I'm making a tile-based browser game using Sprite.js to interact with canvas. https://github.com/batiste/sprite.js/
Here is what I got now(PC version has a larger visible area):
http://www.youtube.com/watch?v=l3c-cmWUVrc
It is not easy to redraw every tile each frame because of performance, so I tried to make a scrolling surface background using scrolling.js that comes with sprite.js. There is an example here http://batiste.dosimple.ch/sprite.js/tests/test_scrolling.html The example works, but it seems like ScrollingSurface.update is buggy or there is something I'm missing.
What I tried to do is to draw 5x5 tiles and after 5 seconds draw another 5x5 tiles near the first ones. But it draws only the first ones. And surface.update() only updates the position of surface. Here is my code https://github.com/Sektoid/sprite.js/blob/master/tests/test_scrolling.html (You need also to set this.divider = 1.0 in scrolling.js if you want to avoid drawing the same tiles 4 times.) There aren't any sprite.js-forums like with the other sprite- and game-engines have, but it is fast and very useful. Take a look at it! And help me please :)
Related
I'm trying to make a simple game (view from above) on canvas. Please tell me, which is faster:
1) Draw everything on one <canvas> and calculate the areas that need to be redrawn.
2) Draw certain parts of the scene on different <canvas> elements and update each only if necessary. In the it variant, probably, I can also use a partial redraw.
For example, I could draw a map on one element, enemies on the second, and a cursor and etc on the third. When moving enemies, I could only redraw the second canvas.
Please explain in as much detail as possible which option is better and why. And could you please advise books that can deepen my knowledge on this issue? For beginners.
Most canvas games will use a sort of layering that you are describing. The furthest forward layer would be the HUD, either by a seperate canvas or HTML elements and this would only change if something happened to it, such as someone upgrading their player. Then after that it depends on how they draw the canvas. The simplest way would be to simply draw the portions of the map and obstacles are on the screen.
Use one canvas, trust me. If you have a sprite that does nothing but sit there it is still getting drawn 60 times a second so it makes no difference if it is moving or not changing or not if it exists on screen it is getting drawn regardless of change.
Ive been having a really baffling slow down issue with the game I am working on probably because I am unsure how to handle graphics (most likely responsible for the slow down) in javascript without using a third party framework like Phaser/ImapactJS/EaselJS etc)*. The following is the low down on how I am approaching my graphics. I would be very thankful for some tips or methods on how to do this right.
My game is tile based - using tiles designed at 500x500 px because I want them to display decently on high definition devices.
I am using a spritesheet to load all (most of) my tiles before the main loop is run. This image is roughly 4000 x 4000 (keeping it below 4096 because the GPU cant handle texture sizes larger than that).
I then use the drawImage function to cycle through and draw each tile on a part of the canvas using information (w, h, x, y) stored in the tile array. I do this on every cycle of the main loop using my drawMap function.
The map is currently 6x6 tiles in size
A character spritesheet is also loaded and drawn on to the canvas after the map has been drawn. The character displays a different frame of the animation on every cycle of the main loop. There are sets of animations for the character each contained in the same spritesheet.
The character sprite sheet is roughly 4000x3500
The character is roughly 350x250 px
Other objects also use the same sprite sheet. Currently there is only one object.
Possibly helpful questions:
Am I using too many spritesheets or too few?
Should I only draw something if it's coordinates are in bounds of the screen?
How should I go about garbage collection? Do I need to set image objects to null when no longer in use?
Thanks in advance for input. I would just like to know if I am going about it the right way and pick your brains as how to speed it up enough.
*Note that I plan to port the JS game to cocoonJS which provides graphics acceleration for the canvas element on mobile.
** If interested please visit my Patreon page for fun!
You have asked lots of questions here, I'll address the ones I've run into.
I would like to start out by saying very clearly,
Use a profiler
Find out whether each thing you are advised to do, by anybody, is making an improvement. Unless we work on your code, we can only give you theories on how to optimise it.
How should I go about garbage collection? Do I need to set image objects to null when no longer in use?
If you are no longer using an object, setting its reference to null will probably mean it gets garbage collected. Having nulls around is not necessarily good but this is not within the scope of this question.
For high performance applications, you want to avoid too much allocation and therefore too much garbage collection activity. See what your profiler says - the chrome profiler can tell you how much CPU time the garbage collector is taking up. You might be OK at the moment.
I then use the drawImage function to cycle through and draw each tile on a part of the canvas using information (w, h, x, y) stored in the tile array. I do this on every cycle of the main loop using my drawMap function.
This is quite slow - instead consider drawing the current on screen tiles to a background canvas, and then only drawing areas which were previously obscured.
For example, if your player walks to the left, there is going to be a lot of tiles on the left hand side of the screen which have come into view; you will need to draw the background buffer onto the screen, offset to account for the movement, and then draw the missing tiles.
My game is tile based - using tiles designed at 500x500 px because I want them to display decently on high definition devices
If I interpret this right, your tiles are 500x500px in diameter, and you are drawing a small number of these on screen. and then for devices without such a high resolution, the canvas renderer is going to be scaling these down. You really want to be drawing pixels 1:1 on each device.
Would you be able, instead, to have a larger number of smaller tiles on screen - thereby avoiding the extra drawing at the edges? Its likely that the tiles around the edges will sometimes draw only a few pixels of one edge, and the rest of the image will be cropped anyway, so why not break them up further?
Should I only draw something if it's coordinates are in bounds of the screen?
Yes, this is a very common and good optimisation to take. You'll find it makes a big difference.
Am I using too many spritesheets or too few?
I have found that when I have a small number of sprite sheets, the big performance hit is when I frequently switch between them. If during one draw phase, you draw all your characters from character_sheet.png and then draw all the plants from plant_sheet.png you'll be ok. Switching between them can cause lots of trouble and you'll see a slow down. You will know this is happening if your profiler tells you that drawImage is taking a big proportion of your frame.
I certainly don't expect anyone to actually provide a working solution for this. My question at this point is a simple one: can this be done with an HTML5 canvas, or would I be spinning my wheels in the attempt?
I'm a programmer, but my forte is in PHP, JavaScript, traditional HTML, etc. ...I haven't had a chance to play with HTML5 yet.
The elements you see in the example, I can save out as individually as necessary. So to make the blocks rotate around the center, I was thinking I save a square image with the block in the appropriate corner, respectively. Then rotating the image would pivot around center appropriately, unless you can set a point of origin on an image a la PhotoShop.
The KineticJS library looks promising for this type of animation as well, but I'll leave the recommendations to you fine folks.
Anyway, here is the example I want to replicate:
I won't give any library recommendations for the same reasons that #Diodeus points out, but maybe I can help your selection process. What you're trying to do can be done multiple ways in the browser right now: Canvas, SVG, and/or CSS3 animations.
Your example above is basically a few vector graphics composed together with a gradient on your center "pie timer". Because of this I would lean towards using S V G, especially if you want to allow interactions with your component (each SVG element can have event handlers).
The canvas element is better for "pixel by pixel" control of your visual content on the page. Adding content in the canvas doesn't grow the DOM (like with SVG) so it will normally perform better, but you lose things like native event handlers and animations that you will end up having to re-implement on your own.
More about the choice between SVG and Canvas, and an SVG animation example
Once you have the components in the page, they'll need to be wired up and animated. The animation can be broken down into:
Scaling
Background color fading
Rotation
"Weird gradient pie timer" example with CSS3
These can be done with CSS animations, SVG animations, or with plain old javascript. The choice depends on what you'll be animating. If I was selecting a library I would want to find one that tried to use the newer methods (SVG/CSS3) when it can, and gracefully degrade when it cannot.
I would be weary of libraries that try to re-implement things that are already available natively in the browser. Relying more on the browser instead of your own code to do things like animations means that the browser can optimize its operations and use things like hardware acceleration to improve your performance.
Hopefully this can aid your library selection. Remember, libraries come and go all the time so don't get too attached to one. An ideal implementation should allow for you to easily swap out your animation or display code without having to touch other unrelated pieces.
Sure, it's not all that difficult when you break it down into pieces.
Here are some technologies and techniques to get you started.
You use Canvas by (1) displaying some drawings, (2) erasing, (3) displaying some new drawings
When you do this redrawing rapidly, you get animated effects like your image shows.
Html Canvas uses a context to draw with (think of it as the pen for the canvas)
drawing a path: context.beginPath + context.moveTo + context.lineTo will define a path that creates your "fan blade" polygons. You can use context.fillStyle to fill the polygons with you colors.
fading: context.globalAlpha will change the opacity of new drawings
rotating: context.translate(centerX,centerY) + context.rotate(radianAngle) will rotate new drawings (like your rotating polygons, your tick-marks, )
scaling: context.translate(centerX,centerY) + context.scale(scaleX,scaleY) will scale your polygons.
arcs: context.arc(centerX,centerY,radius,beginningAngle,endingAngle) will draw an arc with a specified centerpoint and sweeping from a beginning angle to an ending angle.
math: circleCircumferenceX = centerX+radius*Math.cos(radianAngle) circleCircumferenceY = centerY+radius*Math.sin(radianAngle) uses trigonometry to calculate an xy coordinate on the circumference of a circle. You can combine this trig + Math.random to place your "speckles" in an arc around your centerpoint.
I am working on this browser-based experiment where i am given N specific circles (let's say they have a unique picture in them) and need to position them together, leaving as little space between them as possible. It doesn't have to be arranged in a circle, but they should be "clustered" together.
The circle sizes are customizable and a user will be able to change the sizes by dragging a javascript slider, changing some circles' sizes (for example, in 10% of the slider the circle 4 will have radius of 20px, circle 2 10px, circle 5 stays the same, etc...). As you may have already guessed, i will try to "transition" the resizing-repositioning smoothly when the slider is being moved.
The approach i have tried tried so far: instead of manually trying to position them i've tried to use a physics engine-
The idea:
place some kind of gravitational pull in the center of the screen
use a physics engine to take care of the balls collision
during the "drag the time" slider event i would just set different
ball sizes and let the engine take care of the rest
For this task i have used "box2Dweb". i placed a gravitational pull to the center of the screen, however, it took a really long time until the balls were placed in the center and they floated around. Then i put a small static piece of ball in the center so they would hit it and then stop. It looked like this:
The results were a bit better, but the circles still moved for some time before they went static. Even after playing around with variables like the ball friction and different gravitational pulls, the whole thing just floated around and felt very "wobbly", while i wanted the balls move only when i drag the time slider (when they change sizes). Plus, box2d doesn't allow to change the sizes of the objects and i would have to hack my way for a workaround.
So, the box2d approach made me realize that maybe to leave a physics engine to handle this isn't the best solution for the problem. Or maybe i have to include some other force i haven't thought of. I have found this similar question to mine on StackOverflow. However, the very important difference is that it just generates some n unspecific circles "at once" and doesn't allow for additional specific ball size and position manipulation.
I am really stuck now, does anyone have any ideas how to approach this problem?
update: it's been almost a year now and i totally forgot about this thread. what i did in the end is to stick to the physics model and reset forces/stop in almost idle conditions. the result can be seen here http://stateofwealth.net/
the triangles you see are inside those circles. the remaining lines are connected via "delaunay triangulation algorithm"
I recall seeing a d3.js demo that is very similar to what you're describing. It's written by Mike Bostock himself: http://bl.ocks.org/mbostock/1747543
It uses quadtrees for fast collision detection and uses a force based graph, which are both d3.js utilities.
In the tick function, you should be able to add a .attr("r", function(d) { return d.radius; }) which will update the radius each tick for when you change the nodes data. Just for starters you can set it to return random and the circles should jitter around like crazy.
(Not a comment because it wouldn't fit)
I'm impressed that you've brought in Box2D to help with the heavy-lifting, but it's true that unfortunately it is probably not well-suited to your requirements, as Box2D is at its best when you are after simulating rigid objects and their collision dynamics.
I think if you really consider what it is that you need, it isn't quite so much a rigid body dynamics problem at all. You actually want none of the complexity of box2d as all of your geometry consists of spheres (which I assure you are vastly simpler to model than arbitrary convex polygons, which is what IMO Box2D's complexity arises from), and like you mention, Box2D's inability to smoothly change the geometric parameters isn't helping as it will bog down the browser with unnecessary geometry allocations and deallocations and fail to apply any sort of smooth animation.
What you are probably looking for is an algorithm or method to evolve the positions of a set of coordinates (each with a radius that is also potentially changing) so that they stay separated by their radii and also minimize their distance to the center position. If this has to be smooth, you can't just apply the minimal solution every time, as you may get "warping" as the optimal configuration might shift dramatically at particular points along your slider's movement. Suffice it to say there is a lot of tweaking for you to do, but not really anything scarier than what one must contend with inside of Box2D.
How important is it that your circles do not overlap? I think you should just do a simple iterative "solver" that first tries to bring the circles toward their target (center of screen?), and then tries to separate them based on radii.
I believe if you try to come up with a simplified mathematical model for the motion that you want, it will be better than trying to get Box2D to do it. Box2D is magical, but it's only good at what it's good at.
At least for me, seems like the easiest solution is to first set up the circles in a cluster. So first set the largest circle in the center, put the second circle next to the first one. For the third one you can just put it next to the first circle, and then move it along the edge until it hits the second circle.
All the other circles can follow the same method: place it next to an arbitrary circle, and move it along the edge until it is touching, but not intersecting, another circle. Note that this won't make it the most efficient clustering, but it works. After that, when you expand, say, circle 1, you'd move all the adjacent circles outward, and shift them around to re-cluster.
Is there a quick and efficient way to move lots of objects in canvas? Basically if there are around 1000 objects and I want to move all of them at once to emulate scrolling, it is very slow to redraw every single object by calling drawImage() 1000+ times.
Is there anyway to optimize this? I have an example link of the problem (and that's only with 100 objects): http://craftyjs.com/isometric/
Since canvas doesn't provide fast low level bitmap copying it's hard to do stuff in multiple layers and scroll for example the whole background at once and then only render the edges.
So what can you do? In short, nothing. Especially not when scrolling, sure you can do tricks with multiple canvases when you have a more or less static background but for moving objects there are hardly any performance improving tricks.
So, you've go to wait for Hardware Acceleration shipping in all majors browsers, I know this sounds ridiculous but I'm too waiting for that :/
The problem is that the canvas was never designed for game stuff. It was designed as, well, basically some kind of on the fly drawing thing, guess the designers had Photoshop clones in mind, but definitely not games, let alone the fact that there's no fast clear operation proves that, there's not even optimization in place when clearing the whole canvas with the same color.
If the images are already composited, not moving relative to one another, and defined by a rectangular region, then using canvas.drawImage() with a canvas as the first parameter and drawing to a sub-region should be significantly faster than re-drawing all the objects.
You could also just layer multiple canvases and slide the top canvas with the objects in HTML to scroll them.
Edit: Having really looked at your example, it seems to me that it should be implemented similar to Google Maps: create tiles of canvases and slide them left/right on the HTML page; once a canvas has been slid off the screen entirely (for example, off the left edge), move it to the other side (to the right edge) and re-use it for drawing. With this you will only need to re-draw whatever objects overlap the canvases that are moving on the edges.
You can draw all objects on a second, off-screen canvas and then only blit the whole canvas (drawImage() accepts canvas element).
However, if you're targeting desktop browsers, then this shouldn't be necessary. I've implemented tile engine (source) that simply redraws whole scene and naive implementation turned out to be pretty fast.
What I did to solve this problem was I had 10 squares on my screen and I wanted to animate them on a white background. So I drew a white rectangle over the canvas to clear the canvas so the animation would work. Does that make sense?
#Ivo By the way I read on http://www.w3.org/TR/html5/the-canvas-element.html that canvas was made for applications like games because it was a solution to get rid of the dependency on a external engine. Canvas is built in so it's kind of like a flash player built into your browser powered by JavaScript. I think it's fascinating.
You can use tiled rendering.
http://www.gamesfrommars.fr/demojsv2/ (better viewed with Chrome)