Unintuitive javascript behaviour when using for in [duplicate] - javascript

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
JavaScript “For …in” with Arrays
I looped over various arrays using for-in iteration, with varying results:
var my_array1 = {"foo":2, "bar":3};
var my_array2 = new Array(
'foo',
'bar'
);
var my_array3 = ["foo","bar"];
for (var key in my_array1){
alert(key); // outputs key
}
for (var key in my_array2){
alert(key); // outputs index integer not value
}
for (var key in my_array3){
alert(key); // outputs index integer not value
}
Is there a reason that the for-in iteration over non-associative arrays just gives the index and not the actual value like in python?
Is there an advantage to using for(var index in my_array) over using for(var index=0; index<my_array.length; index++), for non-associative arrays?

for..in iterates over properties, not values.
As described in the above link, a theoretical disadvantage of using it instead of a regular for with Arrays is that the iteration order of properties is not defined in the ECMAScript spec (see the text under this section), and is this implementation dependent.

Simply:
Your first array is not an array.
It's an object-literal.
Think of it as the instance of a class, where all properties and methods are public.
You could think of it as a singleton, if you really, really wanted, except without any of the global-scope issues that other languages create, trying to make singletons.
So in javascript for (key in obj) {} is meant to iterate through properties of a class-instance.
Use for (i = 0, length = x; i < length; i += 1) {} for iterating through arrays.

I'm guessing the reason basically boils down to being the way the whomever designed the Javascript 'in' operator. This behavior is similar to some other languages, in that in the case of the object/hash the keys are 'foo' and 'bar' while for an array the keys are the indexes. I wouldn't see a big difference between using a 'standard' for loop and a 'for in' loop for an array, although as a point of clarity I'd tend to used the standard notation unless I was using something like a .each() function which would take care of it for me.

Related

JavaScript: Weird (edge?) case of a mixed Array/Object

I saw this for the first time (or noticed it for the first time) today during a maintenance of a colleagues code.
Essentially the "weird" part is the same as if you try to run this code:
var arr = [];
arr[0] = "cat"; // this adds to the array
arr[1] = "mouse"; // this adds to the array
arr.length; // returns 2
arr["favoriteFood"] = "pizza"; // this DOES NOT add to the array. Setting a string parameter adds to the underlying object
arr.length; // returns 2, not 3
Got this example from nfiredly.com
I don't know what the technical term for this "case" is so I haven't been able to find any additional information about it here or on Google but it strikes me very peculiar that this "behaviour" can at all exists in JavaScript; a kind of "mix" between Arrays and Objects (or Associative Arrays).
It states in the above code snippet that that Setting a string parameter adds to the underlying object and thus not affect the length of the "array" itself.
What is this kind of pattern?
Why is it at all possible? Is it a weird JS quirk or is it deliberate?
For what purpose would you "mix" these types?
It's possible because arrays are objects with some special behaviors, but objects nevertheless.
15.4 Array Objects
However, if you start using non-array properties on an array, some implementations may change the underlying data structure to a hash. Then array operations might be slower.
In JavaScript, arrays, functions and objects are all objects. Arrays are objects created with Array constructor function.
E.g.
var a = new Array();
Or, using shortcut array literal,
var a = [];
Both are the same. They both create objects. However, special kind of object. It has a length property and numeric properties with corresponding values which are the array elements.
This object (array) has methods like push, pop etc. which you can use to manipulate the object.
When you add a non-numeric property to this array object, you do not affect its length. But, you do add a new property to the object.
So, if you have
var a = [1];
a.x = 'y';
console.log(Object.keys(a)); // outputs ["0", "x"]
console.log(a); // outputs [1];

why use regular for loops when you can use for in loops [duplicate]

I've been told not to use for...in with arrays in JavaScript. Why not?
The reason is that one construct:
var a = []; // Create a new empty array.
a[5] = 5; // Perfectly legal JavaScript that resizes the array.
for (var i = 0; i < a.length; i++) {
// Iterate over numeric indexes from 0 to 5, as everyone expects.
console.log(a[i]);
}
/* Will display:
undefined
undefined
undefined
undefined
undefined
5
*/
can sometimes be totally different from the other:
var a = [];
a[5] = 5;
for (var x in a) {
// Shows only the explicitly set index of "5", and ignores 0-4
console.log(x);
}
/* Will display:
5
*/
Also consider that JavaScript libraries might do things like this, which will affect any array you create:
// Somewhere deep in your JavaScript library...
Array.prototype.foo = 1;
// Now you have no idea what the below code will do.
var a = [1, 2, 3, 4, 5];
for (var x in a){
// Now foo is a part of EVERY array and
// will show up here as a value of 'x'.
console.log(x);
}
/* Will display:
0
1
2
3
4
foo
*/
The for-in statement by itself is not a "bad practice", however it can be mis-used, for example, to iterate over arrays or array-like objects.
The purpose of the for-in statement is to enumerate over object properties. This statement will go up in the prototype chain, also enumerating over inherited properties, a thing that sometimes is not desired.
Also, the order of iteration is not guaranteed by the spec., meaning that if you want to "iterate" an array object, with this statement you cannot be sure that the properties (array indexes) will be visited in the numeric order.
For example, in JScript (IE <= 8), the order of enumeration even on Array objects is defined as the properties were created:
var array = [];
array[2] = 'c';
array[1] = 'b';
array[0] = 'a';
for (var p in array) {
//... p will be "2", "1" and "0" on IE
}
Also, speaking about inherited properties, if you, for example, extend the Array.prototype object (like some libraries as MooTools do), that properties will be also enumerated:
Array.prototype.last = function () { return this[this.length-1]; };
for (var p in []) { // an empty array
// last will be enumerated
}
As I said before to iterate over arrays or array-like objects, the best thing is to use a sequential loop, such as a plain-old for/while loop.
When you want to enumerate only the own properties of an object (the ones that aren't inherited), you can use the hasOwnProperty method:
for (var prop in obj) {
if (obj.hasOwnProperty(prop)) {
// prop is not inherited
}
}
And some people even recommend calling the method directly from Object.prototype to avoid having problems if somebody adds a property named hasOwnProperty to our object:
for (var prop in obj) {
if (Object.prototype.hasOwnProperty.call(obj, prop)) {
// prop is not inherited
}
}
There are three reasons why you shouldn't use for..in to iterate over array elements:
for..in will loop over all own and inherited properties of the array object which aren't DontEnum; that means if someone adds properties to the specific array object (there are valid reasons for this - I've done so myself) or changed Array.prototype (which is considered bad practice in code which is supposed to work well with other scripts), these properties will be iterated over as well; inherited properties can be excluded by checking hasOwnProperty(), but that won't help you with properties set in the array object itself
for..in isn't guaranteed to preserve element ordering
it's slow because you have to walk all properties of the array object and its whole prototype chain and will still only get the property's name, ie to get the value, an additional lookup will be required
Because for...in enumerates through the object that holds the array, not the array itself. If I add a function to the arrays prototype chain, that will also be included. I.e.
Array.prototype.myOwnFunction = function() { alert(this); }
a = new Array();
a[0] = 'foo';
a[1] = 'bar';
for(x in a){
document.write(x + ' = ' + a[x]);
}
This will write:
0 = foo
1 = bar
myOwnFunction = function() { alert(this); }
And since you can never be sure that nothing will be added to the prototype chain just use a for loop to enumerate the array:
for(i=0,x=a.length;i<x;i++){
document.write(i + ' = ' + a[i]);
}
This will write:
0 = foo
1 = bar
As of 2016 (ES6) we may use for…of for array iteration, as John Slegers already noticed.
I would just like to add this simple demonstration code, to make things clearer:
Array.prototype.foo = 1;
var arr = [];
arr[5] = "xyz";
console.log("for...of:");
var count = 0;
for (var item of arr) {
console.log(count + ":", item);
count++;
}
console.log("for...in:");
count = 0;
for (var item in arr) {
console.log(count + ":", item);
count++;
}
The console shows:
for...of:
0: undefined
1: undefined
2: undefined
3: undefined
4: undefined
5: xyz
for...in:
0: 5
1: foo
In other words:
for...of counts from 0 to 5, and also ignores Array.prototype.foo. It shows array values.
for...in lists only the 5, ignoring undefined array indexes, but adding foo. It shows array property names.
Short answer: It's just not worth it.
Longer answer: It's just not worth it, even if sequential element order and optimal performance aren't required.
Long answer: It's just not worth it...
Using for (var property in array) will cause array to be iterated over as an object, traversing the object prototype chain and ultimately performing slower than an index-based for loop.
for (... in ...) is not guaranteed to return the object properties in sequential order, as one might expect.
Using hasOwnProperty() and !isNaN() checks to filter the object properties is an additional overhead causing it to perform even slower and negates the key reason for using it in the first place, i.e. because of the more concise format.
For these reasons an acceptable trade-off between performance and convenience doesn't even exist. There's really no benefit unless the intent is to handle the array as an object and perform operations on the object properties of the array.
In isolation, there is nothing wrong with using for-in on arrays. For-in iterates over the property names of an object, and in the case of an "out-of-the-box" array, the properties corresponds to the array indexes. (The built-in propertes like length, toString and so on are not included in the iteration.)
However, if your code (or the framework you are using) add custom properties to arrays or to the array prototype, then these properties will be included in the iteration, which is probably not what you want.
Some JS frameworks, like Prototype modifies the Array prototype. Other frameworks like JQuery doesn't, so with JQuery you can safely use for-in.
If you are in doubt, you probably shouldn't use for-in.
An alternative way of iterating through an array is using a for-loop:
for (var ix=0;ix<arr.length;ix++) alert(ix);
However, this have a different issue. The issue is that a JavaScript array can have "holes". If you define arr as:
var arr = ["hello"];
arr[100] = "goodbye";
Then the array have two items, but a length of 101. Using for-in will yield two indexes, while the for-loop will yield 101 indexes, where the 99 has a value of undefined.
In addition to the reasons given in other answers, you may not want to use the "for...in" structure if you need to do math with the counter variable because the loop iterates through the names of the object's properties and so the variable is a string.
For example,
for (var i=0; i<a.length; i++) {
document.write(i + ', ' + typeof i + ', ' + i+1);
}
will write
0, number, 1
1, number, 2
...
whereas,
for (var ii in a) {
document.write(i + ', ' + typeof i + ', ' + i+1);
}
will write
0, string, 01
1, string, 11
...
Of course, this can easily be overcome by including
ii = parseInt(ii);
in the loop, but the first structure is more direct.
Aside from the fact that for...in loops over all enumerable properties (which is not the same as "all array elements"!), see http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf, section 12.6.4 (5th edition) or 13.7.5.15 (7th edition):
The mechanics and order of enumerating the properties ... is not specified...
(Emphasis mine.)
That means if a browser wanted to, it could go through the properties in the order in which they were inserted. Or in numerical order. Or in lexical order (where "30" comes before "4"! Keep in mind all object keys -- and thus, all array indexes -- are actually strings, so that makes total sense). It could go through them by bucket, if it implemented objects as hash tables. Or take any of that and add "backwards". A browser could even iterate randomly and be ECMA-262 compliant, as long as it visited each property exactly once.
In practice, most browsers currently like to iterate in roughly the same order. But there's nothing saying they have to. That's implementation specific, and could change at any time if another way was found to be far more efficient.
Either way, for...in carries with it no connotation of order. If you care about order, be explicit about it and use a regular for loop with an index.
Mainly two reasons:
One
Like others have said, You might get keys which aren't in your array or that are inherited from the prototype. So if, let's say, a library adds a property to the Array or Object prototypes:
Array.prototype.someProperty = true
You'll get it as part of every array:
for(var item in [1,2,3]){
console.log(item) // will log 1,2,3 but also "someProperty"
}
you could solve this with the hasOwnProperty method:
var ary = [1,2,3];
for(var item in ary){
if(ary.hasOwnProperty(item)){
console.log(item) // will log only 1,2,3
}
}
but this is true for iterating over any object with a for-in loop.
Two
Usually the order of the items in an array is important, but the for-in loop won't necessarily iterate in the right order, that's because it treats the array as an object, which is the way it is implemented in JS, and not as an array.
This seems like a small thing, but it can really screw up applications and is hard to debug.
I don't think I have much to add to eg. Triptych's answer or CMS's answer on why using for...in should be avoided in some cases.
I do, however, would like to add that in modern browsers there is an alternative to for...in that can be used in those cases where for...in can't be used. That alternative is for...of :
for (var item of items) {
console.log(item);
}
Note :
Unfortunately, no version of Internet Explorer supports for...of (Edge 12+ does), so you'll have to wait a bit longer until you can use it in your client side production code. However, it should be safe to use in your server side JS code (if you use Node.js).
Because it enumerates through object fields, not indexes. You can get value with index "length" and I doubt you want this.
The problem with for ... in ... — and this only becomes a problem when a programmer doesn't really understand the language; it's not really a bug or anything — is that it iterates over all members of an object (well, all enumerable members, but that's a detail for now). When you want to iterate over just the indexed properties of an array, the only guaranteed way to keep things semantically consistent is to use an integer index (that is, a for (var i = 0; i < array.length; ++i) style loop).
Any object can have arbitrary properties associated with it. There would be nothing terrible about loading additional properties onto an array instance, in particular. Code that wants to see only indexed array-like properties therefore must stick to an integer index. Code that is fully aware of what for ... in does and really need to see all properties, well then that's ok too.
TL&DR: Using the for in loop in arrays is not evil, in fact quite the opposite.
I think the for in loop is a gem of JS if used correctly in arrays. You are expected to have full control over your software and know what you are doing. Let's see the mentioned drawbacks and disprove them one by one.
It loops through inherited properties as well: First of all any extensions to the Array.prototype should have been done by using Object.defineProperty() and their enumerable descriptor should be set to false. Any library not doing so should not be used at all.
Properties those you add to the inheritance chain later get counted: When doing array sub-classing by Object.setPrototypeOf or by Class extend. You should again use Object.defineProperty() which by default sets the writable, enumerable and configurable property descriptors to false. Lets see an array sub-classing example here...
function Stack(...a){
var stack = new Array(...a);
Object.setPrototypeOf(stack, Stack.prototype);
return stack;
}
Stack.prototype = Object.create(Array.prototype); // now stack has full access to array methods.
Object.defineProperty(Stack.prototype,"constructor",{value:Stack}); // now Stack is a proper constructor
Object.defineProperty(Stack.prototype,"peak",{value: function(){ // add Stack "only" methods to the Stack.prototype.
return this[this.length-1];
}
});
var s = new Stack(1,2,3,4,1);
console.log(s.peak());
s[s.length] = 7;
console.log("length:",s.length);
s.push(42);
console.log(JSON.stringify(s));
console.log("length:",s.length);
for(var i in s) console.log(s[i]);
So you see.. for in loop is now safe since you cared about your code.
The for in loop is slow: Hell no. It's by far the fastest method of iteration if you are looping over sparse arrays which are needed time to time. This is one of the most important performance tricks that one should know. Let's see an example. We will loop over a sparse array.
var a = [];
a[0] = "zero";
a[10000000] = "ten million";
console.time("for loop on array a:");
for(var i=0; i < a.length; i++) a[i] && console.log(a[i]);
console.timeEnd("for loop on array a:");
console.time("for in loop on array a:");
for(var i in a) a[i] && console.log(a[i]);
console.timeEnd("for in loop on array a:");
Also, due to semantics, the way for, in treats arrays (i.e. the same as any other JavaScript object) is not aligned with other popular languages.
// C#
char[] a = new char[] {'A', 'B', 'C'};
foreach (char x in a) System.Console.Write(x); //Output: "ABC"
// Java
char[] a = {'A', 'B', 'C'};
for (char x : a) System.out.print(x); //Output: "ABC"
// PHP
$a = array('A', 'B', 'C');
foreach ($a as $x) echo $x; //Output: "ABC"
// JavaScript
var a = ['A', 'B', 'C'];
for (var x in a) document.write(x); //Output: "012"
Here are the reasons why this is (usually) a bad practice:
for...in loops iterate over all their own enumerable properties and the enumerable properties of their prototype(s). Usually in an array iteration we only want to iterate over the array itself. And even though you yourself may not add anything to the array, your libraries or framework might add something.
Example:
Array.prototype.hithere = 'hithere';
var array = [1, 2, 3];
for (let el in array){
// the hithere property will also be iterated over
console.log(el);
}
for...in loops do not guarantee a specific iteration order. Although is order is usually seen in most modern browsers these days, there is still no 100% guarantee.
for...in loops ignore undefined array elements, i.e. array elements which not have been assigned yet.
Example::
const arr = [];
arr[3] = 'foo'; // resize the array to 4
arr[4] = undefined; // add another element with value undefined to it
// iterate over the array, a for loop does show the undefined elements
for (let i = 0; i < arr.length; i++) {
console.log(arr[i]);
}
console.log('\n');
// for in does ignore the undefined elements
for (let el in arr) {
console.log(arr[el]);
}
In addition to the other problems, the "for..in" syntax is probably slower, because the index is a string, not an integer.
var a = ["a"]
for (var i in a)
alert(typeof i) // 'string'
for (var i = 0; i < a.length; i++)
alert(typeof i) // 'number'
An important aspect is that for...in only iterates over properties contained in an object which have their enumerable property attribute set to true. So if one attempts to iterate over an object using for...in then arbitrary properties may be missed if their enumerable property attribute is false. It is quite possible to alter the enumerable property attribute for normal Array objects so that certain elements are not enumerated. Though in general the property attributes tend to apply to function properties within an object.
One can check the value of a properties' enumerable property attribute by:
myobject.propertyIsEnumerable('myproperty')
Or to obtain all four property attributes:
Object.getOwnPropertyDescriptor(myobject,'myproperty')
This is a feature available in ECMAScript 5 - in earlier versions it was not possible to alter the value of the enumerable property attribute (it was always set to true).
The for/in works with two types of variables: hashtables (associative arrays) and array (non-associative).
JavaScript will automatically determine the way its passes through the items. So if you know that your array is really non-associative you can use for (var i=0; i<=arrayLen; i++), and skip the auto-detection iteration.
But in my opinion, it's better to use for/in, the process required for that auto-detection is very small.
A real answer for this will depend on how the browser parsers/interpret the JavaScript code. It can change between browsers.
I can't think of other purposes to not using for/in;
//Non-associative
var arr = ['a', 'b', 'c'];
for (var i in arr)
alert(arr[i]);
//Associative
var arr = {
item1 : 'a',
item2 : 'b',
item3 : 'c'
};
for (var i in arr)
alert(arr[i]);
Because it will iterate over properties belonging to objects up the prototype chain if you're not careful.
You can use for.. in, just be sure to check each property with hasOwnProperty.
It's not necessarily bad (based on what you're doing), but in the case of arrays, if something has been added to Array.prototype, then you're going to get strange results. Where you'd expect this loop to run three times:
var arr = ['a','b','c'];
for (var key in arr) { ... }
If a function called helpfulUtilityMethod has been added to Array's prototype, then your loop would end up running four times: key would be 0, 1, 2, and helpfulUtilityMethod. If you were only expecting integers, oops.
You should use the for(var x in y) only on property lists, not on objects (as explained above).
Using the for...in loop for an array is not wrong, although I can guess why someone told you that:
1.) There is already a higher order function, or method, that has that purpose for an array, but has more functionality and leaner syntax, called 'forEach': Array.prototype.forEach(function(element, index, array) {} );
2.) Arrays always have a length, but for...in and forEach do not execute a function for any value that is 'undefined', only for the indexes that have a value defined. So if you only assign one value, these loops will only execute a function once, but since an array is enumerated, it will always have a length up to the highest index that has a defined value, but that length could go unnoticed when using these loops.
3.) The standard for loop will execute a function as many times as you define in the parameters, and since an array is numbered, it makes more sense to define how many times you want to execute a function. Unlike the other loops, the for loop can then execute a function for every index in the array, whether the value is defined or not.
In essence, you can use any loop, but you should remember exactly how they work. Understand the conditions upon which the different loops reiterate, their separate functionalities, and realize they will be more or less appropriate for differing scenarios.
Also, it may be considered a better practice to use the forEach method than the for...in loop in general, because it is easier to write and has more functionality, so you may want to get in the habit of only using this method and standard for, but your call.
See below that the first two loops only execute the console.log statements once, while the standard for loop executes the function as many times as specified, in this case, array.length = 6.
var arr = [];
arr[5] = 'F';
for (var index in arr) {
console.log(index);
console.log(arr[index]);
console.log(arr)
}
// 5
// 'F'
// => (6) [undefined x 5, 6]
arr.forEach(function(element, index, arr) {
console.log(index);
console.log(element);
console.log(arr);
});
// 5
// 'F'
// => Array (6) [undefined x 5, 6]
for (var index = 0; index < arr.length; index++) {
console.log(index);
console.log(arr[index]);
console.log(arr);
};
// 0
// undefined
// => Array (6) [undefined x 5, 6]
// 1
// undefined
// => Array (6) [undefined x 5, 6]
// 2
// undefined
// => Array (6) [undefined x 5, 6]
// 3
// undefined
// => Array (6) [undefined x 5, 6]
// 4
// undefined
// => Array (6) [undefined x 5, 6]
// 5
// 'F'
// => Array (6) [undefined x 5, 6]
A for...in loop always enumerates the keys.
Objects properties keys are always String, even the indexed properties of an array :
var myArray = ['a', 'b', 'c', 'd'];
var total = 0
for (elem in myArray) {
total += elem
}
console.log(total); // 00123
for...in is useful when working on an object in JavaScript, but not for an Array, but still we can not say it's a wrong way, but it's not recommended, look at this example below using for...in loop:
let txt = "";
const person = {fname:"Alireza", lname:"Dezfoolian", age:35};
for (const x in person) {
txt += person[x] + " ";
}
console.log(txt); //Alireza Dezfoolian 35
OK, let's do it with Array now:
let txt = "";
const person = ["Alireza", "Dezfoolian", 35];
for (const x in person) {
txt += person[x] + " ";
}
console.log(txt); //Alireza Dezfoolian 35
As you see the result the same...
But let's try something, let's prototype something to Array...
Array.prototype.someoneelse = "someoneelse";
Now we create a new Array();
let txt = "";
const arr = new Array();
arr[0] = 'Alireza';
arr[1] = 'Dezfoolian';
arr[2] = 35;
for(x in arr) {
txt += arr[x] + " ";
}
console.log(txt); //Alireza Dezfoolian 35 someoneelse
You see the someoneelse!!!... We actually looping through new Array object in this case!
So that's one of the reasons why we need to use for..in carefully, but it's not always the case...
Since JavaScript elements are saved as standard object properties, it
is not advisable to iterate through JavaScript arrays using for...in
loops because normal elements and all enumerable properties will be
listed.
From https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Indexed_collections
although not specifically addressed by this question, I would add that there's a very good reason not to ever use for...in with a NodeList (as one would obtain from a querySelectorAll call, as it doesn't see the returned elements at all, instead iterating only over the NodeList properties.
in the case of a single result, I got:
var nodes = document.querySelectorAll(selector);
nodes
▶ NodeList [a._19eb]
for (node in nodes) {console.log(node)};
VM505:1 0
VM505:1 length
VM505:1 item
VM505:1 entries
VM505:1 forEach
VM505:1 keys
VM505:1 values
which explained why my for (node in nodes) node.href = newLink; was failing.
for in loop converts the indices to string when traversing through an array.
For example, In the below code, in the second loop where initialising j with i+1, i is the index but in a string ("0", "1" etc) and number + string in js is a string. if js encounters "0" + 1 it will return "01".
var maxProfit = function(prices) {
let maxProfit = 0;
for (let i in prices) {
for (let j = i + 1; j < prices.length; j++) {
console.log(prices[j] - prices[i], "i,j", i, j, typeof i, typeof j);
if ((prices[j] - prices[i]) > maxProfit) maxProfit = (prices[j] - prices[i]);
}
}
return maxProfit;
};
maxProfit([7, 1, 5, 3, 6, 4]);

Why does javascript change the data type on Array.push?

I was working on a small javascript coding challenge that was simple enough, but ran into a odd bit of strange behavior that I couldn't find documented anywhere. Maybe someone could point me to where it states that this is expected behavior?
myIntegerArray = [1,2,3,4];
b = new Array();
for(var v in a)
{
b.push(v);
}
console.log(b); // returns ["1","2","3","4"]. Note String result
If I were to use the forEach() however I get an array of Numbers back:
a.forEach(function(element,index,ay)
{
b.push(element)
});
//a console.log(b) will return [1,2,3,4]
You're pushing the key name, not the value. You need to to do this:
b.push(a[v]);
This might help you understand:
for (var key in obj) {
var value = obj[key];
arr.push(value);
}
for(var v in a)
In JavaScript, Arrays are just like Objects. for..in loop will get the keys of the Array objects, which are the actual array indices. As we know that, JavaScript Object keys can only be Strings. So, what you are actually getting is, the Array indices in String format.
And another reason why for..in should not be used, is in MDN docs. Quoting from for..in
for..in should not be used to iterate over an Array where index order
is important. Array indexes are just enumerable properties with
integer names and are otherwise identical to general Object
properties. There is no guarantee that for...in will return the
indexes in any particular order and it will return all enumerable
properties, including those with non–integer names and those that are
inherited.
Because the order of iteration is implementation dependent, iterating
over an array may not visit elements in a consistent order. Therefore
it is better to use a for loop with a numeric index (or Array.forEach
or the non-standard for...of loop) when iterating over arrays where
the order of access is important.
So, you either use
for(var index = 0; index < array.length; index += 1) {
array[index];
}
Or the forEach which you have shown in the question itself.

for ( key in array) loops over array prototype

I don't know how to word this problem exactly but I found this extremely wired.
Basically I did this test in chrome's developer tool console.
for (var request in [0,1,2]) { console.log(request);}
0
1
2
compare
the last four lines are all outputs from the for loop.
during the for loop, request got the value compare.
I wonder if this is a bug in chrome.
for ... in ... iterates over the enumerable properties of an object, and is not intended for array indices. Array indices are also enumerable properties, but as you've discovered anything unsafely added to Array.prototype will be returned too.
To safely add a (non-enumerable) method to Array.prototype in ES5 browsers you can use Object.defineProperty, e.g.:
Object.defineProperty(Array.prototype, 'compare', {
value: function() {
...
}
});
This will stop for ... in from breaking, but it's still the wrong tool for the job when the variable of interest is an array.
You're best off using an indexed for loop.
For..in also enumerates over inherited properties etc.
var request = [0,1,2];
for (var i = 0; i < request.length; i++) {
console.log(request[i]);
}
The top answer to this question:
stackoverflow previous answer
puts it better than I could:
in your case, the global "object-prototype" as a compare function declared for it, e.g...
object.prototype.compare = function (a,b) {return a === b}
...and so, whenever you iterate an object (an array being one kind of object) you also iterate over the "compare" function of it's prototype... which is a "member" of it.
As others pointed out for .. in is not the best way to iterate thru array. If you insist on using it for some reason - use hasOwnProperty method to determine that property indeed belongs to the array:
var arr = [0,1,2];
for (var request in arr ) {
if (arr.hasOwnProperty(request)) console.log(request);
}

When iterating over values, why does typeof(value) return "string" when value is a number? JavaScript

I'm using Google Chrome for this test:
Contrary to intuition, the first loop alerts "string" three times, while the second loop alerts "number" three times.
numarray = [1, 2, 3];
//for-each loop
for(num in numarray)
alert(typeof(num));
// Standard loop
for(i=0; i<numarray.length; i++)
alert(typeof(numarray[i]));
I was expecting both loops to alert "number" three times. How is the first loop implemented in JavaScript? In other words, if the for-each is syntactic sugar, what is its equivalent using a standard loop?
Also, is there some way to iterate over an object's namespace using a standard loop? I'm looking to touch every one of some object's methods and attributes using a loop of the second kind.
The reason you're seeing "string" returned in your first loop is that num refers to the array index, not the value of numarray at that index. Try changing your first loop to alert num instead of typeof num and you'll see that it spits out 0, 1, and 2, which are the indicies and not the values of your array.
When you use a for in loop, you're iterating over the properties of an object, which is not exactly equivalent to the for loop in your second example. Arrays in JavaScript are really just objects with sequential numbers as property names. They are treated as strings as far as typeof is concerned.
Edit:
As Matthew points out, you're not guaranteed to get the items in the array in any particular order when using a for in loop, and partly for that reason, it's not recommended to iterate through arrays that way.
filip-fku asks when it would be useful to use for in, given this behavior. One example is when the property names themselves have meaning, which is not really the case with array indicies. For example:
var myName = {
first: 'Jimmy',
last: 'Cuadra'
};
for (var prop in myName) {
console.log(prop + ': ' + myName[prop]);
}
// prints:
// first: Jimmy
// last: Cuadra
It's also worth noting that for in loops will also iterate through properties of the object's prototype chain. For that reason, this is usually how you'd want to construct a for in loop:
for (var prop in obj) {
if (obj.hasOwnProperty(prop)) {
// do something
}
}
This does a check to see if the property was defined by the object itself and not an object it's inheriting from through the prototype chain.

Categories

Resources