OOP prototype.method call this.method - javascript

var fn = function() {
this.method1 = function() {
return this.public;
};
this.method2 = function() {
return {
init: function() { return this.public; }
}
};
fn.prototype.public = "method prototype";
};
create object fn
var object = new fn();
object.method1() // "method prototype"
object.method2().init(); // undefined
this.public Prototype in method2().init() function run return undefined ?
Is there an alternative to Prototype?
thank you.

The issue is related to the different scope in which this is bound on init function of method2(), so try this:
this.method2 = function() {
var self = this;
return {
init: function() { return self.public; }
}
};
so
object.method2().init(); // return "method prototype"

There is a lot wrong with this.
But the direct answer to your specific question is that calling init returns undefined because its reference to this is to the inner object that you've created and not the instance that you think it refers to.
I suggest you stop trying to solve this particular problem and learn the basics of prototypal inheritance in JavaScript

This this in the init function is the object returned by object.method2(), which has no public property on it.

Related

JS closure to return object instance as interface

I have the following code.
function Test() {
this.funct_1 = function() {
alert('funct_1');
}
this.funct_2 = function() {
alert('funct_2');
}
return this;}
function getTestObj() {
var testObj;
if (!testObj) {
testObj = new Test();
}
return function() {
return testObj;
}}
What I'm trying to accomplish is the following. I want to have a class Test which is not singleton. Then in some other places in my application I need to have a function which could return the same instance per script execution. I figured that I could use closure for that getTestObj.
However, when I try to use it
getTestObj().funct_1();
I'm getting the following error, saying the funct_1() is not found.
Cannot find function funct_1 in object function () {...}.
Clearly, I'm making some kind of mistake here, but I'm not able to find any solution over the net which could help me. Would appreciate any comments.
NOTE: I'm forced to use ECMA5
testObj is wrapped inside a function
So, either call it
getTestObj()().funct_1(); //notice two ()()
Save the value of getTestObj() in a variable
var singleTon = getTestObj();
var testObj = singleTon();
testObj.funct_1();
Or, simply return testObj (in case singleTon isn't required)
function getTestObj()
{
var testObj;
if (!testObj) {
testObj = new Test();
}
return testObj;
}
And invoke it as
getTestObj().funct_1(); //notice single ()
getTestObj() is returning a function i.e. :
function() {
return testObj;
}
So you have to call it again getTestObj()(), this will return the Test's object and now you can access it's properties.
getTestObj()().funct_1();
OR
You can change your getTestObj function as :
function getTestObj() {
var testObj;
if (!testObj) {
testObj = new Test();
}
return (function() {
return testObj;
}());
}

UnCaught TypeError - Nested objects in Javascript? Why is this not allowed? Object literal notation works

Playing around with some JS tests and I'm trying to instantiate some nested objects in my v namespace. As you'll see below, ClassA and ClassB work as expected. When I try and nest some objects under another property (myCustomProperty) I start running into issues! Could someone explain?
Below is the original code:
var v = (v) ? v : {};
v.someClassA = (function() {
this.hello = function() {
console.log("Class A Hello!");
}
});
v.someClassB = (function() {
this.hello = function() {
console.log("Class B Hello!");
}
});
// this all works!
var myClassA = new v.someClassA();
var myClassB = new v.someClassB();
v.myCustomProperty = (function() {
function someClassC() {
this.hello = function() {
console.log('C');
}
}
function someClassD() {
this.hello = function() {
console.log('D');
}
}
return {
someClassC: someClassC,
someClassD: someClassD
}
});
// Uncaught TypeError: v.myCustomProperty.someClassC is not a function! Why?
var myClassC = new v.myCustomProperty.someClassC();
var myClassD = new v.myCustomProperty.someClassD();
myClassA.hello();
myClassB.hello();
myClassC.hello();
myClassD.hello();
If I change my declaration of v.myCustomProperty to use object literal notation, then it ALL WORKS! :
v.myCustomProperty = {
someClassC: function() {
this.hello = function() {
console.log('C');
}
},
someClassD: function() {
this.hello = function() {
console.log('D');
}
}
}
I guess my question really is how would I make this work using the notation in my original snippet? Possible? Horrible practice to do it that way?
Thanks!
v.myCustomProperty is a function that returns an object. You have to call the function first:
new (v.myCustomProperty().someClassC)();
// ^^
Otherwise, v.myCustomProperty.someClassC() tries to access the property someClassC of the function, and we all know (hopefully) that functions don't have such a property.
Or maybe you intended to execute the function immediately and assign the object to myCustomProperty?
v.myCustomProperty = (function() {
// ...
}()); // <- call function

How can I initialize a new object inside a construction function so that each of its function can reuse it?

function x() {
var obj1 = new ErrorPrinter();
}
x.prototype = {
xFunction1 : function() {
return obj1.printthis("x");
},
xFunction2 : function() {
return obj1.printthis("y");
}
}
But when I do the above, it wont work. The whole purpose of initializing the object on top is the so that I don't have to recreate the same object in each function(xFunction1 and xFunction2).
Thx for such a wonderful community, stackoverflow.com.
Declaring a variable as you did will only make it available inside the constructor function itself, not other functions on the prototype.
On the other hand, if you were to set this.obj1 = ... in the constructor, it would be available as this.obj1 in the other prototype methods when they are called on an instance.
function X() {
this.obj1 = new ErrorPrinter();
}
X.prototype = {
xFunction1: function() {
return this.obj1.printthis("x");
},
xFunction2: function() {
return this.obj1.printthis("y");
}
};

Javascript prototype Methods inside object

I'm trying to create an Object containing other Objects and functions, in a prototype, the relevant part is the UI prototype;
var fChat = function() {
this.debug = true;
};
fChat.prototype = {
constructor: fChat,
Log: function(str){
if(this.debug){
console.log(str);
}
},
UI: {
Login: {
Show: function(){
this.Log("UI.Login.Show()");
}
}
}
};
var fChatInstance = new fChat();
fChatInstance.UI.Login.Show();
When i call fChatInstance.UI.Login.Show() It give me an error:
Uncaught TypeError: this.Log is not a function
Is that because by using this is on another scope?
Usually i do var self = this;at the start of a prototype, but i don't know how I can do that by using an Object prototype.
Yes. The problem is the javascript dynamic binding of this, to fix it you can set "this" to the object by using bind function. Change the fchat function refactor it like this:
var fChat = function() {
this.debug = true;
this.UI.Login.Show = this.UI.Login.Show.bind(this);
this.Log = this.Log.bind(this);
};

A native way of adding custom JavaScript functions into a method-calls chain

I would like to known if there is a native way of doing this :
Object.prototype.chain = function(f) { return f.call(this) }
function fun1() {
doSomethingWithObject(this)
return this
}
function fun2() {
doSomethingElse(this)
return this
}
someObject
.method1('something')
.method2()
.chain(checkSomething() ? fun1 : fun2)
.method3()
But I do not feel like changing the prototype of Object. Is there a way to do this without modifying the prototype of Objects or the other constructors that I use (and am not the developer of)
Edits :
I feel I do not explain very well, so let' add some details :
What I would like to do is to use some APIs I do not define. someObject is defined like the following, with chainable methods :
var someObject = {
method1: function(val) {
// do something
return this
},
method2: function() {
// do something
return this
},
method3: function() {
// do something
return this
}
}
Now imagine I cannot change this code, because this object is from a library, and so I don't want to. Then, imagine that I would like to chain methods and some custom functions (see my first snippet) for many more different objects. The simplest thing to do is to attach a chain method to Object.prototype.
But I think that it could result in conflicts in the future. I am looking for a way to do the same thing without touching the prototype.
I'm surprised there are no answers to this to be honest.
There are many ways to natively introduce chaining. I like to use the revealing module pattern.
So I create a basic model (Go ahead and chuck this in your chrome of firefox console)
var Dog = function(name) {
var self = this;
this.name = name;
var core = {
getName:function(){
return self.name;
}
};
this.movement = function(){ //this function will be exposed including its returned functions for chaining
console.log(self.name + " is getting restless... ");
var jump = function(){
console.log(self.name + " jumps around ");
return this //returns the movement scope
};
var run = function(){
console.log(self.name + " has decided to run");
return this //returns the movement scope
};
return {
jump:jump,
run:run
};
}
console.log("A Pup has been born, we shall call him... " + name);
return{
movement:self.movement //only .movement is exposed to the outside world
};
}
Now create a new dog using var p = new Dog("doggyName");
now, you can chain functions. Try:
p.movement().jump().run().jump().run();
You should get the console logged text that corresponds with each function.
By returning the scope of this after executing your movement function you expose the additional functions that are returned in that scope (see the comments in the code). These can then be chained onto the end of your current function provided they are in the same scope. This allows you to scope specific parts of your code. For example with this dog, all movement is scoped to self.movement, you could have all eating scoped to self.eat and so on
Read up on the revealing module pattern. Though this is not the only way to do it.
The wrapper is something that will wrap any object to make it compatible with "chaining" and will add another chain method that will allow you to plug external functions and still get the chaining.
Check this example:
function myObj() {
this.state = {
a: 1
};
this.method1 = function () {
console.log("1");
}
this.method2 = function () {
console.log("2");
}
this.method3 = function () {
console.log("3");
}
this.method4 = function () {
console.log(this.state);
}
}
function objectChainWrapper(obj) {
this.chain = function (fn) {
fn.call(obj);
return this;
}
for (var prop in obj) {
if (obj.hasOwnProperty(prop) && typeof obj[prop] == 'function') {
this[prop] = (function (methodName) {
return function () {
obj[methodName].call(obj);
return this;
}
}(prop))
}
}
}
var obj = new myObj();
var wrapper = new objectChainWrapper(obj);
var chainMethod = function(){ console.log('chain') };
var chainMethodState = function(){ console.log(this.state) };
wrapper.method1().method2().chain(chainMethodState).method3().chain(chainMethod).method4();
JSFIDDLE.
To "plug" an unbound function into the object's method chain you can assign it to a property and call that:
function fn() {
document.write('hi ');
return this;
}
someObj = {
meth1: function() {
document.write('meth1 ');
return this;
},
meth2: function() {
document.write('meth2 ');
return this;
}
}
someObj
.meth1()
[someObj._=fn, '_']()
.meth2()
This doesn't look very pretty if you ask me. A more readable option is to add the chain method on the fly, like:
function chainable(obj) {
obj.chain = function(fn) {
return fn.call(this);
}
return obj;
}
chainable(someObj).meth1().chain(fn).meth2()

Categories

Resources