Is there simple immutable hash and array implementation in javascript? I don't need best speed, a reasonable speed better than a clone would be good.
Also, if there are simple implementations in Java or some other languages that can be easily understood and ported to JavaScript, it would be also nice.
UPDATE:
The goal isn't to just froze the hash (or array), but to make an efficient implementation of update operation - update of immutable hash should return a new immutable hash. And it should be more efficient than doing it by "clone original and update it".
Native JS types have complexity of update something like O(1), with cloning the complexity will be O(n), with special immutable data structures (what I asked for) it will be 0(log(n))
UPDATE2: JavaScript already has Array / Hash :
Yes, but they are mutable, I need something similar but immutable, basically it can be done very simply by cloning hash2 = hash1.clone(); hash2[key] = value but it's very inefficient, there are algorithms that made it very efficient, without using the clone.
hash1 = {}
hash2 = hash1.set('key', 'value2')
hash3 = hash1.set('key', 'value3)
console.log(hash1) // => {}
console.log(hash2) // => {key: 'value2'}
console.log(hash3) // => {key: 'value3'}
SOLUTION:
It's not an implementation for immutable hash, but more like a hack for my current problem, maybe it also helps someone.
A little more about why I need immutable data structures - I use Node.js and sort of in-memory database. One request can read database, other update it - update can take a lot of time (calling remote services) - so I can't block all read processes and wait until update will be finished, also update may fail and database should be rolled back. So I need to somehow isolate (ACID) read and write operations to the in-memory database.
That's why I need immutable arrays and hashes - to implement sort of MVCC. But it seems there is a simpler way to do it. Instead of updating database directly - the update operation just records changes to database (but not perform it directly) - in form of "add 42 to array db.someArray".
In the end - the product of update operation will be an array of such change commands, and because it can be applied very quickly - we can block the database to apply it.
But, still it will be interesting to see if there are implementation of immutable data structures in javascript, so I'll leave this question open.
I know this question is old but I thought people that were searching like me should be pointed to Facebook's Immutable.js which offers many different types of immutable data structures in a very efficient way.
I had the same requirements for persistent data structures for JS, so a while ago I made an implementation of a persistent map.. https://github.com/josef-jelinek/cofy/blob/master/lang/feat.js
It contains implementation of a balanced tree based (sorted) map, and a naive copy-on-write map (and unfinished persistent vector/array).
var map = FEAT.map();
var map1 = map.assoc('key', 'value');
var value = map1.get('key');
var map2 = map1.dissoc('key');
...
it supports other methods like count(), contains(key), keys(into = []), values(into = []), toObject(into = {}), toString()
The implementation is not too complicated and it is in public domain. I accept suggestions and contributors too :).
Update: you can find unit tests (examples of usage) at https://github.com/josef-jelinek/cofy/blob/master/tests/test-feat.html
Update 2: Persistent vector implementation is now there as well with the following operations: count(), get(i), set(i, value), push(value), pop(), toArray(into = []), toString()
The only way to make an object immutable is to hide it inside a function. You can then use the function to return either the default hash or an updated version, but you can't actually store an immutable hash in the global scope.
function my_hash(delta) {
var default = {mykey: myvalue};
if (delta) {
for (var key, value in delta) {
if (default.hasOwnProperty(key)) default[key] = value;
}
}
return default;
}
I don't think this is a good idea though.
The best way to clone an object in Javascript I'm aware of, is the one contained in underscore.js
Shortly:
_.clone = function(obj) {
if (!_.isObject(obj)) return obj;
return _.isArray(obj) ? obj.slice() : _.extend({}, obj);
};
_.extend = function(obj) {
each(slice.call(arguments, 1), function(source) {
for (var prop in source) {
obj[prop] = source[prop];
}
});
return obj;
};
Related
I'm still learning JS. In some other languages, you can pass variables byref and then modify them elsewhere in code.
In an attempt to avoid having lots of duplicate code, I have structured a series of callbacks and parsing like so:
class MarketData {
constructor() {
//Arrays
this.OneMinuteData = [];
this.ThreeMinuteData = [];
this.initializeCandleData();
}
initializeData() {
var client = new Client();
this._initializeData(60, client, this.OneMinuteData);
this._initializeData(180, client, this.ThreeMinuteData);
}
_initializeData(granularity, client, dataStore) {
client.GetRates({ granularity: granularity }, function(err, msg, data) {
var items = data.map(item => ({
///data mapped here
}));
dataStore = dataStore.concat(items);
}
}
So essentially I have this 'private' _initializeData function with the hopes of passing in an array and having it add to the array, but since JS passes byval, I cannot achieve the desired effect (e.g. this.OneMinuteData array is not modified).
Because of this, the only way I currently know how to work around this problem is to essentially have the same function copy-pasted for each individual array, which I find incredibly sloppy. Is there a better way of doing this?
but since JS passes byval, I cannot achieve the desired effect (e.g. this.OneMinuteData array is not modified).
While JavaScript does pass by value, that value when dealing with an object (including any array) is a reference.
See the documentation for concat:
The concat() method is used to merge two or more arrays. This method does not change the existing arrays, but instead returns a new array.
So when you say dataStore = dataStore.concat(items);, you assign a new array to the local dataStore variable and discard the old one.
Outside the function, the original array is unchanged.
The reason the array assigned to OneMinuteData is not modified is because you never modify any array.
Push the values of items into dataStore instead.
dataStore.push.apply(dataStore, items);
NB: GetRates has the signature of an asynchronous function, so make sure you don't try to inspect the modifications to OneMinuteData before they are made.
What are the actual uses of the WeakMap data structure introduced in ECMAScript 6?
Since a key of a weak map creates a strong reference to its corresponding value, ensuring that a value which has been inserted into a weak map will never disappear as long as its key is still alive, it can't be used for memo tables, caches or anything else that you would normally use weak references, maps with weak values, etc. for.
It seems to me that this:
weakmap.set(key, value);
...is just a roundabout way of saying this:
key.value = value;
What concrete use cases am I missing?
Fundamentally
WeakMaps provide a way to extend objects from the outside without interfering with garbage collection. Whenever you want to extend an object but can't because it is sealed - or from an external source - a WeakMap can be applied.
A WeakMap is a map (dictionary) where the keys are weak - that is, if all references to the key are lost and there are no more references to the value - the value can be garbage collected. Let's show this first through examples, then explain it a bit and finally finish with real use.
Let's say I'm using an API that gives me a certain object:
var obj = getObjectFromLibrary();
Now, I have a method that uses the object:
function useObj(obj){
doSomethingWith(obj);
}
I want to keep track of how many times the method was called with a certain object and report if it happens more than N times. Naively one would think to use a Map:
var map = new Map(); // maps can have object keys
function useObj(obj){
doSomethingWith(obj);
var called = map.get(obj) || 0;
called++; // called one more time
if(called > 10) report(); // Report called more than 10 times
map.set(obj, called);
}
This works, but it has a memory leak - we now keep track of every single library object passed to the function which keeps the library objects from ever being garbage collected. Instead - we can use a WeakMap:
var map = new WeakMap(); // create a weak map
function useObj(obj){
doSomethingWith(obj);
var called = map.get(obj) || 0;
called++; // called one more time
if(called > 10) report(); // Report called more than 10 times
map.set(obj, called);
}
And the memory leak is gone.
Use cases
Some use cases that would otherwise cause a memory leak and are enabled by WeakMaps include:
Keeping private data about a specific object and only giving access to it to people with a reference to the Map. A more ad-hoc approach is coming with the private-symbols proposal but that's a long time from now.
Keeping data about library objects without changing them or incurring overhead.
Keeping data about a small set of objects where many objects of the type exist to not incur problems with hidden classes JS engines use for objects of the same type.
Keeping data about host objects like DOM nodes in the browser.
Adding a capability to an object from the outside (like the event emitter example in the other answer).
Let's look at a real use
It can be used to extend an object from the outside. Let's give a practical (adapted, sort of real - to make a point) example from the real world of Node.js.
Let's say you're Node.js and you have Promise objects - now you want to keep track of all the currently rejected promises - however, you do not want to keep them from being garbage collected in case no references exist to them.
Now, you don't want to add properties to native objects for obvious reasons - so you're stuck. If you keep references to the promises you're causing a memory leak since no garbage collection can happen. If you don't keep references then you can't save additional information about individual promises. Any scheme that involves saving the ID of a promise inherently means you need a reference to it.
Enter WeakMaps
WeakMaps mean that the keys are weak. There are no ways to enumerate a weak map or to get all its values. In a weak map, you can store the data based on a key and when the key gets garbage collected so do the values.
This means that given a promise you can store state about it - and that object can still be garbage collected. Later on, if you get a reference to an object you can check if you have any state relating to it and report it.
This was used to implement unhandled rejection hooks by Petka Antonov as this:
process.on('unhandledRejection', function(reason, p) {
console.log("Unhandled Rejection at: Promise ", p, " reason: ", reason);
// application specific logging, throwing an error, or other logic here
});
We keep information about promises in a map and can know when a rejected promise was handled.
This answer seems to be biased and unusable in a real world scenario. Please read it as is, and don't consider it as an actual option for anything else than experimentation
A use case could be to use it as a dictionary for listeners, I have a coworker who did that. It is very helpful because any listener is directly targetted with this way of doing things. Goodbye listener.on.
But from a more abstract point of view, WeakMap is especially powerful to dematerialize access to basically anything, you don't need a namespace to isolate its members since it is already implied by the nature of this structure. I'm pretty sure you could do some major memory improvements by replacing awkwards redundant object keys (even though deconstructing does the work for you).
Before reading what is next
I do now realize my emphasize is not exactly the best way to tackle the problem and as Benjamin Gruenbaum pointed out (check out his answer, if it's not already above mine :p), this problem could not have been solved with a regular Map, since it would have leaked, thus the main strength of WeakMap is that it does not interfere with garbage collection given that they do not keep a reference.
Here is the actual code of my coworker (thanks to him for sharing)
Full source here, it's about listeners management I talked about above (you can also take a look at the specs)
var listenableMap = new WeakMap();
export function getListenable (object) {
if (!listenableMap.has(object)) {
listenableMap.set(object, {});
}
return listenableMap.get(object);
}
export function getListeners (object, identifier) {
var listenable = getListenable(object);
listenable[identifier] = listenable[identifier] || [];
return listenable[identifier];
}
export function on (object, identifier, listener) {
var listeners = getListeners(object, identifier);
listeners.push(listener);
}
export function removeListener (object, identifier, listener) {
var listeners = getListeners(object, identifier);
var index = listeners.indexOf(listener);
if(index !== -1) {
listeners.splice(index, 1);
}
}
export function emit (object, identifier, ...args) {
var listeners = getListeners(object, identifier);
for (var listener of listeners) {
listener.apply(object, args);
}
}
WeakMap works well for encapsulation and information hiding
WeakMap is only available for ES6 and above. A WeakMap is a collection of key and value pairs where the key must be an object. In the following example, we build a WeakMap with two items:
var map = new WeakMap();
var pavloHero = {first: "Pavlo", last: "Hero"};
var gabrielFranco = {first: "Gabriel", last: "Franco"};
map.set(pavloHero, "This is Hero");
map.set(gabrielFranco, "This is Franco");
console.log(map.get(pavloHero));//This is Hero
We used the set() method to define an association between an object and another item (a string in our case). We used the get() method to retrieve the item associated with an object. The interesting aspect of the WeakMaps is the fact that it holds a weak reference to the key inside the map. A weak reference means that if the object is destroyed, the garbage collector will remove the entire entry from the WeakMap, thus freeing up memory.
var TheatreSeats = (function() {
var priv = new WeakMap();
var _ = function(instance) {
return priv.get(instance);
};
return (function() {
function TheatreSeatsConstructor() {
var privateMembers = {
seats: []
};
priv.set(this, privateMembers);
this.maxSize = 10;
}
TheatreSeatsConstructor.prototype.placePerson = function(person) {
_(this).seats.push(person);
};
TheatreSeatsConstructor.prototype.countOccupiedSeats = function() {
return _(this).seats.length;
};
TheatreSeatsConstructor.prototype.isSoldOut = function() {
return _(this).seats.length >= this.maxSize;
};
TheatreSeatsConstructor.prototype.countFreeSeats = function() {
return this.maxSize - _(this).seats.length;
};
return TheatreSeatsConstructor;
}());
})()
๐ ๐ฒ๐๐ฎ๐ฑ๐ฎ๐๐ฎ
Weak Maps can be used to store metadata about DOM elements without interfering with garbage collection or making coworkers mad at your code. For example, you could use them to numerically index all of the elements in a webpage.
๐ช๐ถ๐๐ต๐ผ๐๐ ๐ช๐ฒ๐ฎ๐ธ๐ ๐ฎ๐ฝ๐ ๐ผ๐ฟ ๐ช๐ฒ๐ฎ๐ธ๐ฆ๐ฒ๐๐:
var elements = document.getElementsByTagName('*'),
i = -1, len = elements.length;
while (++i !== len) {
// Production code written this poorly makes me want to cry:
elements[i].lookupindex = i;
elements[i].elementref = [];
elements[i].elementref.push( elements[(i * i) % len] );
}
// Then, you can access the lookupindex's
// For those of you new to javascirpt, I hope the comments below help explain
// how the ternary operator (?:) works like an inline if-statement
document.write(document.body.lookupindex + '<br />' + (
(document.body.elementref.indexOf(document.currentScript) !== -1)
? // if(document.body.elementref.indexOf(document.currentScript) !== -1){
"true"
: // } else {
"false"
) // }
);
๐จ๐๐ถ๐ป๐ด ๐ช๐ฒ๐ฎ๐ธ๐ ๐ฎ๐ฝ๐ ๐ฎ๐ป๐ฑ ๐ช๐ฒ๐ฎ๐ธ๐ฆ๐ฒ๐๐:
var DOMref = new WeakMap(),
__DOMref_value = Array,
__DOMref_lookupindex = 0,
__DOMref_otherelement = 1,
elements = document.getElementsByTagName('*'),
i = -1, len = elements.length, cur;
while (++i !== len) {
// Production code written this well makes me want to ๐:
cur = DOMref.get(elements[i]);
if (cur === undefined)
DOMref.set(elements[i], cur = new __DOMref_value)
cur[__DOMref_lookupindex] = i;
cur[__DOMref_otherelement] = new WeakSet();
cur[__DOMref_otherelement].add( elements[(i * i) % len] );
}
// Then, you can access the lookupindex's
cur = DOMref.get(document.body)
document.write(cur[__DOMref_lookupindex] + '<br />' + (
cur[__DOMref_otherelement].has(document.currentScript)
? // if(cur[__DOMref_otherelement].has(document.currentScript)){
"true"
: // } else {
"false"
) // }
);
๐ง๐ต๐ฒ ๐๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ
The difference may look negligible, aside from the fact that the weakmap version is longer, however there is a major difference between the two pieces of code shown above. In the first snippet of code, without weak maps, the piece of code stores references every which way between the DOM elements. This prevents the DOM elements from being garbage collected. (i * i) % len may seem like an oddball that nobody would use, but think again: plenty of production code has DOM references that bounce all over the document. Now, for the second piece of code, because all the references to the elements are weak, when you a remove a node, the browser is able to determine that the node is not used (not able to be reached by your code), and thus delete it from memory. The reason for why you should be concerned about memory usage, and memory anchors (things like the first snippet of code where unused elements are held in memory) is because more memory usage means more browser GC-attempts (to try to free up memory to avert a browser crash) means slower browsing experience and sometimes a browser crash.
As for a polyfill for these, I would recommend my own library (found here # github). It is a very lightweight library that will simply polyfill it without any of the way-overly-complex frameworks you might find in other polyfills.
~ Happy coding!
I use WeakMap for the cache of worry-free memoization of functions that take in immutable objects as their parameter.
Memoization is fancy way of saying "after you compute the value, cache it so you don't have to compute it again".
Here's an example:
// using immutable.js from here https://facebook.github.io/immutable-js/
const memo = new WeakMap();
let myObj = Immutable.Map({a: 5, b: 6});
function someLongComputeFunction (someImmutableObj) {
// if we saved the value, then return it
if (memo.has(someImmutableObj)) {
console.log('used memo!');
return memo.get(someImmutableObj);
}
// else compute, set, and return
const computedValue = someImmutableObj.get('a') + someImmutableObj.get('b');
memo.set(someImmutableObj, computedValue);
console.log('computed value');
return computedValue;
}
someLongComputeFunction(myObj);
someLongComputeFunction(myObj);
someLongComputeFunction(myObj);
// reassign
myObj = Immutable.Map({a: 7, b: 8});
someLongComputeFunction(myObj);
<script src="https://cdnjs.cloudflare.com/ajax/libs/immutable/3.8.1/immutable.min.js"></script>
A few things to note:
Immutable.js objects return new objects (with a new pointer) when you modify them so using them as keys in a WeakMap is guarantees the same computed value.
The WeakMap is great for memos because once the object (used as the key) gets garbage collected, so does the computed value on the WeakMap.
I have this simple feature based use case/Example for WeakMaps.
MANAGE A COLLECTION OF USERS
I started off with a User Object whose properties include a fullname, username, age, gender and a method called print which prints a human readable summary of the other properties.
/**
Basic User Object with common properties.
*/
function User(username, fullname, age, gender) {
this.username = username;
this.fullname = fullname;
this.age = age;
this.gender = gender;
this.print = () => console.log(`${this.fullname} is a ${age} year old ${gender}`);
}
I then added a Map called users to keep a collection of multiple users which are keyed by username.
/**
Collection of Users, keyed by username.
*/
var users = new Map();
Addition of the Collection also required helper functions to add, get, delete a User and even a function to print all the users for sake of completeness.
/**
Creates an User Object and adds it to the users Collection.
*/
var addUser = (username, fullname, age, gender) => {
let an_user = new User(username, fullname, age, gender);
users.set(username, an_user);
}
/**
Returns an User Object associated with the given username in the Collection.
*/
var getUser = (username) => {
return users.get(username);
}
/**
Deletes an User Object associated with the given username in the Collection.
*/
var deleteUser = (username) => {
users.delete(username);
}
/**
Prints summary of all the User Objects in the Collection.
*/
var printUsers = () => {
users.forEach((user) => {
user.print();
});
}
With all of the above code running in, say NodeJS, only the users Map has the reference to the User Objects within the entire process. There is no other reference to the individual User Objects.
Running this code an interactive NodeJS shell, just as an Example I add four users and print them:
ADD MORE INFO TO USERS WITHOUT MODIFYING EXISTING CODE
Now say a new feature is required wherein each users Social Media Platform (SMP) links need to be tracked along with the User Objects.
The key here is also that this feature must be implemented with minimum intervention to the existing code.
This is possible with WeakMaps in the following manner.
I add three separate WeakMaps for Twitter, Facebook, LinkedIn.
/*
WeakMaps for Social Media Platforms (SMPs).
Could be replaced by a single Map which can grow
dynamically based on different SMP names . . . anyway...
*/
var sm_platform_twitter = new WeakMap();
var sm_platform_facebook = new WeakMap();
var sm_platform_linkedin = new WeakMap();
A helper function, getSMPWeakMap is added simply to return the WeakMap associated with the given SMP name.
/**
Returns the WeakMap for the given SMP.
*/
var getSMPWeakMap = (sm_platform) => {
if(sm_platform == "Twitter") {
return sm_platform_twitter;
}
else if(sm_platform == "Facebook") {
return sm_platform_facebook;
}
else if(sm_platform == "LinkedIn") {
return sm_platform_linkedin;
}
return undefined;
}
A function to add a users SMP link to the given SMP WeakMap.
/**
Adds a SMP link associated with a given User. The User must be already added to the Collection.
*/
var addUserSocialMediaLink = (username, sm_platform, sm_link) => {
let user = getUser(username);
let sm_platform_weakmap = getSMPWeakMap(sm_platform);
if(user && sm_platform_weakmap) {
sm_platform_weakmap.set(user, sm_link);
}
}
A function to print only the users who are present on the given SMP.
/**
Prints the User's fullname and corresponding SMP link of only those Users which are on the given SMP.
*/
var printSMPUsers = (sm_platform) => {
let sm_platform_weakmap = getSMPWeakMap(sm_platform);
console.log(`Users of ${sm_platform}:`)
users.forEach((user)=>{
if(sm_platform_weakmap.has(user)) {
console.log(`\t${user.fullname} : ${sm_platform_weakmap.get(user)}`)
}
});
}
You can now add SMP links for the users, also with the possibility of each user having a link on multiple SMPs.
...continuing with the earlier Example, I add SMP links to the users, multiple links for users Bill and Sarah and then print the links for each SMP separately:
Now say a User is deleted from the users Map by calling deleteUser. That removes the only reference to the User Object. This in turn will also clear out the SMP link from any/all of the SMP WeakMaps (by Garbage Collection) as without the User Object there is no way to access any of its SMP link.
...continuing with the Example, I delete user Bill and then print out the links of the SMPs he was associated with:
There is no requirement of any additional code to individually delete the SMP link separately and the existing code before this feature was not modified in anyway.
If there is any other way to add this feature with/without WeakMaps please feel free to comment.
WEAKMAP: keep in mind weakMap is all about memory allocation and garbage collection and only related to key of object type
in javascript when u store values in key-value pair array, map, set, etc... a memory allocated to all key-value pair and this memory will not be free even if you delete or set null to that key consider this as a strongmap keys are strongly attache to memory below is example
let john = { name: "yusuf" };
let map = new Map();
map.set(yusuf, "xyz"); //here "yusuf" is the key and "xyz" is value
yusuf= null; // overwrite the reference
// the object previously referenced by yusuf is stored inside the array
// therefore it won't be garbage-collected
// we can get it using map.keys()
but this is not the case with weakMap in here memory will be free
let john = { name: "yusuf" };
let map = new WeakMap();
map.set(yusuf, "...");
yusuf= null; // overwrite the reference
// yusuf is removed from memory!
USE CASE : you will use it in javascript where u want to manage memory in more efficient way
If weโre working with an object that โbelongsโ to another code, maybe even a third-party library, and would like to store some data associated with it, that should only exist while the object is alive โ then WeakMap is exactly whatโs needed.
We put the data to a WeakMap, using the object as the key, and when the object is garbage collected, that data will automatically disappear as well.
weakMap.set(yusuf, "secret documents");
// if yusuf dies, secret documents will be destroyed automatically
I took reference from this great article : https://javascript.info/weakmap-weakset
I think it's very helpful for checking a connection income in applications socket.
The other case, the 'Weak Collection' are useful: https://javascript.info/task/recipients-read
Summary: Is there a faster way to hash objects than JSON.stringify?
Details: I have a Ruby and JavaScript library (NeatJSON) that provides pretty-printing of JavaScript values. I recently fixed a problem where deeply-nested objects caused O(n!) performance (n being the nesting level) using memoization based on the object being serialized and the indentation amount.
In Ruby, the fix was really easy, because you can index hashes by arrays of unique sets of objects:
build = ->(object,indent) do
memoizer[[object,indent]] ||= <all the rest of the code>
end
In JavaScript, however, I can't index an object by another object (in a unique way). Following the lead of several articles I found online, I decide to fix the problem generically, using JSON.stringify on the full set of arguments to the function to create a unique key for memoization:
function memoize(f){
var memo = {};
var slice = Array.prototype.slice;
return function(){
var args = slice.call(arguments);
var mkey = JSON.stringify(args);
if (!(mkey in memo)) memo[mkey] = f.apply(this,args);
return memo[mkey];
}
}
function rawBuild(o,indent){ .. }
var build = memoize(rawBuild);
This works, but (a) it's a little slower than I'd like, and (b) it seems wildly inefficient (and inelegant) to perform (naive) serialization of every object and value that I'm about to serialize smartly. The act of serializing a large object with many values is going to store a string and formatting result for EVERY unique value (not just leaf values) in the entire object.
Is there a modern JavaScript trick that would let me uniquely identify a value? For example, some way of accessing an internal ID, or otherwise associating complex objects with unique integers that takes O(1) time to find the identifier for a value?
If you are looking to memoise your objects by identity (not by content), then you'll want to use a WeakMap which is designed for exactly this purpose. They don't work for primitive values though, so you'll need a different solution for such arguments.
Using #Bergi's suggestion of a WeakMap I found out about Map, which allows using any value type as the key (not just objects). Because I needed a compound keyโuniquely memoizing the combination of the value passed in and the indentation stringโI created a hierarchical memoization structure:
function memoizedBuild(){
var memo = new Map;
return function(value,indent){
var byIndent=memo.get(value);
if (!byIndent) memo.set(value,byIndent={});
if (!byIndent[indent]) byIndent[indent] = rawBuild(value,indent);
return byIndent[indent];
}
}
This proved to be about 4ร faster than the memoization code I had been using when serializing a large 270kB JSON object.
Note that in the above code I'm able to use !byIndent[indent] only because I know that rawBuild will never return a falsey value (null, undefined, false, NaN, 0, ""). The safer code line would look something like:
if (!(indent in byIndent)) byIndent[indent] = rawBuild(value,indent);
If you just need to memoise objects then it makes sense to assign some unique ID to your objects .
var gID = 0;
function createNode() {
var obj = ...
obj.id = (++gID).toString();
}
and use those obj.id's as keys in your memo collection.
That would be fastest and least greedy solution.
Update:
If you want that id property to do not clash with existing properties
then you can create non-enumerable properties using standard ES5.1 Object.createProperty() (with some unique name) or to use ES6 symbols:
var gID = 0;
var gUidSym = Symbol("uid");
function getUidOf(obj) {
return obj[gUidSym]
|| (obj[gUidSym] = (++gID).toString());
}
What are the actual uses of the WeakMap data structure introduced in ECMAScript 6?
Since a key of a weak map creates a strong reference to its corresponding value, ensuring that a value which has been inserted into a weak map will never disappear as long as its key is still alive, it can't be used for memo tables, caches or anything else that you would normally use weak references, maps with weak values, etc. for.
It seems to me that this:
weakmap.set(key, value);
...is just a roundabout way of saying this:
key.value = value;
What concrete use cases am I missing?
Fundamentally
WeakMaps provide a way to extend objects from the outside without interfering with garbage collection. Whenever you want to extend an object but can't because it is sealed - or from an external source - a WeakMap can be applied.
A WeakMap is a map (dictionary) where the keys are weak - that is, if all references to the key are lost and there are no more references to the value - the value can be garbage collected. Let's show this first through examples, then explain it a bit and finally finish with real use.
Let's say I'm using an API that gives me a certain object:
var obj = getObjectFromLibrary();
Now, I have a method that uses the object:
function useObj(obj){
doSomethingWith(obj);
}
I want to keep track of how many times the method was called with a certain object and report if it happens more than N times. Naively one would think to use a Map:
var map = new Map(); // maps can have object keys
function useObj(obj){
doSomethingWith(obj);
var called = map.get(obj) || 0;
called++; // called one more time
if(called > 10) report(); // Report called more than 10 times
map.set(obj, called);
}
This works, but it has a memory leak - we now keep track of every single library object passed to the function which keeps the library objects from ever being garbage collected. Instead - we can use a WeakMap:
var map = new WeakMap(); // create a weak map
function useObj(obj){
doSomethingWith(obj);
var called = map.get(obj) || 0;
called++; // called one more time
if(called > 10) report(); // Report called more than 10 times
map.set(obj, called);
}
And the memory leak is gone.
Use cases
Some use cases that would otherwise cause a memory leak and are enabled by WeakMaps include:
Keeping private data about a specific object and only giving access to it to people with a reference to the Map. A more ad-hoc approach is coming with the private-symbols proposal but that's a long time from now.
Keeping data about library objects without changing them or incurring overhead.
Keeping data about a small set of objects where many objects of the type exist to not incur problems with hidden classes JS engines use for objects of the same type.
Keeping data about host objects like DOM nodes in the browser.
Adding a capability to an object from the outside (like the event emitter example in the other answer).
Let's look at a real use
It can be used to extend an object from the outside. Let's give a practical (adapted, sort of real - to make a point) example from the real world of Node.js.
Let's say you're Node.js and you have Promise objects - now you want to keep track of all the currently rejected promises - however, you do not want to keep them from being garbage collected in case no references exist to them.
Now, you don't want to add properties to native objects for obvious reasons - so you're stuck. If you keep references to the promises you're causing a memory leak since no garbage collection can happen. If you don't keep references then you can't save additional information about individual promises. Any scheme that involves saving the ID of a promise inherently means you need a reference to it.
Enter WeakMaps
WeakMaps mean that the keys are weak. There are no ways to enumerate a weak map or to get all its values. In a weak map, you can store the data based on a key and when the key gets garbage collected so do the values.
This means that given a promise you can store state about it - and that object can still be garbage collected. Later on, if you get a reference to an object you can check if you have any state relating to it and report it.
This was used to implement unhandled rejection hooks by Petka Antonov as this:
process.on('unhandledRejection', function(reason, p) {
console.log("Unhandled Rejection at: Promise ", p, " reason: ", reason);
// application specific logging, throwing an error, or other logic here
});
We keep information about promises in a map and can know when a rejected promise was handled.
This answer seems to be biased and unusable in a real world scenario. Please read it as is, and don't consider it as an actual option for anything else than experimentation
A use case could be to use it as a dictionary for listeners, I have a coworker who did that. It is very helpful because any listener is directly targetted with this way of doing things. Goodbye listener.on.
But from a more abstract point of view, WeakMap is especially powerful to dematerialize access to basically anything, you don't need a namespace to isolate its members since it is already implied by the nature of this structure. I'm pretty sure you could do some major memory improvements by replacing awkwards redundant object keys (even though deconstructing does the work for you).
Before reading what is next
I do now realize my emphasize is not exactly the best way to tackle the problem and as Benjamin Gruenbaum pointed out (check out his answer, if it's not already above mine :p), this problem could not have been solved with a regular Map, since it would have leaked, thus the main strength of WeakMap is that it does not interfere with garbage collection given that they do not keep a reference.
Here is the actual code of my coworker (thanks to him for sharing)
Full source here, it's about listeners management I talked about above (you can also take a look at the specs)
var listenableMap = new WeakMap();
export function getListenable (object) {
if (!listenableMap.has(object)) {
listenableMap.set(object, {});
}
return listenableMap.get(object);
}
export function getListeners (object, identifier) {
var listenable = getListenable(object);
listenable[identifier] = listenable[identifier] || [];
return listenable[identifier];
}
export function on (object, identifier, listener) {
var listeners = getListeners(object, identifier);
listeners.push(listener);
}
export function removeListener (object, identifier, listener) {
var listeners = getListeners(object, identifier);
var index = listeners.indexOf(listener);
if(index !== -1) {
listeners.splice(index, 1);
}
}
export function emit (object, identifier, ...args) {
var listeners = getListeners(object, identifier);
for (var listener of listeners) {
listener.apply(object, args);
}
}
WeakMap works well for encapsulation and information hiding
WeakMap is only available for ES6 and above. A WeakMap is a collection of key and value pairs where the key must be an object. In the following example, we build a WeakMap with two items:
var map = new WeakMap();
var pavloHero = {first: "Pavlo", last: "Hero"};
var gabrielFranco = {first: "Gabriel", last: "Franco"};
map.set(pavloHero, "This is Hero");
map.set(gabrielFranco, "This is Franco");
console.log(map.get(pavloHero));//This is Hero
We used the set() method to define an association between an object and another item (a string in our case). We used the get() method to retrieve the item associated with an object. The interesting aspect of the WeakMaps is the fact that it holds a weak reference to the key inside the map. A weak reference means that if the object is destroyed, the garbage collector will remove the entire entry from the WeakMap, thus freeing up memory.
var TheatreSeats = (function() {
var priv = new WeakMap();
var _ = function(instance) {
return priv.get(instance);
};
return (function() {
function TheatreSeatsConstructor() {
var privateMembers = {
seats: []
};
priv.set(this, privateMembers);
this.maxSize = 10;
}
TheatreSeatsConstructor.prototype.placePerson = function(person) {
_(this).seats.push(person);
};
TheatreSeatsConstructor.prototype.countOccupiedSeats = function() {
return _(this).seats.length;
};
TheatreSeatsConstructor.prototype.isSoldOut = function() {
return _(this).seats.length >= this.maxSize;
};
TheatreSeatsConstructor.prototype.countFreeSeats = function() {
return this.maxSize - _(this).seats.length;
};
return TheatreSeatsConstructor;
}());
})()
๐ ๐ฒ๐๐ฎ๐ฑ๐ฎ๐๐ฎ
Weak Maps can be used to store metadata about DOM elements without interfering with garbage collection or making coworkers mad at your code. For example, you could use them to numerically index all of the elements in a webpage.
๐ช๐ถ๐๐ต๐ผ๐๐ ๐ช๐ฒ๐ฎ๐ธ๐ ๐ฎ๐ฝ๐ ๐ผ๐ฟ ๐ช๐ฒ๐ฎ๐ธ๐ฆ๐ฒ๐๐:
var elements = document.getElementsByTagName('*'),
i = -1, len = elements.length;
while (++i !== len) {
// Production code written this poorly makes me want to cry:
elements[i].lookupindex = i;
elements[i].elementref = [];
elements[i].elementref.push( elements[(i * i) % len] );
}
// Then, you can access the lookupindex's
// For those of you new to javascirpt, I hope the comments below help explain
// how the ternary operator (?:) works like an inline if-statement
document.write(document.body.lookupindex + '<br />' + (
(document.body.elementref.indexOf(document.currentScript) !== -1)
? // if(document.body.elementref.indexOf(document.currentScript) !== -1){
"true"
: // } else {
"false"
) // }
);
๐จ๐๐ถ๐ป๐ด ๐ช๐ฒ๐ฎ๐ธ๐ ๐ฎ๐ฝ๐ ๐ฎ๐ป๐ฑ ๐ช๐ฒ๐ฎ๐ธ๐ฆ๐ฒ๐๐:
var DOMref = new WeakMap(),
__DOMref_value = Array,
__DOMref_lookupindex = 0,
__DOMref_otherelement = 1,
elements = document.getElementsByTagName('*'),
i = -1, len = elements.length, cur;
while (++i !== len) {
// Production code written this well makes me want to ๐:
cur = DOMref.get(elements[i]);
if (cur === undefined)
DOMref.set(elements[i], cur = new __DOMref_value)
cur[__DOMref_lookupindex] = i;
cur[__DOMref_otherelement] = new WeakSet();
cur[__DOMref_otherelement].add( elements[(i * i) % len] );
}
// Then, you can access the lookupindex's
cur = DOMref.get(document.body)
document.write(cur[__DOMref_lookupindex] + '<br />' + (
cur[__DOMref_otherelement].has(document.currentScript)
? // if(cur[__DOMref_otherelement].has(document.currentScript)){
"true"
: // } else {
"false"
) // }
);
๐ง๐ต๐ฒ ๐๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ
The difference may look negligible, aside from the fact that the weakmap version is longer, however there is a major difference between the two pieces of code shown above. In the first snippet of code, without weak maps, the piece of code stores references every which way between the DOM elements. This prevents the DOM elements from being garbage collected. (i * i) % len may seem like an oddball that nobody would use, but think again: plenty of production code has DOM references that bounce all over the document. Now, for the second piece of code, because all the references to the elements are weak, when you a remove a node, the browser is able to determine that the node is not used (not able to be reached by your code), and thus delete it from memory. The reason for why you should be concerned about memory usage, and memory anchors (things like the first snippet of code where unused elements are held in memory) is because more memory usage means more browser GC-attempts (to try to free up memory to avert a browser crash) means slower browsing experience and sometimes a browser crash.
As for a polyfill for these, I would recommend my own library (found here # github). It is a very lightweight library that will simply polyfill it without any of the way-overly-complex frameworks you might find in other polyfills.
~ Happy coding!
I use WeakMap for the cache of worry-free memoization of functions that take in immutable objects as their parameter.
Memoization is fancy way of saying "after you compute the value, cache it so you don't have to compute it again".
Here's an example:
// using immutable.js from here https://facebook.github.io/immutable-js/
const memo = new WeakMap();
let myObj = Immutable.Map({a: 5, b: 6});
function someLongComputeFunction (someImmutableObj) {
// if we saved the value, then return it
if (memo.has(someImmutableObj)) {
console.log('used memo!');
return memo.get(someImmutableObj);
}
// else compute, set, and return
const computedValue = someImmutableObj.get('a') + someImmutableObj.get('b');
memo.set(someImmutableObj, computedValue);
console.log('computed value');
return computedValue;
}
someLongComputeFunction(myObj);
someLongComputeFunction(myObj);
someLongComputeFunction(myObj);
// reassign
myObj = Immutable.Map({a: 7, b: 8});
someLongComputeFunction(myObj);
<script src="https://cdnjs.cloudflare.com/ajax/libs/immutable/3.8.1/immutable.min.js"></script>
A few things to note:
Immutable.js objects return new objects (with a new pointer) when you modify them so using them as keys in a WeakMap is guarantees the same computed value.
The WeakMap is great for memos because once the object (used as the key) gets garbage collected, so does the computed value on the WeakMap.
I have this simple feature based use case/Example for WeakMaps.
MANAGE A COLLECTION OF USERS
I started off with a User Object whose properties include a fullname, username, age, gender and a method called print which prints a human readable summary of the other properties.
/**
Basic User Object with common properties.
*/
function User(username, fullname, age, gender) {
this.username = username;
this.fullname = fullname;
this.age = age;
this.gender = gender;
this.print = () => console.log(`${this.fullname} is a ${age} year old ${gender}`);
}
I then added a Map called users to keep a collection of multiple users which are keyed by username.
/**
Collection of Users, keyed by username.
*/
var users = new Map();
Addition of the Collection also required helper functions to add, get, delete a User and even a function to print all the users for sake of completeness.
/**
Creates an User Object and adds it to the users Collection.
*/
var addUser = (username, fullname, age, gender) => {
let an_user = new User(username, fullname, age, gender);
users.set(username, an_user);
}
/**
Returns an User Object associated with the given username in the Collection.
*/
var getUser = (username) => {
return users.get(username);
}
/**
Deletes an User Object associated with the given username in the Collection.
*/
var deleteUser = (username) => {
users.delete(username);
}
/**
Prints summary of all the User Objects in the Collection.
*/
var printUsers = () => {
users.forEach((user) => {
user.print();
});
}
With all of the above code running in, say NodeJS, only the users Map has the reference to the User Objects within the entire process. There is no other reference to the individual User Objects.
Running this code an interactive NodeJS shell, just as an Example I add four users and print them:
ADD MORE INFO TO USERS WITHOUT MODIFYING EXISTING CODE
Now say a new feature is required wherein each users Social Media Platform (SMP) links need to be tracked along with the User Objects.
The key here is also that this feature must be implemented with minimum intervention to the existing code.
This is possible with WeakMaps in the following manner.
I add three separate WeakMaps for Twitter, Facebook, LinkedIn.
/*
WeakMaps for Social Media Platforms (SMPs).
Could be replaced by a single Map which can grow
dynamically based on different SMP names . . . anyway...
*/
var sm_platform_twitter = new WeakMap();
var sm_platform_facebook = new WeakMap();
var sm_platform_linkedin = new WeakMap();
A helper function, getSMPWeakMap is added simply to return the WeakMap associated with the given SMP name.
/**
Returns the WeakMap for the given SMP.
*/
var getSMPWeakMap = (sm_platform) => {
if(sm_platform == "Twitter") {
return sm_platform_twitter;
}
else if(sm_platform == "Facebook") {
return sm_platform_facebook;
}
else if(sm_platform == "LinkedIn") {
return sm_platform_linkedin;
}
return undefined;
}
A function to add a users SMP link to the given SMP WeakMap.
/**
Adds a SMP link associated with a given User. The User must be already added to the Collection.
*/
var addUserSocialMediaLink = (username, sm_platform, sm_link) => {
let user = getUser(username);
let sm_platform_weakmap = getSMPWeakMap(sm_platform);
if(user && sm_platform_weakmap) {
sm_platform_weakmap.set(user, sm_link);
}
}
A function to print only the users who are present on the given SMP.
/**
Prints the User's fullname and corresponding SMP link of only those Users which are on the given SMP.
*/
var printSMPUsers = (sm_platform) => {
let sm_platform_weakmap = getSMPWeakMap(sm_platform);
console.log(`Users of ${sm_platform}:`)
users.forEach((user)=>{
if(sm_platform_weakmap.has(user)) {
console.log(`\t${user.fullname} : ${sm_platform_weakmap.get(user)}`)
}
});
}
You can now add SMP links for the users, also with the possibility of each user having a link on multiple SMPs.
...continuing with the earlier Example, I add SMP links to the users, multiple links for users Bill and Sarah and then print the links for each SMP separately:
Now say a User is deleted from the users Map by calling deleteUser. That removes the only reference to the User Object. This in turn will also clear out the SMP link from any/all of the SMP WeakMaps (by Garbage Collection) as without the User Object there is no way to access any of its SMP link.
...continuing with the Example, I delete user Bill and then print out the links of the SMPs he was associated with:
There is no requirement of any additional code to individually delete the SMP link separately and the existing code before this feature was not modified in anyway.
If there is any other way to add this feature with/without WeakMaps please feel free to comment.
WEAKMAP: keep in mind weakMap is all about memory allocation and garbage collection and only related to key of object type
in javascript when u store values in key-value pair array, map, set, etc... a memory allocated to all key-value pair and this memory will not be free even if you delete or set null to that key consider this as a strongmap keys are strongly attache to memory below is example
let john = { name: "yusuf" };
let map = new Map();
map.set(yusuf, "xyz"); //here "yusuf" is the key and "xyz" is value
yusuf= null; // overwrite the reference
// the object previously referenced by yusuf is stored inside the array
// therefore it won't be garbage-collected
// we can get it using map.keys()
but this is not the case with weakMap in here memory will be free
let john = { name: "yusuf" };
let map = new WeakMap();
map.set(yusuf, "...");
yusuf= null; // overwrite the reference
// yusuf is removed from memory!
USE CASE : you will use it in javascript where u want to manage memory in more efficient way
If weโre working with an object that โbelongsโ to another code, maybe even a third-party library, and would like to store some data associated with it, that should only exist while the object is alive โ then WeakMap is exactly whatโs needed.
We put the data to a WeakMap, using the object as the key, and when the object is garbage collected, that data will automatically disappear as well.
weakMap.set(yusuf, "secret documents");
// if yusuf dies, secret documents will be destroyed automatically
I took reference from this great article : https://javascript.info/weakmap-weakset
I think it's very helpful for checking a connection income in applications socket.
The other case, the 'Weak Collection' are useful: https://javascript.info/task/recipients-read
I'm calling a JavaScript function that wants an array of things to display. It displays a count, and displays the items one by one. Everything works when I pass it a normal JavaScript array.
But I have too many items to hold in memory at once. What I'd like to do, is pass it an object with the same interface as an array, and have my method(s) be called when the function tries to access the data. And in fact, if I pass the following:
var featureArray = {length: count, 0: func(0)};
then the count is displayed, and the first item is correctly displayed. But I don't want to assign all the entries, or I'll run out of memory. And the function currently crashes when the user tries to display the second item. I want to know when item 1 is accessed, and return func(1) for item 1, and func(2) for item 2, etc. (i.e., delaying the creation of the item until it is requested).
Is this possible in JavaScript?
If I understand correctly, this would help:
var object = {length: count, data: function (whatever) {
// create your item
}};
Then, instead of doing array[1], array[2], et cetera, you'd do object.data(1), object.data(2), and so on.
Since there seems to be a constraint that the data must be accessed using array indexing via normal array indexing arr[index] and that can't be changed, then the answer is that NO, you can't override array indexing in Javascript to change how it works and make some sort of virtual array that only fetches data upon demand. It was proposed for ECMAScript 4 and rejected as a feature.
See these two other posts for other discussion/confirmation:
How would you overload the [] operator in Javascript
In javascript, can I override the brackets to access characters in a string?
The usual way to solve this problem would be to switch to using a method such as .get(n) to request the data and then the implementor of .get() can virtualize however much they want.
P.S. Others indicate that you could use a Proxy object for this in Firefox (not supported in other browsers as far as I know), but I'm not personally familiar with Proxy objects as it's use seems rather limited to code that only targets Firefox right now.
Yes, generating items on the go is possible. You will want to have a look at Lazy.js, a library for producing lazily computed/loaded sequences.
However, you will need to change your function that accepts this sequence, it will need to be consumed differently than a plain array.
If you really need to fake an array interface, you'd use Proxies. Unfortunately, it is only a harmony draft and currently only supported in Firefox' Javascript 1.8.5.
Assuming that the array is only accessed in an iteration, i.e. starting with index 0, you might be able to do some crazy things with getters:
var featureArray = (function(func) {
var arr = {length: 0};
function makeGetter(i) {
arr.length = i+1;
Object.defineProperty(arr, i, {
get: function() {
var val = func(i);
Object.defineProperty(arr, i, {value:val});
makeGetter(i+1);
return val;
},
configurable: true,
enumerable: true
});
}
makeGetter(0);
return arr;
}(func));
However, I'd recommend to avoid that and rather switch the library that is expecting the array. This solution is very errorprone if anything else is done with the "array" but accessing its indices in order.
Thank you to everyone who has commented and answered my original question - it seems that this is not (currently) supported by JavaScript.
I was able to get around this limitation, and still do what I wanted. It uses an aspect of the program that I did not mention in my original question (I was trying to simplify the question), so it is understandable that other's couldn't recommend this. That is, it doesn't technically answer my original question, but I'm sharing it in case others find it useful.
It turns out that one member of the object in each array element is a callback function. That is (using the terminology from my original question), func(n) is returning an object, which contains a function in one member, which is called by the method being passed the data. Since this callback function knows the index it is associated with (at least, when being created by func(n)), it can add the next item in the array (or at least ensure that it is already there) when it is called. A more complicated solution might go a few ahead, and/or behind, and/or could cleanup items not near the current index to free memory. This all assumes that the items will be accessed consecutively (which is the case in my program).
E.g.,
1) Create a variable that will stay in scope (e.g., a global variable).
2) Call the function with an object like I gave as an example in my original question:
var featureArray = {length: count, 0: func(0)};
3) func() can be something like:
function func(r) {
return {
f : function() {featureArray[r + 1] = func(r + 1); DoOtherStuff(r); }
}
}
Assuming that f() is the member with the function that will be called by the external function.