In CSS3 transitions, you can specify a timing function as 'cubic-bezier:(0.25, 0.3, 0.8, 1.0)'
In that string, you are only specifying the XY for points P1 and P2 along the curve, as P0 and P3 are always (0.0, 0.0), and (1.0, 1.0) respectively.
According to Apple's site:
x [is] expressed as a fraction of the overall duration and y expressed as a fraction of the overall change
My question is how can this be mapped back to a traditional 1 dimensional T value in javascript?
--
From Apple docs on animating with transitions
Browsing through webkit-source a bit, the following code will give the correct T value for the implicit curve used in CSS3 transitions:
Visual demo (codepen.io)
Hope this helps someone!
function loop(){
var t = (now - animationStartTime) / ( animationDuration*1000 );
var curve = new UnitBezier(Bx, By, Cx, Cy);
var t1 = curve.solve(t, UnitBezier.prototype.epsilon);
var s1 = 1.0-t1;
// Lerp using solved T
var finalPosition.x = (startPosition.x * s1) + (endPosition.x * t1);
var finalPosition.y = (startPosition.y * s1) + (endPosition.y * t1);
}
/**
* Solver for cubic bezier curve with implicit control points at (0,0) and (1.0, 1.0)
*/
function UnitBezier(p1x, p1y, p2x, p2y) {
// pre-calculate the polynomial coefficients
// First and last control points are implied to be (0,0) and (1.0, 1.0)
this.cx = 3.0 * p1x;
this.bx = 3.0 * (p2x - p1x) - this.cx;
this.ax = 1.0 - this.cx -this.bx;
this.cy = 3.0 * p1y;
this.by = 3.0 * (p2y - p1y) - this.cy;
this.ay = 1.0 - this.cy - this.by;
}
UnitBezier.prototype.epsilon = 1e-6; // Precision
UnitBezier.prototype.sampleCurveX = function(t) {
return ((this.ax * t + this.bx) * t + this.cx) * t;
}
UnitBezier.prototype.sampleCurveY = function (t) {
return ((this.ay * t + this.by) * t + this.cy) * t;
}
UnitBezier.prototype.sampleCurveDerivativeX = function (t) {
return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx;
}
UnitBezier.prototype.solveCurveX = function (x, epsilon) {
var t0;
var t1;
var t2;
var x2;
var d2;
var i;
// First try a few iterations of Newton's method -- normally very fast.
for (t2 = x, i = 0; i < 8; i++) {
x2 = this.sampleCurveX(t2) - x;
if (Math.abs (x2) < epsilon)
return t2;
d2 = this.sampleCurveDerivativeX(t2);
if (Math.abs(d2) < epsilon)
break;
t2 = t2 - x2 / d2;
}
// No solution found - use bi-section
t0 = 0.0;
t1 = 1.0;
t2 = x;
if (t2 < t0) return t0;
if (t2 > t1) return t1;
while (t0 < t1) {
x2 = this.sampleCurveX(t2);
if (Math.abs(x2 - x) < epsilon)
return t2;
if (x > x2) t0 = t2;
else t1 = t2;
t2 = (t1 - t0) * .5 + t0;
}
// Give up
return t2;
}
// Find new T as a function of Y along curve X
UnitBezier.prototype.solve = function (x, epsilon) {
return this.sampleCurveY( this.solveCurveX(x, epsilon) );
}
You want to find the [0,1] value for any time value t [0,1]? There's a well-defined equation for a cubic bezier curve. Wikipedia page: http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves
So I don't have to type out their (probably LaTeX-formatted) formula, I copy-pasted the same formula from http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index2.html . This also has a C implementation which, on a quick read-through, should be easy to port to javascript:
B(u) = P0 * ( 1 - u )3 + P1 * 3 * u * ( 1 - u )2 + P2 * 3 * u2 * ( 1 - u ) + P3 * u3
What he's calling mu on that page is your time variable t.
Edit: If you don't want to do the math it looks like someone already wrote a small utility library in javascript to do basic bezier curve math: https://github.com/sporritt/jsBezier . pointOnCurve(curve, location) looks like just what you're asking for.
I have try and search a lot of time and forms and definetly i have reached one simple and fast. The trick is get the cubic bezier function in this form:
P(u) = u^3(c0 + 3c1 -3c2 +c3) + u^2(3c0 -6c1 +3c2) + u(-3c0 +3c1) + c0
where ci are the control points.
The other part is search y from x with a binary search.
static public class CubicBezier {
private BezierCubic bezier = new BezierCubic();
public CubicBezier(float x1, float y1, float x2, float y2) {
bezier.set(new Vector3(0,0,0), new Vector3(x1,y1,0), new Vector3(x2,y2,0), new Vector3(1,1,1));
}
public float get(float t) {
float l=0, u=1, s=(u+l)*0.5f;
float x = bezier.getValueX(s);
while (Math.abs(t-x) > 0.0001f) {
if (t > x) { l = s; }
else { u = s; }
s = (u+l)*0.5f;
x = bezier.getValueX(s);
}
return bezier.getValueY(s);
}
};
public class BezierCubic {
private float[][] cpoints = new float[4][3];
private float[][] polinom = new float[4][3];
public BezierCubic() {}
public void set(Vector3 c0, Vector3 c1, Vector3 c2, Vector3 c3) {
setPoint(0, c0);
setPoint(1, c1);
setPoint(2, c2);
setPoint(3, c3);
generate();
}
public float getValueX(float u) {
return getValue(0, u);
}
public float getValueY(float u) {
return getValue(1, u);
}
public float getValueZ(float u) {
return getValue(2, u);
}
private float getValue(int i, float u) {
return ((polinom[0][i]*u + polinom[1][i])*u + polinom[2][i])*u + polinom[3][i];
}
private void generate() {
for (int i=0; i<3; i++) {
float c0 = cpoints[0][i], c1 = cpoints[1][i], c2 = cpoints[2][i], c3 = cpoints[3][i];
polinom[0][i] = c0 + 3*(c1 - c2) + c3;
polinom[1][i] = 3*(c0 - 2*c1 + c2);
polinom[2][i] = 3*(-c0 + c1);
polinom[3][i] = c0;
}
}
private void setPoint(int i, Vector3 v) {
cpoints[i][0] = v.x;
cpoints[i][1] = v.y;
cpoints[i][2] = v.z;
}
}
Related
So I've wrote a microbe animation.
It's all cool, but I think that it would be even better, if the microbe would be able to eat diatoms, and to destroy bubbles.
The issue is that the microbe is made of bezier curves.
I have no idea how to check collision between object made of bezier curves, and a circle in a reasonable way.
The only thing that comes to my mind, is to paint the microbe shape and bubbles a hidden canvas, and then check if they paint to the same pixels. But that would cause big performance issues IMHO.
Code: https://codepen.io/michaelKurowski/pen/opWeKY
class Cell is the cell, while class CellWallNode is a node of bezier curve, in case if somebody needs to look up the implementation.
The bubbles and diatoms can be easily simplified to circles.
Solution to bounds testing object defined by beziers
Below is an example solution to finding if a circle is inside an object defined by a center point and a set of beziers defining the perimeter.
The solution has only been tested for non intersecting cubic beziers. Also will not work if there are more than two intercepts between the object being tested and the center of the cell. However all you need to solve for the more complex bounds is there in the code.
The method
Define a center point to test from as a 2D point
Define the test point as a 2D point
Define a line from the center to the test point
For each bezier
Translate bezier so first point is at start of line
Rotate the bezier such that the line is aligned to the x axis
Solve the bezier polynomials to find the roots (location of x axis intercepts)
Use the roots to find position on bezier curve of line intercept.
Use the closest intercept to the point to find distance from center to perimeter.
If perimeter distance is greater than test point distance plus radius then inside.
Notes
The test is to a point along a line to the center not to a circle which would be a area defined by a triangle. As long as the circle radius is small compared to the size of the beziers the approximation works well.
Not sure if you are using cubic or quadratic beziers so the solution covers both cubic and quadratic beziers.
Example
The snippet creates a set of beziers (cubic) around a center point. the object theBlob holds the animated beziers. The function testBlob tests the mouse position and returns true if inside theBlob. The object bezHelper contains all the functionality needed to solve the problem.
The cubic root solver was derived from github intersections cube root solver.
const bezHelper = (()=>{
// creates a 2D point
const P2 = (x=0, y= x === 0 ? 0 : x.y + (x = x.x, 0)) => ({x, y});
const setP2As = (p,pFrom) => (p.x = pFrom.x, p.y = pFrom.y, p);
// To prevent heap thrashing close over some pre defined 2D points
const v1 = P2();
const v2 = P2();
const v3 = P2();
const v4 = P2();
var u,u1,u2;
// solves quadratic for bezier 2 returns first root
function solveBezier2(A, B, C){
// solve the 2nd order bezier equation.
// There can be 2 roots, u,u1 hold the results;
// 2nd order function a+2(-a+b)x+(a-2b+c)x^2
a = (A - 2 * B + C);
b = 2 * ( - A + B);
c = A;
a1 = 2 * a;
c = b * b - 4 * a * c;
if(c < 0){
u = Infinity;
u1 = Infinity;
return u;
}else{
b1 = Math.sqrt(c);
}
u = (-b + b1) / a1;
u1 = (-b - b1) / a1;
return u;
}
// solves cubic for bezier 3 returns first root
function solveBezier3(A, B, C, D){
// There can be 3 roots, u,u1,u2 hold the results;
// Solves 3rd order a+(-2a+3b)t+(2a-6b+3c)t^2+(-a+3b-3c+d)t^3 Cardano method for finding roots
// this function was derived from http://pomax.github.io/bezierinfo/#intersections cube root solver
// Also see https://en.wikipedia.org/wiki/Cubic_function#Cardano.27s_method
function crt(v) {
if(v<0) return -Math.pow(-v,1/3);
return Math.pow(v,1/3);
}
function sqrt(v) {
if(v<0) return -Math.sqrt(-v);
return Math.sqrt(v);
}
var a, b, c, d, p, p3, q, q2, discriminant, U, v1, r, t, mp3, cosphi,phi, t1, sd;
u2 = u1 = u = -Infinity;
d = (-A + 3 * B - 3 * C + D);
a = (3 * A - 6 * B + 3 * C) / d;
b = (-3 * A + 3 * B) / d;
c = A / d;
p = (3 * b - a * a) / 3;
p3 = p / 3;
q = (2 * a * a * a - 9 * a * b + 27 * c) / 27;
q2 = q / 2;
a /= 3;
discriminant = q2 * q2 + p3 * p3 * p3;
if (discriminant < 0) {
mp3 = -p / 3;
r = sqrt(mp3 * mp3 * mp3);
t = -q / (2 * r);
cosphi = t < -1 ? -1 : t > 1 ? 1 : t;
phi = Math.acos(cosphi);
t1 = 2 * crt(r);
u = t1 * Math.cos(phi / 3) - a;
u1 = t1 * Math.cos((phi + 2 * Math.PI) / 3) - a;
u2 = t1 * Math.cos((phi + 4 * Math.PI) / 3) - a;
return u;
}
if(discriminant === 0) {
U = q2 < 0 ? crt(-q2) : -crt(q2);
u = 2 * U - a;
u1 = -U - a;
return u;
}
sd = sqrt(discriminant);
u = crt(sd - q2) - crt(sd + q2) - a;
return u;
}
// get a point on the bezier at pos ( from 0 to 1 values outside this range will be outside the bezier)
// p1, p2 are end points and cp1, cp2 are control points.
// ret is the resulting point. If given it is set to the result, if not given a new point is created
function getPositionOnBez(pos,p1,p2,cp1,cp2,ret = P2()){
if(pos === 0){
ret.x = p1.x;
ret.y = p1.y;
return ret;
}else
if(pos === 1){
ret.x = p2.x;
ret.y = p2.y;
return ret;
}
v1.x = p1.x;
v1.y = p1.y;
var c = pos;
if(cp2 === undefined){
v2.x = cp1.x;
v2.y = cp1.y;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (p2.x - v2.x) * c;
v2.y += (p2.y - v2.y) * c;
ret.x = v1.x + (v2.x - v1.x) * c;
ret.y = v1.y + (v2.y - v1.y) * c;
return ret;
}
v2.x = cp1.x;
v2.y = cp1.y;
v3.x = cp2.x;
v3.y = cp2.y;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (p2.x - v3.x) * c;
v3.y += (p2.y - v3.y) * c;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
ret.x = v1.x + (v2.x - v1.x) * c;
ret.y = v1.y + (v2.y - v1.y) * c;
return ret;
}
const cubicBez = 0;
const quadraticBez = 1;
const none = 2;
var type = none;
// working bezier
const p1 = P2();
const p2 = P2();
const cp1 = P2();
const cp2 = P2();
// rotated bezier
const rp1 = P2();
const rp2 = P2();
const rcp1 = P2();
const rcp2 = P2();
// translate and rotate bezier
function transformBez(pos,rot){
const ax = Math.cos(rot);
const ay = Math.sin(rot);
var x = p1.x - pos.x;
var y = p1.y - pos.y;
rp1.x = x * ax - y * ay;
rp1.y = x * ay + y * ax;
x = p2.x - pos.x;
y = p2.y - pos.y;
rp2.x = x * ax - y * ay;
rp2.y = x * ay + y * ax;
x = cp1.x - pos.x;
y = cp1.y - pos.y;
rcp1.x = x * ax - y * ay;
rcp1.y = x * ay + y * ax;
if(type === cubicBez){
x = cp2.x - pos.x;
y = cp2.y - pos.y;
rcp2.x = x * ax - y * ay;
rcp2.y = x * ay + y * ax;
}
}
function getPosition2(pos,ret){
return getPositionOnBez(pos,p1,p2,cp1,undefined,ret);
}
function getPosition3(pos,ret){
return getPositionOnBez(pos,p1,p2,cp1,cp2,ret);
}
const API = {
getPosOnQBez(pos,p1,cp1,p2,ret){
return getPositionOnBez(pos,p1,p2,cp1,undefined,ret);
},
getPosOnCBez(pos,p1,cp1,cp2,p2,ret){
return getPositionOnBez(pos,p1,p2,cp1,cp2,ret);
},
set bezQ(points){
setP2As(p1, points[0]);
setP2As(cp1, points[1]);
setP2As(p2, points[2]);
type = quadraticBez;
},
set bezC(points){
setP2As(p1, points[0]);
setP2As(cp1, points[1]);
setP2As(cp2, points[2]);
setP2As(p2, points[3]);
type = cubicBez;
},
isInside(center, testPoint, pointRadius){
drawLine(testPoint , center);
v1.x = (testPoint.x - center.x);
v1.y = (testPoint.y - center.y);
const pointDist = Math.sqrt(v1.x * v1.x + v1.y * v1.y)
const dir = -Math.atan2(v1.y,v1.x);
transformBez(center,dir);
if(type === cubicBez){
solveBezier3(rp1.y, rcp1.y, rcp2.y, rp2.y);
if (u < 0 || u > 1) { u = u1 }
if (u < 0 || u > 1) { u = u2 }
if (u < 0 || u > 1) { return }
getPosition3(u, v4);
}else{
solveBezier2(rp1.y, rcp1.y, rp2.y);
if (u < 0 || u > 1) { u = u1 }
if (u < 0 || u > 1) { return }
getPosition2(u, v4);
}
drawCircle(v4);
const dist = Math.sqrt((v4.x - center.x) ** 2 + (v4.y - center.y) ** 2);
const dist1 = Math.sqrt((v4.x - testPoint.x) ** 2 + (v4.y - testPoint.y) ** 2);
return dist1 < dist && dist > pointDist - pointRadius;
}
}
return API;
})();
const ctx = canvas.getContext("2d");
const m = {x : 0, y : 0};
document.addEventListener("mousemove",e=>{
var b = canvas.getBoundingClientRect();
m.x = e.pageX - b.left - scrollX - 2;
m.y = e.pageY - b.top - scrollY - 2;
});
function drawCircle(p,r = 5,col = "black"){
ctx.beginPath();
ctx.strokeStyle = col;
ctx.arc(p.x,p.y,r,0,Math.PI*2)
ctx.stroke();
}
function drawLine(p1,p2,r = 5,col = "black"){
ctx.beginPath();
ctx.strokeStyle = col;
ctx.lineTo(p1.x,p1.y);
ctx.lineTo(p2.x,p2.y);
ctx.stroke();
}
const w = 400;
const h = 400;
const diag = Math.sqrt(w * w + h * h);
// creates a 2D point
const P2 = (x=0, y= x === 0 ? 0 : x.y + (x = x.x, 0)) => ({x, y});
const setP2As = (p,pFrom) => (p.x = pFrom.x, p.y = pFrom.y, p);
// random int and double
const randI = (min, max = min + (min = 0)) => (Math.random()*(max - min) + min) | 0;
const rand = (min = 1, max = min + (min = 0)) => Math.random() * (max - min) + min;
const theBlobSet = [];
const theBlob = [];
function createCubicBlob(segs){
const step = Math.PI / segs;
for(var i = 0; i < Math.PI * 2; i += step){
const dist = rand(diag * (1/6), diag * (1/5));
const ang = i + rand(-step * 0.2,step * 0.2);
const p = P2(
w / 2 + Math.cos(ang) * dist,
h / 2 + Math.sin(ang) * dist
);
theBlobSet.push(p);
theBlob.push(P2(p));
}
theBlobSet[theBlobSet.length -1] = theBlobSet[0];
theBlob[theBlobSet.length -1] = theBlob[0];
}
createCubicBlob(8);
function animateTheBlob(time){
for(var i = 0; i < theBlobSet.length-1; i++){
const ang = Math.sin(time + i) * 6;
theBlob[i].x = theBlobSet[i].x + Math.cos(ang) * diag * 0.04;
theBlob[i].y = theBlobSet[i].y + Math.sin(ang) * diag * 0.04;
}
}
function drawTheBlob(){
ctx.strokeStyle = "black";
ctx.lineWidth = 3;
ctx.beginPath();
var i = 0;
ctx.moveTo(theBlob[i].x,theBlob[i++].y);
while(i < theBlob.length){
ctx.bezierCurveTo(
theBlob[i].x,theBlob[i++].y,
theBlob[i].x,theBlob[i++].y,
theBlob[i].x,theBlob[i++].y
);
}
ctx.stroke();
}
var center = P2(w/2,h/2);
function testBlob(){
var i = 0;
while(i < theBlob.length-3){
bezHelper.bezC = [theBlob[i++], theBlob[i++], theBlob[i++], theBlob[i]];
if(bezHelper.isInside(center,m,6)){
return true;
}
}
return false;
}
// main update function
function update(timer){
ctx.clearRect(0,0,w,h);
animateTheBlob(timer/1000)
drawTheBlob();
if(testBlob()){
ctx.strokeStyle = "red";
}else{
ctx.strokeStyle = "black";
}
ctx.beginPath();
ctx.arc(m.x,m.y,5,0,Math.PI*2)
ctx.stroke();
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas { border : 2px solid black; }
<canvas id="canvas" width = "400" height = "400"></canvas>
I had created an animation of bubbles in which al the circle will expand which are 50px neer to the mouse.
so here is the trick. you can just simply change mouseX,mouseY with your microbe's X and Y coordinates and 50 to the radius of your microbe.
And when my bubbles get bigger, so there you can destroy you air bubbles.
here is the link to my Animation.
https://ankittorenzo.github.io/canvasAnimations/Elements/Bubbles/
here is the link to my GitHub Code.
https://github.com/AnkitTorenzo/canvasAnimations/blob/master/Elements/Bubbles/js/main.js
Let Me Know if you have any problem.
I was going to stop at intervals on the ray and check if they were within the radius of the sphere. I found much more efficient mathematical ways to do this but they are all written in C++.
Something like this should work (inefficient version but without any dependency and easy to follow):
function dotProduct(v1, v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
function squaredLength(v) {
return dotProduct(v, v);
}
// Returns whether the ray intersects the sphere
// #param[in] center center point of the sphere (C)
// #param[in] radius radius of the sphere (R)
// #param[in] origin origin point of the ray (O)
// #param[in] direction direction vector of the ray (D)
// #param[out] intersection closest intersection point of the ray with the sphere, if any
function intersectRayWithSphere(center, radius,
origin, direction,
intersection) {
// Solve |O + t D - C|^2 = R^2
// t^2 |D|^2 + 2 t < D, O - C > + |O - C|^2 - R^2 = 0
var OC = intersection; // Use the output parameter as temporary workspace
OC.x = origin.x - center.x;
OC.y = origin.y - center.y;
OC.z = origin.z - center.z;
// Solve the quadratic equation a t^2 + 2 t b + c = 0
var a = squaredLength(direction);
var b = dotProduct(direction, OC);
var c = squaredLength(OC) - radius * radius;
var delta = b * b - a * c;
if (delta < 0) // No solution
return false;
// One or two solutions, take the closest (positive) intersection
var sqrtDelta = Math.sqrt(delta);
// a >= 0
var tMin = (-b - sqrtDelta) / a;
var tMax = (-b + sqrtDelta) / a;
if (tMax < 0) // All intersection points are behind the origin of the ray
return false;
// tMax >= 0
var t = tMin >= 0 ? tMin : tMax;
intersection.x = origin.x + t * direction.x;
intersection.y = origin.y + t * direction.y;
intersection.z = origin.z + t * direction.z;
return true;
}
So I have an imaginary circle divided into multiple parts (I use 8 for simplicity, but in the end, I would like to divide it to 16 or 32 parts).
Then I have N number of quadratic bezier curves, that is between 2 nearest segments. It may rest upon the circle or further from the center, but not nearer than the circle.
I know how to find, what in witch line I should look for intersection in, but I do not know how to split it into two parts... I know, that if I looked for intersection of the line and curve I should get the point that the previous curve should end and the next should start, and that by derivation I may be able to get the vector, but I do not know how to do it.
Example image where I have only 8 parts for easier problem solving.
The point is, to make "progress" bar using bezier curves. Side note: The curves will change every frame, as they are part of music visualization.
If there is a better way to spit color a curve, I am all for it!
Spliting cubic and quadratic Beziers
Splitting a bezier is relatively easy. As there is already an answer I will just copy the functions needed to split a single bezier, cubic or quadratic at a position along its path range from 0 to 1. The function Bezier.splitAt takes a position (0 to 1) and depending on start = true returns the from 0 to position or the if start = false returns the bezier from position to 1. It will handle both 2nd order (quadratic) and 3rd order (cubic) Beziers
Example usage
var bezier = createBezierCubic( 146, 146, 134, 118, 184, 103, 217, 91 );
// split in two
var startingHalf = bezier.splitAt(0.5, true);
var endingHalf = bezier.splitAt(0.5, false);
// split into four.
var quart1 = startingHalf.splitAt(0.5, true)
var quart2 = startingHalf.splitAt(0.5, false)
var quart3 = endingHalf.splitAt(0.5, true)
var quart4 = endingHalf.splitAt(0.5, false)
// getting a segment
var startFrom = 0.3;
var endAt = 0.8;
var section = bezier.splitAt(startFrom, false).splitAt((endAt - startFrom) / (1 - startFrom), true);
The bezier is made up of a start and end point p1, p2 and one or two control points cp1, cp2. If the bezier is 2nd order then cp2 is undefined. The points are Vec and take the from Vec.x, Vec.y
To render a 2nd order
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.quadraticCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.p2.x, bezier.p2.y);
To render the 3rd order
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.bezierCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.cp2.x, bezier.cp2.y, bezier.p2.x, bezier.p2.y);
The code with dependencies.
As you are all programmers see the code for more info in usage. Warning there could be typos as this has been pulled from a more extensive geometry interface.
var geom = (function(){
function Vec(x,y){ // creates a vector
if(x === undefined){
x = 1;
y = 0;
}
this.x = x;
this.y = y;
}
Vec.prototype.set = function(x,y){
this.x = x;
this.y = y;
return this;
};
// closure vars to stop constant GC
var v1 = Vec();
var v2 = Vec();
var v3 = Vec();
var v4 = Vec();
var v5 = Vec();
const BEZIER_TYPES = {
cubic : "cubic",
quadratic : "quadratic",
};
// creates a bezier p1 and p2 are the end points as vectors.
// if p1 is a string then returns a empty bezier object.
// with the type as quadratic (default) or cubic
// cp1, [cp2] are the control points. cp2 is optional and if omitted will create a quadratic
function Bezier(p1,p2,cp1,cp2){
if(typeof p1 === 'string'){
this.p1 = new Vec();
this.p2 = new Vec();
this.cp1 = new Vec();
if(p1 === BEZIER_TYPES.cubic){
this.cp2 = new Vec();
}
}else{
this.p1 = p1 === undefined ? new Vec() : p1;
this.p2 = p2 === undefined ? new Vec() : p2;
this.cp1 = cp1 === undefined ? new Vec() : cp1;
this.cp2 = cp2;
}
}
Bezier.prototype.type = function(){
if(this.cp2 === undefined){
return BEZIER_TYPES.quadratic;
}
return BEZIER_TYPES.cubic;
}
Bezier.prototype.splitAt = function(position,start){ // 0 <= position <= 1 where to split. Start if true returns 0 to position and else from position to 1
var retBezier,c;
if(this.cp2 !== undefined){ retBezier = new Bezier(BEZIER_TYPES.cubic); }
else{ retBezier = new Bezier(BEZIER_TYPES.quadratic); }
v1.x = this.p1.x;
v1.y = this.p1.y;
c = Math.max(0, Math.min(1, position)); // clamp for safe use in Stack Overflow answer
if(start === true){
retBezier.p1.x = this.p1.x;
retBezier.p1.y = this.p1.y;
}else{
retBezier.p2.x = this.p2.x;
retBezier.p2.y = this.p2.y;
}
if(this.cp2 === undefined){ // returns a quadratic
v2.x = this.cp1.x;
v2.y = this.cp1.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (this.p2.x - v2.x) * c;
v2.y += (this.p2.y - v2.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (this.p2.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (this.p2.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}
return retBezier;
}
v2.x = this.cp1.x;
v3.x = this.cp2.x;
v2.y = this.cp1.y;
v3.y = this.cp2.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (v3.x - v2.x) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (this.p2.x - v3.x) * c;
v3.y += (this.p2.y - v3.y) * c;
retBezier.cp2.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp2.y = (v1.y += (v2.y - v1.y) * c);
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
retBezier.cp2.x = (v3.x += (this.p2.x - v3.x) * c);
retBezier.cp2.y = (v3.y += (this.p2.y - v3.y) * c);
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (v3.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (v3.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
}
return retBezier;
}
return {
Vec : Vec,
Bezier : Bezier,
bezierTypes : BEZIER_TYPES,
};
})();
// helper function
// Returns second order quadratic from points in the same order as most rendering api take then
// The second two coordinates x1,y1 are the control points
function createBezierQuadratic(x, y, x1, y1, x2, y2){
var b = new geom.Bezier(geom.bezierTypes.quadratic);
b.p1.set(x, y);
b.p2.set(x2, y2);
b.cp1.set(x1, y1);
return b;
}
// Returns third order cubic from points in the same order as most rendering api take then
// The coordinates x1, y1 and x2, y2 are the control points
function createBezierCubic(x, y, x1, y1, x2, y2, x3, y3){
var b = new geom.Bezier(geom.bezierTypes.cubic);
b.p1.set(x, y);
b.p2.set(x3, y3);
b.cp1.set(x1, y1);
b.cp2.set(x2, y2);
return b;
}
[Edit]
The algo for getting the length is still not working, it seems I forgot to calculate the last path, if someone wants to point me to the solution that would be very nice since I don't have time right now. (Otherwise, I'll try to find it in the weekend...)
Since you don't need support for older IE (<=11), one easy way is to use the setLineDash() method.
This will allow you to only draw your path once, and to only have to get the full length of your path.
To do so, I use a js implementation of this algo made by tunght13488. There may be better implementations of it.
var ctx = c.getContext('2d');
var percent = 90;
var length = 0;
// all our quadraticCurves points
var curves = [
[146, 146, 134, 118, 184, 103],
[217, 91, 269, 81, 271, 107],
[263, 155, 381, 158, 323, 173],
[279, 182, 314, 225, 281, 223],
[246, 219, 247, 274, 207, 236],
[177, 245, 133, 248, 137, 211],
[123, 238, 10, 145, 130, 150]
];
// get the full length of our spline
curves.forEach(function(c) {
length += quadraticBezierLength.apply(null, c);
});
// that's still not it...
length += quadraticBezierLength.apply(null,curves[curves.length-1]);
var anim = function() {
var offset = (percent / 100) * length;
ctx.clearRect(0, 0, c.width, c.height);
ctx.beginPath();
ctx.moveTo(133, 150);
// draw our splines
curves.forEach(function(c) {
ctx.bezierCurveTo.apply(ctx, c);
})
ctx.closePath();
// the non completed part
ctx.strokeStyle = "gray";
// this will make the part from 0 to offset non drawn
ctx.setLineDash([0, offset, length]);
ctx.stroke();
// the completed part
ctx.setLineDash([offset, length]);
ctx.strokeStyle = "blue";
ctx.stroke();
percent = (percent + .25) % 100;
requestAnimationFrame(anim);
}
// modified from https://gist.github.com/tunght13488/6744e77c242cc7a94859
function Point(x, y) {
this.x = x;
this.y = y;
}
function quadraticBezierLength(p0x, p0y, p1x, p1y, p2x, p2y) {
var a = new Point(
p0x - 2 * p1x + p2x,
p0y - 2 * p1y + p2y
);
var b = new Point(
2 * p1x - 2 * p0x,
2 * p1y - 2 * p0y
);
var A = 4 * (a.x * a.x + a.y * a.y);
var B = 4 * (a.x * b.x + a.y * b.y);
var C = b.x * b.x + b.y * b.y;
var Sabc = 2 * Math.sqrt(A + B + C);
var A_2 = Math.sqrt(A);
var A_32 = 2 * A * A_2;
var C_2 = 2 * Math.sqrt(C);
var BA = B / A_2;
return (A_32 * Sabc + A_2 * B * (Sabc - C_2) + (4 * C * A - B * B) * Math.log((2 * A_2 + BA + Sabc) / (BA + C_2))) / (4 * A_32);
};
anim();
<canvas width="500" height="500" id="c"></canvas>
To anyone still landing on this page, take a look at Bezier.js (https://github.com/Pomax/bezierjs), especially at the API: https://pomax.github.io/bezierjs/
You can extract a quadratic Bezier curve between t = 0.25 and t = 0.75 like so:
var curve = new Bezier(150,40 , 80,30 , 105,150);
var segment_curve = curve.split(0.25, 0.75);
context.moveTo(segment_curve.points[0].x, segment_curve.points[0].y);
context.quadraticCurveTo(segment_curve.points[1].x, segment_curve.points[1].y, segment_curve.points[2].x, segment_curve.points[2].y);
context.stroke();
Given two points (P1 and P2) in XYZ space, create a tube with a given radius. In order to do this, I need to calculate points for a circle around each of the two points, such that the circles are perpendicular to P1→P2 (and parallel to each other). The dx/dy/dz for one circle can be used to make other circles. The form of the code would look like:
function circle(radius, segments, P1, P2) {
// 3D circle around the origin, perpendicular to P1P2
var circle = [];
var Q = [P2[0] - P1[0], P2[1] - P1[1], P2[2] - P1[2]];
for (var i = 0; i < segments; i++) {
var theta = 2*Math.PI*segment/i;
var dx = mysteryFunctionX(Q, theta, radius);
var dy = mysteryFunctionY(Q, theta, radius);
var dz = mysteryFunctionZ(Q, theta, radius);
circle.push([dx, dy, dz]);
}
return circle;
}
What is the calculation needed for each mystery function?
As pointed out in the link in Ed's post, if you have vectors u and v that are perpendicular to your axis Q, and to each other, and each of length 1 then the points
P + cos(theta)*u + sin(theta)*v
are, as theta goes between 0 and 2pi, the points on a circle with centre P on a plane perpendicular to Q.
It can be a bit tricky, given Q, to figure out what u and v should be. One way is to use Householder reflectors. It is straightforward to find a reflector that maps (1,0,0) say to a multiple of Q. If we apply this reflector to (0,1,0) and (0,0,1) we will get vectors u and v as required above. The algebra is a little tedious but the following C code does the job:
static void make_basis( const double* Q, double* u, double* v)
{
double L = hypot( Q[0], hypot( Q[1], Q[2])); // length of Q
double sigma = (Q[0]>0.0) ? L : -L; // copysign( l, Q[0]) if you have it
double h = Q[0] + sigma; // first component of householder vector
double beta = -1.0/(sigma*h); // householder scale
// apply to (0,1,0)'
double f = beta*Q[1];
u[0] = f*h;
u[1] = 1.0+f*Q[1];
u[2] = f*Q[2];
// apply to (0,0,1)'
double g = beta*Q[2];
v[0] = g*h;
v[1] = g*Q[1];
v[2] = 1.0+g*Q[2];
}
Thank you Forward Ed and dmuir - that helped. Here is the code I made that seems to work:
function addTube(radius, segments, P1, P2) {
// Q = P1→P2 moved to origin
var Qx = P2[0] - P1[0];
var Qy = P2[1] - P1[1];
var Qz = P2[2] - P1[2];
// Create vectors U and V that are (1) mutually perpendicular and (2) perpendicular to Q
if (Qx != 0) { // create a perpendicular vector on the XY plane
// there are an infinite number of potential vectors; arbitrarily select y = 1
var Ux = -Qy/Qx;
var Uy = 1;
var Uz = 0;
// to prove U is perpendicular:
// (Qx, Qy, Qz)·(Ux, Uy, Uz) = Qx·Ux + Qy·Uy + Qz·Uz = Qx·-Qy/Qx + Qy·1 + Qz·0 = -Qy + Qy + 0 = 0
}
else if (Qy != 0) { // create a perpendicular vector on the YZ plane
var Ux = 0;
var Uy = -Qz/Qy;
var Uz = 1;
}
else { // assume Qz != 0; create a perpendicular vector on the XZ plane
var Ux = 1;
var Uy = 0;
var Uz = -Qx/Qz;
}
// The cross product of two vectors is perpendicular to both, so to find V:
// (Vx, Vy, Vz) = (Qx, Qy, Qz)×(Ux, Uy, Uz) = (Qy×Uz - Qz×Uy, Qz×Ux - Qx×Uz, Qx×Uy - Qy×Ux)
var Vx = Qy*Uz - Qz*Uy;
var Vy = Qz*Ux - Qx*Uz;
var Vz = Qx*Uy - Qy*Ux;
// normalize U and V:
var Ulength = Math.sqrt(Math.pow(Ux, 2) + Math.pow(Uy, 2) + Math.pow(Uz, 2));
var Vlength = Math.sqrt(Math.pow(Vx, 2) + Math.pow(Vy, 2) + Math.pow(Vz, 2));
Ux /= Ulength;
Uy /= Ulength;
Uz /= Ulength;
Vx /= Vlength;
Vy /= Vlength;
Vz /= Vlength;
for (var i = 0; i < segments; i++) {
var θ = 2*Math.PI*i/segments; // theta
var dx = radius*(Math.cos(θ)*Ux + Math.sin(θ)*Vx);
var dy = radius*(Math.cos(θ)*Uy + Math.sin(θ)*Vy);
var dz = radius*(Math.cos(θ)*Uz + Math.sin(θ)*Vz);
drawLine(P1[0] + dx, P1[1] + dy, P1[2] + dz, // point on circle around P1
P2[0] + dx, P2[1] + dy, P2[2] + dz) // point on circle around P2
}
}
I'm sure there are many ways to shorten the code and make it more efficient. I created a short visual demo online using Three.JS, at http://mvjantzen.com/tools/webgl/cylinder.html
I used the following code based on this
ballA.vx = (u1x * (m1 - m2) + 2 * m2 * u2x) / (m1 + m2);
ballA.vy = (u1y * (m1 - m2) + 2 * m2 * u2y) / (m1 + m2);
ballB.vx = (u2x * (m2 - m1) + 2 * m1 * u1x) / (m1 + m2);
ballB.vy = (u2y * (m2 - m1) + 2 * m1 * u1y) / (m1 + m2);
but it obviously doesn't well as the formula is designed for one-dimensional collisions.
So I tried to use the below formula from this section.
But the problem is that I don't know what the angle of deflection is and how to calculate it. Also, how to take into account the bouncing coefficient in this formula?
Edit: I may have not been clear. The above code does work, although it may not be the expected behavior, as the original formula is designed for 1D collisions. The issues I'm trying therefore are:
What is the 2D equivalent?
How to take the bouncing coefficient into account?
How to calculate the direction (which is expressed with vx and vy) of the two balls following the collision?
I should start by saying: I created a new answer because I feel the old one has value for its simplicity
as promised here is a much more complex physics engine, yet I still feel it's simple enough to follow (hopefully! or I just wasted my time... lol), (url: http://jsbin.com/otipiv/edit#javascript,live)
function Vector(x, y) {
this.x = x;
this.y = y;
}
Vector.prototype.dot = function (v) {
return this.x * v.x + this.y * v.y;
};
Vector.prototype.length = function() {
return Math.sqrt(this.x * this.x + this.y * this.y);
};
Vector.prototype.normalize = function() {
var s = 1 / this.length();
this.x *= s;
this.y *= s;
return this;
};
Vector.prototype.multiply = function(s) {
return new Vector(this.x * s, this.y * s);
};
Vector.prototype.tx = function(v) {
this.x += v.x;
this.y += v.y;
return this;
};
function BallObject(elasticity, vx, vy) {
this.v = new Vector(vx || 0, vy || 0); // velocity: m/s^2
this.m = 10; // mass: kg
this.r = 15; // radius of obj
this.p = new Vector(0, 0); // position
this.cr = elasticity; // elasticity
}
BallObject.prototype.draw = function(ctx) {
ctx.beginPath();
ctx.arc(this.p.x, this.p.y, this.r, 0, 2 * Math.PI);
ctx.closePath();
ctx.fill();
ctx.stroke();
};
BallObject.prototype.update = function(g, dt, ppm) {
this.v.y += g * dt;
this.p.x += this.v.x * dt * ppm;
this.p.y += this.v.y * dt * ppm;
};
BallObject.prototype.collide = function(obj) {
var dt, mT, v1, v2, cr, sm,
dn = new Vector(this.p.x - obj.p.x, this.p.y - obj.p.y),
sr = this.r + obj.r, // sum of radii
dx = dn.length(); // pre-normalized magnitude
if (dx > sr) {
return; // no collision
}
// sum the masses, normalize the collision vector and get its tangential
sm = this.m + obj.m;
dn.normalize();
dt = new Vector(dn.y, -dn.x);
// avoid double collisions by "un-deforming" balls (larger mass == less tx)
// this is susceptible to rounding errors, "jiggle" behavior and anti-gravity
// suspension of the object get into a strange state
mT = dn.multiply(this.r + obj.r - dx);
this.p.tx(mT.multiply(obj.m / sm));
obj.p.tx(mT.multiply(-this.m / sm));
// this interaction is strange, as the CR describes more than just
// the ball's bounce properties, it describes the level of conservation
// observed in a collision and to be "true" needs to describe, rigidity,
// elasticity, level of energy lost to deformation or adhesion, and crazy
// values (such as cr > 1 or cr < 0) for stange edge cases obviously not
// handled here (see: http://en.wikipedia.org/wiki/Coefficient_of_restitution)
// for now assume the ball with the least amount of elasticity describes the
// collision as a whole:
cr = Math.min(this.cr, obj.cr);
// cache the magnitude of the applicable component of the relevant velocity
v1 = dn.multiply(this.v.dot(dn)).length();
v2 = dn.multiply(obj.v.dot(dn)).length();
// maintain the unapplicatble component of the relevant velocity
// then apply the formula for inelastic collisions
this.v = dt.multiply(this.v.dot(dt));
this.v.tx(dn.multiply((cr * obj.m * (v2 - v1) + this.m * v1 + obj.m * v2) / sm));
// do this once for each object, since we are assuming collide will be called
// only once per "frame" and its also more effiecient for calculation cacheing
// purposes
obj.v = dt.multiply(obj.v.dot(dt));
obj.v.tx(dn.multiply((cr * this.m * (v1 - v2) + obj.m * v2 + this.m * v1) / sm));
};
function FloorObject(floor) {
var py;
this.v = new Vector(0, 0);
this.m = 5.9722 * Math.pow(10, 24);
this.r = 10000000;
this.p = new Vector(0, py = this.r + floor);
this.update = function() {
this.v.x = 0;
this.v.y = 0;
this.p.x = 0;
this.p.y = py;
};
// custom to minimize unnecessary filling:
this.draw = function(ctx) {
var c = ctx.canvas, s = ctx.scale;
ctx.fillRect(c.width / -2 / s, floor, ctx.canvas.width / s, (ctx.canvas.height / s) - floor);
};
}
FloorObject.prototype = new BallObject(1);
function createCanvasWithControls(objs) {
var addBall = function() { objs.unshift(new BallObject(els.value / 100, (Math.random() * 10) - 5, -20)); },
d = document,
c = d.createElement('canvas'),
b = d.createElement('button'),
els = d.createElement('input'),
clr = d.createElement('input'),
cnt = d.createElement('input'),
clrl = d.createElement('label'),
cntl = d.createElement('label');
b.innerHTML = 'add ball with elasticity: <span>0.70</span>';
b.onclick = addBall;
els.type = 'range';
els.min = 0;
els.max = 100;
els.step = 1;
els.value = 70;
els.style.display = 'block';
els.onchange = function() {
b.getElementsByTagName('span')[0].innerHTML = (this.value / 100).toFixed(2);
};
clr.type = cnt.type = 'checkbox';
clr.checked = cnt.checked = true;
clrl.style.display = cntl.style.display = 'block';
clrl.appendChild(clr);
clrl.appendChild(d.createTextNode('clear each frame'));
cntl.appendChild(cnt);
cntl.appendChild(d.createTextNode('continuous shower!'));
c.style.border = 'solid 1px #3369ff';
c.style.display = 'block';
c.width = 700;
c.height = 550;
c.shouldClear = function() { return clr.checked; };
d.body.appendChild(c);
d.body.appendChild(els);
d.body.appendChild(b);
d.body.appendChild(clrl);
d.body.appendChild(cntl);
setInterval(function() {
if (cnt.checked) {
addBall();
}
}, 333);
return c;
}
// start:
var objs = [],
c = createCanvasWithControls(objs),
ctx = c.getContext('2d'),
fps = 30, // target frames per second
ppm = 20, // pixels per meter
g = 9.8, // m/s^2 - acceleration due to gravity
t = new Date().getTime();
// add the floor:
objs.push(new FloorObject(c.height - 10));
// as expando so its accessible in draw [this overides .scale(x,y)]
ctx.scale = 0.5;
ctx.fillStyle = 'rgb(100,200,255)';
ctx.strokeStyle = 'rgb(33,69,233)';
ctx.transform(ctx.scale, 0, 0, ctx.scale, c.width / 2, c.height / 2);
setInterval(function() {
var i, j,
nw = c.width / ctx.scale,
nh = c.height / ctx.scale,
nt = new Date().getTime(),
dt = (nt - t) / 1000;
if (c.shouldClear()) {
ctx.clearRect(nw / -2, nh / -2, nw, nh);
}
for (i = 0; i < objs.length; i++) {
// if a ball > viewport width away from center remove it
while (objs[i].p.x < -nw || objs[i].p.x > nw) {
objs.splice(i, 1);
}
objs[i].update(g, dt, ppm, objs, i);
for (j = i + 1; j < objs.length; j++) {
objs[j].collide(objs[i]);
}
objs[i].draw(ctx);
}
t = nt;
}, 1000 / fps);
the real "meat" and the origin for this discussion is the obj.collide(obj) method.
if we dive in (I commented it this time as it is much more complex than the "last"), you'll see that this equation: , is still the only one being used in this line: this.v.tx(dn.multiply((cr * obj.m * (v2 - v1) + this.m * v1 + obj.m * v2) / sm)); now I'm sure you're still saying: "zomg wtf! that's the same single dimension equation!" but when you stop and think about it a "collision" only ever happens in a single dimension. Which is why we use vector equations to extract the applicable components and apply the collisions only to those specific parts leaving the others untouched to go on their merry way (ignoring friction and simplifying the collision to not account for dynamic energy transforming forces as described in the comments for CR). This concept obviously gets more complicated as the object complexity grows and number of scene data points increases to account for things like deformity, rotational inertia, uneven mass distribution and points of friction... but that's so far beyond the scope of this it's almost not worth mentioning..
Basically, the concepts you really need to "grasp" for this to feel intuitive to you are the basics of Vector equations (all located in the Vector prototype), how they interact with each (what it actually means to normalize, or take a dot/scalar product, eg. reading/talking to someone knowledgeable) and a basic understanding of how collisions act on properties of an object (mass, speed, etc... again, read/talk to someone knowledgeable)
I hope this helps, good luck! -ck
here is a demo of an inelastic collision equation in action, custom made for you:
function BallObject(elasticity) {
this.v = { x: 1, y: 20 }; // velocity: m/s^2
this.m = 10; // mass: kg
this.p = { x: 40, y: 0}; // position
this.r = 15; // radius of obj
this.cr = elasticity; // elasticity
}
function draw(obj) {
ctx.beginPath();
ctx.arc(obj.p.x, obj.p.y, obj.r, 0, 2 * Math.PI);
ctx.closePath();
ctx.stroke();
ctx.fill();
}
function collide(obj) {
obj.v.y = (obj.cr * floor.m * -obj.v.y + obj.m * obj.v.y) / (obj.m + floor.m);
}
function update(obj, dt) {
// over-simplified collision detection
// only consider the floor for simplicity
if ((obj.p.y + obj.r) > c.height) {
obj.p.y = c.height - obj.r;
collide(obj);
}
obj.v.y += g * dt;
obj.p.x += obj.v.x * dt * ppm;
obj.p.y += obj.v.y * dt * ppm;
}
var d = document,
c = d.createElement('canvas'),
b = d.createElement('button'),
els = d.createElement('input'),
clr = d.createElement('input'),
clrl = d.createElement('label'),
ctx = c.getContext('2d'),
fps = 30, // target frames per second
ppm = 20, // pixels per meter
g = 9.8, // m/s^2 - acceleration due to gravity
objs = [],
floor = {
v: { x: 0, y: 0 }, // floor is immobile
m: 5.9722 * Math.pow(10, 24) // mass of earth (probably could be smaller)
},
t = new Date().getTime();
b.innerHTML = 'add ball with elasticity: <span>0.70</span>';
b.onclick = function() { objs.push(new BallObject(els.value / 100)); };
els.type = 'range';
els.min = 0;
els.max = 100;
els.step = 1;
els.value = 70;
els.style.display = 'block';
els.onchange = function() {
b.getElementsByTagName('span')[0].innerHTML = (this.value / 100).toFixed(2);
};
clr.type = 'checkbox';
clr.checked = true;
clrl.appendChild(clr);
clrl.appendChild(d.createTextNode('clear each frame'));
c.style.border = 'solid 1px #3369ff';
c.style.borderRadius = '10px';
c.style.display = 'block';
c.width = 400;
c.height = 400;
ctx.fillStyle = 'rgb(100,200,255)';
ctx.strokeStyle = 'rgb(33,69,233)';
d.body.appendChild(c);
d.body.appendChild(els);
d.body.appendChild(b);
d.body.appendChild(clrl);
setInterval(function() {
var nt = new Date().getTime(),
dt = (nt - t) / 1000;
if (clr.checked) {
ctx.clearRect(0, 0, c.width, c.height);
}
for (var i = 0; i < objs.length; i++) {
update(objs[i], dt);
draw(objs[i]);
}
t = nt;
}, 1000 / fps);
to see it in action yourself, just go here: http://jsbin.com/iwuxol/edit#javascript,live
This utilizes this equation:
and since your "floor" doesn't move you only have to consider the influence on the ball's y velocity. mind you there are quite a few shortcuts and oversights here so this is a very primitive physics engine, and is mainly meant to illustrate this one equation...
hope this helps -ck
I strongly recommend you familiarize yourself with the center of momentum frame. It makes collisions much easier to understand. (And without that understanding you're just manipulating cryptic equations and you'll never know why things go wrong.)
Anyway, to determine the angle, you can use the impact parameter, basically how far "off center" one ball hits the other. The two balls are approaching each other in opposite directions (in the center-of-momentum frame), and the distance between their centers perpendicular to those velocities is the impact parameter h. Then the angle of deflection is 2 acos(h/(r1+r2)).
Once you get that working perfectly, you can worry about inelastic collisions and the coefficient of restitution.