicFunction1 = function(){
//There is an ajax call here
//success
operation1.apply(this);
//failure
operation2.apply(this);
}
return MyObject;
}());
I have built a tool to allow you to put private methods onto the prototype chain. This way you'll save on memory allocation when creating multiple instances.
https://github.com/TremayneChrist/ProtectJS
Example:
var MyObject = (function () {
// Create the object
function MyObject() {}
// Add methods to the prototype
MyObject.prototype = {
// This is our public method
public: function () {
console.log('PUBLIC method has been called');
},
// This is our private method, using (_)
_private: function () {
console.log('PRIVATE method has been called');
}
}
return protect(MyObject);
})();
// Create an instance of the object
var mo = new MyObject();
// Call its methods
mo.public(); // Pass
mo._private(); // Fail

Unable to access the object using `this`. `this` points to `window` object

I have this Javascript constructor-
function TestEngine() {
this.id='Foo';
}
TestEngine.prototype.fooBar = function() {
this.id='bar';
return true;
}
TestEngine.prototype.start = function() {
this.fooBar();
}
TestEngine.prototype.startMethod = function() {
inter = setInterval(this.start, 200);
}
var test = new TestEngine();
test.startMethod();
Gives me this error -
Uncaught TypeError: Object [object global] has no method 'fooBar'
I tried console.log and found out that when I call this.start from within setInterval, this points to the window object. Why is this so?
The this pointer can point to one of many things depending upon the context:
In constructor functions (function calls preceded by new) this points to the newly created instance of the constructor.
When a function is called as a method of an object (e.g. obj.funct()) then the this pointer inside the function points to the object.
You can explicitly set what this points to by using call, apply or bind.
If none of the above then the this pointer points to the global object by default. In browsers this is the window object.
In your case you're calling this.start inside setInterval. Now consider this dummy implementation of setInterval:
function setInterval(funct, delay) {
// native code
}
It's important to understand that start is not being called as this.start. It's being called as funct. It's like doing something like this:
var funct = this.start;
funct();
Now both these functions would normally execute the same, but there's one tiny problem - the this pointer points to the global object in the second case while it points to the current this in the first.
An important distinction to make is that we're talking about the this pointer inside start. Consider:
this.start(); // this inside start points to this
var funct = this.start;
funct(); // this inside funct (start) point to window
This is not a bug. This is the way JavaScript works. When you call a function as a method of an object (see my second point above) the this pointer inside the function points to that object.
In the second case since funct is not being called as a method of an object the fourth rule is applied by default. Hence this points to window.
You can solve this problem by binding start to the current this pointer and then passing it to setInterval as follows:
setInterval(this.start.bind(this), 200);
That's it. Hope this explanation helped you understand a little bit more about the awesomeness of JavaScript.
Here is a neat way to do OOP with javascript:
//Global Namespace:
var MyNamespace = MyNamespace || {};
//Classes:
MyNamespace.MyObject = function () {
this.PublicVar = 'public'; //Public variable
var _privatVar = 'private'; //Private variable
//Public methods:
this.PublicMethod = function () {
}
//Private methods:
function PrivateMethod() {
}
}
//USAGE EXAMPLE:
var myObj = new MyNamespace.MyObject();
myObj.PublicMethod();
This way you encapsulate your methods and variables into a namespace/class to make it much easier use and maintain.
Therefore you could write your code like this:
var MyNamespace = MyNamespace || {};
//Class: TestEngine
MyNamespace.TestEngine = function () {
this.ID = null;
var _inter = null;
//Public methods:
this.StartMethod = function (id) {
this.ID = id;
_inter = setInterval(Start, 1000);
}
//Private methods:
function Start() {
FooBar();
console.log(this.ID);
}
function FooBar() {
this.ID = 'bar';
return true;
}
}
//USAGE EXAMPLE:
var testEngine = new MyNamespace.TestEngine();
testEngine.StartMethod('Foo');
console.log(testEngine.ID);
Initially, the ID is set to 'Foo'
After 1 second the ID is set to 'bar'
Notice all variables and methods are encapsulated inside the TestEngine class.
Try this:
function TestEngine() {
this.id='Foo';
}
TestEngine.prototype.fooBar = function() {
this.id='bar';
return true;
}
TestEngine.prototype.start = function() {
this.fooBar();
}
TestEngine.prototype.startMethod = function() {
var self = this;
var inter = setInterval(function() {
self.start();
}, 200);
}
var test = new TestEngine();
test.startMethod();
setInterval calls start function with window context. It means when start gets executed, this inside start function points to window object. And window object don't have any method called fooBar & you get the error.
Anonymous function approach:
It is a good practice to pass anonymous function to setInterval and call your function from it. This will be useful if your function makes use of this.
What I did is, created a temp variable self & assigned this to it when it is pointing your TestEngine instance & calling self.start() function with it.
Now inside start function, this will be pointing to your testInstance & everything will work as expected.
Bind approach:
Bind will make your life easier & also increase readability of your code.
TestEngine.prototype.startMethod = function() {
setInterval(this.start.bind(this), 200);
}

Javascript module pattern, scope and "this"

I'm trying to wrap my head around building a custom JavaScript library. I've read a lot about the module pattern, and also read Crockford's articles on private and public members. I know what is an immediately invoked function expression and why we do stuff like
var myLib = (function() {
}())
However, I'm still a little lost in some cases regarding scope and closures in general. The concrete problem I have is:
Why does the following example alert DOMWindow, rather than the myLib object?
http://jsfiddle.net/slavo/xNJtW/1/
It would be great if you can explain what "this" refers to in all of the methods in that example and why.
Inside any function declared (anywhere) and invoked as follows this will be window object
function anyFunc(){
alert(this); // window object
}
anyFunc();
var anyFunc2 = function(){
alert(this); // window object
}
anyFunc2();
If you want to create private functions and access the instance of 'myObject' you can follow either of the following methods
One
module = (function () {
var privateFunc = function() {
alert(this);
}
var myObject = {
publicMethod: function() {
privateFunc.apply(this); // or privateFunc.call(this);
}
};
return myObject;
}());
module.publicMethod();
Two
module = (function () {
var _this; // proxy variable for instance
var privateFunc = function() {
alert(_this);
}
var myObject = {
publicMethod: function() {
privateFunc();
}
};
_this = myObject;
return myObject;
}());
module.publicMethod();
These are solutions to your issue. I would recommend using prototype based objects.
EDIT:
You can use the first method.
In fact here myObject is in the same scope as privateFunc and you can directly use it inside the function
var privateFunc = function() {
alert(myObject);
}
The real scenario were you can use a proxy for this is shown below. You can use call also.
Module = function () {
var _this; // proxy variable for instance
var privateFunc = function() {
alert(this + "," + _this);
}
this.publicMethod = function() {
privateFunc(); // alerts [object Window],[object Object]
privateFunc.call(this); // alerts [object Object],[object Object]
}
_this = this;
return this;
};
var module = new Module();
module.publicMethod();
You need to explicitly state that myPrivateMethod is a member of myLib:
function MyLib ()
{
this._myPrivateField = "private";
this._myPrivateMEthod = function ()
{
alert(this); // Alerts MyLib function;
}
}
var libObject = new MyLib();
Just remember that without using enclosure techniques, nothing in JavaScript is ever truly private!
A better way to do the above is like so:
function MyLib(instanceName)
{
this.name = instanceName;
}
MyLib.prototype.myPrivateFunction()
{
alert(this);
}
To call your method after that:
var libObject = new MyLib();
libObject.myPrivateMethod(); // Alerts info about libObject.
The thing to remember about the module pattern is that it runs once and completes. The methods that are still available to be called are the closures. At the time of creating module, "this" refered to the window and was replaced by its value.
In your linked fiddle, the "this" keyword is never changed by a "new" keyword or other context change, so it still refers to the global window object.
edit: clarification

javascript singleton question

I just read a few threads on the discussion of singleton design in javascript. I'm 100% new to the Design Pattern stuff but as I see since a Singleton by definition won't have the need to be instantiated, conceptually if it's not to be instantiated, in my opinion it doesn't have to be treated like conventional objects which are created from a blueprint(classes). So my wonder is why not just think of a singleton just as something statically available that is wrapped in some sort of scope and that should be all.
From the threads I saw, most of them make a singleton though traditional javascript
new function(){}
followed by making a pseudo constructor.
Well I just think an object literal is enough enough:
var singleton = {
dothis: function(){},
dothat: function(){}
}
right? Or anybody got better insights?
[update] : Again my point is why don't people just use a simpler way to make singletons in javascript as I showed in the second snippet, if there's an absolute reason please tell me. I'm usually afraid of this kind of situation that I simplify things to much :D
I agree with you, the simplest way is to use a object literal, but if you want private members, you could implement taking advantage of closures:
var myInstance = (function() {
var privateVar;
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
},
publicMethod2: function () {
// ...
}
};
})();
About the new function(){} construct, it will simply use an anonymous function as a constructor function, the context inside that function will be a new object that will be returned.
Edit: In response to the #J5's comment, that is simple to do, actually I think that this can be a nice example for using a Lazy Function Definition pattern:
function singleton() {
var instance = (function() {
var privateVar;
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
},
publicMethod2: function () {
// ...
}
};
})();
singleton = function () { // re-define the function for subsequent calls
return instance;
};
return singleton(); // call the new function
}
When the function is called the first time, I make the object instance, and reassign singleton to a new function which has that object instance in it's closure.
Before the end of the first time call I execute the re-defined singleton function that will return the created instance.
Following calls to the singleton function will simply return the instance that is stored in it's closure, because the new function is the one that will be executed.
You can prove that by comparing the object returned:
singleton() == singleton(); // true
The == operator for objects will return true only if the object reference of both operands is the same, it will return false even if the objects are identical but they are two different instances:
({}) == ({}); // false
new Object() == new Object(); // false
I have used the second version (var singleton = {};) for everything from Firefox extensions to websites, and it works really well. One good idea is to not define things inside the curly brackets, but outside it using the name of the object, like so:
var singleton = {};
singleton.dothis = function(){
};
singleton.someVariable = 5;
The ES5 spec lets us use Object.create():
var SingletonClass = (function() {
var instance;
function SingletonClass() {
if (instance == null) {
instance = Object.create(SingletonClass.prototype);
}
return instance;
}
return {
getInstance: function() {
return new SingletonClass();
}
};
})();
var x = SingletonClass.getInstance();
var y = SingletonClass.getInstance();
var z = new x.constructor();
This is nice, since we don't have to worry about our constructor leaking, we still always end up with the same instance.
This structure also has the advantage that our Singleton doesn't construct itself until it is required. Additionally, using the closure as we do here prevents external code from using our "instance" variable, accidentally or otherwise. We can build more private variables in the same place and we can define anything we care to export publically on our class prototype.
The singleton pattern is implemented by creating a class with a method that creates a new instance of the class if one does not exist. If an instance already exists, it simply returns a reference to that object. 1
(function (global) {
var singleton;
function Singleton () {
// singleton does have a constructor that should only be used once
this.foo = "bar";
delete Singleton; // disappear the constructor if you want
}
global.singleton = function () {
return singleton || (singleton = new Singleton());
};
})(window);
var s = singleton();
console.log(s.foo);
var y = singleton();
y.foo = "foo";
console.log(s.foo);
You don't just declare the singleton as an object because that instantiates it, it doesn't declare it. It also doesn't provide a mechanism for code that doesn't know about a previous reference to the singleton to retrieve it. The singleton is not the object/class that is returned by the singleton, it's a structure. This is similar to how closured variables are not closures, the function scope providing the closure is the closure.
I am just posting this answer for people who are looking for a reliable source.
according to patterns.dev by Lydia Hallie, Addy Osmani
Singletons are actually considered an anti-pattern, and can (or.. should) be avoided in JavaScript.
In many programming languages, such as Java or C++, it's not possible to directly create objects the way we can in JavaScript. In those object-oriented programming languages, we need to create a class, which creates an object. That created object has the value of the instance of the class, just like the value of instance in the JavaScript example.
Since we can directly create objects in JavaScript, we can simply use
a regular object to achieve the exact same result.
I've wondered about this too, but just defining an object with functions in it seems reasonable to me. No sense creating a constructor that nobody's ever supposed to call, to create an object with no prototype, when you can just define the object directly.
On the other hand, if you want your singleton to be an instance of some existing "class" -- that is, you want it to have some other object as its prototype -- then you do need to use a constructor function, so that you can set its prototype property before calling it.
The latter code box shows what I've seen JS devs call their version of OO design in Javascript.
Singetons are meant to be singular objects that can't be constructed (except, I suppose, in the initial definition. You have one, global instance of a singleton.
The point of using the "pseudo constructor" is that it creates a new variable scope. You can declare local variables inside the function that are available inside any nested functions but not from the global scope.
There are actually two ways of doing it. You can call the function with new like in your example, or just call the function directly. There are slight differences in how you would write the code, but they are essentially equivalent.
Your second example could be written like this:
var singleton = new function () {
var privateVariable = 42; // This can be accessed by dothis and dothat
this.dothis = function () {
return privateVariable;
};
this.dothat = function () {};
}; // Parentheses are allowed, but not necessary unless you are passing parameters
or
var singleton = (function () {
var privateVariable = 42; // This can be accessed by dothis and dothat
return {
dothis: function () {
return privateVariable;
},
dothat: function () {}
};
})(); // Parentheses are required here since we are calling the function
You could also pass arguments to either function (you would need to add parentheses to the first example).
Crockford (seems to) agree that the object literal is all you need for a singleton in JavaScript:
http://webcache.googleusercontent.com/search?q=cache:-j5RwC92YU8J:www.crockford.com/codecamp/The%2520Good%2520Parts%2520ppt/5%2520functional.ppt+singleton+site:www.crockford.com&cd=1&hl=en&ct=clnk
How about this:
function Singleton() {
// ---------------
// Singleton part.
// ---------------
var _className = null;
var _globalScope = null;
if ( !(this instanceof arguments.callee) ) {
throw new Error("Constructor called as a function.");
}
if ( !(_className = arguments.callee.name) ) {
throw new Error("Unable to determine class name.")
}
_globalScope = (function(){return this;}).call(null);
if ( !_globalScope.singletons ) {
_globalScope.singletons = [];
}
if ( _globalScope.singletons[_className] ) {
return _globalScope.singletons[_className];
} else {
_globalScope.singletons[_className] = this;
}
// ------------
// Normal part.
// ------------
var _x = null;
this.setx = function(val) {
_x = val;
}; // setx()
this.getx = function() {
return _x;
}; // getx()
function _init() {
_x = 0; // Whatever initialisation here.
} // _init()
_init();
} // Singleton()
var p = new Singleton;
var q = new Singleton;
p.setx(15);
q.getx(); // returns 15
I stole this from CMS / CMS' answer, and changed it so it can be invoked as:
MySingleton.getInstance().publicMethod1();
With the slight alternation:
var MySingleton = { // These two lines
getInstance: function() { // These two lines
var instance = (function() {
var privateVar;
function privateMethod () {
// ...
console.log( "b" );
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
console.log( "a" );
},
publicMethod2: function () {
// ...
privateMethod();
}
};
})();
singleton = function () { // re-define the function for subsequent calls
return instance;
};
return singleton(); // call the new function
}
}

Categories

Resources