Javascript: Calling object methods within that object - javascript

What is the best design pattern for achieving the following (which doesn't work)?
var obj = (function() {
// code defining private variables and methods
var _obj = {
property: value,
method1: function() {
// do stuff
},
method2: function() {
// use property
var prop = _obj.property; // obviously doesn't work
// call method1
obj.method1(); // "obj" not finished being defined yet!
}
};
// obviously now I could do...
var prop = _obj.property;
return _obj;
})();
// and I could now do...
obj.method1();
A variation which I think should work is
var obj = (function() {
var property = value,
method1 = function() {
// do stuff
},
method2 = function() {
// use property
var prop = property;
// call method1
method1();
},
_obj = {
property: property,
method1: method1,
method2: method2
};
return _obj;
})();
Similarly, how does it work for objects meant to be created with the new operator? Within the constructor function itself you can write this.method(). But what if you want to keep the constructor small, only defining those things which will likely be customized upon creation, and then defining the rest in the prototype? (This seems to be the common pattern.) Can the properties / methods within the prototype interact in any way?
var MyObj = function(name) {
this.name = name;
};
var obj = new MyObj('Bob');
MyObj.prototype = {
called_often: function() {
// lots more code than just the following
return document.getElementById('someID').value;
},
global_default: 'value', // can be changed, so need to pull value when run
does_stuff: function(value) {
var str = global_default + value, // can't access global_default on its own
input = MyObj.called_often(), // doesn't work; MyObj.prototype.called_often() DOES
name = this.name; // 'this' used in the prototype doesn't work
// even within a created object
return name + input + str;
}
};
I'm sure there's better ways to achieve my result whenever I run into this problem. This code isn't situation specific and just illustrates the general problem. So you won't be able to give me an alternative for those specific situations I run into. But maybe you can help my overall thinking.

Well, from your first example:
var _obj = {
property: value,
method1: function() {
// do stuff
},
method2: function() {
// use property
var prop = this.property;
// call method1
this.method1();
}
};
That's what the this value is for.
Now, what you cannot do is refer to a property of an "under construction" object from elsewhere in the object literal syntax. (It's hard to give an example because it's just not syntactically possible.) In cases where you want to do that, you do need one or more separate assignment statements.

Guess what? You are making simple stuff complex. Pointy's answer is good, but the prototype way is better for several reasons. That's why I am describing (rather, making corrections in) the last method. Check this fiddle.
var MyObj = function(name) {
this.name = name;
};
MyObj.prototype = {
called_often: function() {
// lots more code than just the following
return 'VALUE'; //document.getElementById('someID').value;
},
global_default: 'value', // can be changed, so need to pull value when run
does_stuff: function(value) {
var str = this.global_default + value, // can't access global_default on its own
input = this.called_often(), // doesn't work; MyObj.prototype.called_often() DOES
name = this.name; // 'this' used in the prototype doesn't work
// even within a created object
return name + input + str;
}
};
var obj = new MyObj('Bob');

Related

How do I call a public function from within a private function in the JavaScript Module Pattern

How do I call a public function from within a private function in the JavaScript Module Pattern?
For example, in the following code,
var myModule = (function() {
var private1 = function(){
// How to call public1() here?
// this.public1() won't work
}
return {
public1: function(){ /* do something */}
}
})();
This question has been asked twice before, with a different accepted answer for each.
Save a reference to the return object before returning it, and then use that reference to access the public method. See answer.
Save a reference to the public method in the closure, and use that to access the public method. See answer.
While these solutions work, they are unsatisfactory from an OOP point of view. To illustrate what I mean, let's take a concrete implementation of a snowman with each of these solutions and compare them with a simple object literal.
Snowman 1: Save reference to return object
var snowman1 = (function(){
var _sayHello = function(){
console.log("Hello, my name is " + public.name());
};
var public = {
name: function(){ return "Olaf"},
greet: function(){
_sayHello();
}
};
return public;
})()
Snowman 2: Save reference to public function
var snowman2 = (function(){
var _sayHello = function(){
console.log("Hello, my name is " + name());
};
var name = function(){ return "Olaf"};
var public = {
name: name,
greet: function(){
_sayHello();
}
};
return public;
})()
Snowman 3: object literal
var snowman3 = {
name: function(){ return "Olaf"},
greet: function(){
console.log("Hello, my name is " + this.name());
}
}
We can see that the three are identical in functionality and have the exact same public methods.
If we run a test of simple overriding, however
var snowman = // snowman1, snowman2, or snowman3
snowman.name = function(){ return "Frosty";}
snowman.greet(); // Expecting "Hello, my name is Frosty"
// but snowman2 says "Hello, my name is Olaf"
we see that #2 fails.
If we run a test of prototype overriding,
var snowman = {};
snowman.__proto__ = // snowman1, snowman2, or snowman3
snowman.name = function(){ return "Frosty";}
snowman.greet(); // Expecting "Hello, my name is Frosty"
// but #1 and #2 both reply "Hello, my name is Olaf"
we see that both #1 and #2 fail.
This is a really ugly situation. Just because I've chosen to refactor my code in one way or another, the user of the returned object has to look carefully at how I've implemented everything to figure out if he/she can override my object's methods and expect it to work! While opinions differ here, my own opinion is that the correct override behavior is that of the simple object literal.
So, this is the real question:
Is there a way to call a public method from a private one so that the resulting object acts like an object literal with respect to override behavior?
You can use this to get the object your privileged method greet was called on.
Then, you can pass that value to your private method _sayHello, e.g. using call, apply, or as an argument:
var snowman4 = (function() {
var _sayHello = function() {
console.log("Hello, my name is " + this.name);
};
return {
name: "Olaf",
greet: function() {
_sayHello.call(this);
}
};
})();
Now you can do
var snowman = Object.create(snowman4);
snowman.greet(); // "Hello, my name is Olaf"
snowman.name = "Frosty";
snowman.greet(); // "Hello, my name is Frosty"
And also
snowman4.greet(); // "Hello, my name is Olaf"
snowman4.name = "Frosty";
snowman4.greet(); // "Hello, my name is Frosty"
With module pattern, you hide all the innates of an object in local variables/functions, and usually employ those in your public functions. Each time a new object is created with a module pattern, a new set of exposed functions - with their own scoped state - is created as well.
With prototype pattern, you have the same set of methods available for all objects of some type. What changes for these methods is this object - in other words, that's their state. But this is never hidden.
Needless to say, it's tough to mix those. One possible way is extracting the methods used by privates into a prototype of the module's resulting object with Object.create. For example:
var guardian = function() {
var proto = {
greet: function () {
console.log('I am ' + this.name());
},
name: function() {
return 'Groot';
}
};
var public = Object.create(proto);
public.argue = function() {
privateGreeting();
};
var privateGreeting = public.greet.bind(public);
return public;
};
var guardian1 = guardian();
guardian1.argue(); // I am Groot
var guardian2 = guardian();
guardian2.name = function() {
return 'Rocket';
};
guardian2.argue(); // I am Rocket
var guardian3 = guardian();
guardian3.__proto__.name = function() {
return 'Star-Lord';
};
guardian3.argue(); // I am Star-Lord

Crockford's Prototypical Inheritance - Usage

I've been building a small JS framework for use at my job, and I'd like to employ Douglas Crockford's prototypical inheritance patterns. I think I get the general idea of how the prototype object works, but what isn't clear is the way in which I would use this pattern beyond the simplest example.
I'll flesh it out to the point that I understand it.
(function () {
'use strict';
var Vehicles = {};
Vehicles.Vehicle = function () {
this.go = function () {
//go forwards
};
this.stop = function () {
//stop
};
};
Vehicles.Airplane = Object.create(Vehicles.Vehicle());
}());
So now my Vehicles.Airplane object can go() and stop(), but I want more. I want to add takeOff() and land() methods to this object. I could just use ugly dot notation afterwards:
Vehicles.Airplane.takeOff = function () {
//take off stuff
}
But that seems wrong, especially if I were to add many methods or properties. The question asked at here seems to be very similar to mine, but the answer doesn't quite ring true for me. The answer suggests that I should build an object literal before using Object.create, and that I should pass that object literal into the create method. In the example code given, however, it looks like their new object inherits nothing at all now.
What I'm hoping for is some syntax similar to:
Vehicles.Airplane = Object.create(Vehicles.Vehicle({
this.takeOff = function () {
//takeOff stuff
};
this.land = function () {
//land stuff
};
}));
I know this syntax will break terribly with Object.create right now, because of course I'm passing Vehicle.Vehicle a function rather than an object literal. That's beside the point. I'm wondering in what way I should build new properties into an object that inherits from another without having to list them out one at a time with dot notation after the fact.
EDIT:
Bergi, after some anguished thought on the topic, I think I really want to go with what you described as the "Classical Pattern". Here is my first stab at it (now with actual code snippets rather than mocked up hypotheticals - You even get to see my crappy method stubs):
CS.Button = function (o) {
o = o || {};
function init(self) {
self.domNode = dce('a');
self.text = o.text || '';
self.displayType = 'inline-block';
self.disabled = o.disabled || false;
self.domNode.appendChild(ctn(self.text));
if (o.handler) {
self.addListener('click', function () {
o.handler(self);
});
}
}
this.setText = function (newText) {
if (this.domNode.firstChild) {
this.domNode.removeChild(this.domNode.firstChild);
}
this.domNode.appendChild(ctn(newText));
};
init(this);
};
CS.Button.prototype = Object.create(CS.Displayable.prototype, {
constructor: {value: CS.Button, configurable: true}
});
CS.Displayable = function (o) { // o = CS Object
o = o || {};
var f = Object.create(new CS.Element(o));
function init(self) {
if (!self.domAnchor) {
self.domAnchor = self.domNode;
}
if (self.renderTo) {
self.renderTo.appendChild(self.domAnchor);
}
}
//Public Methods
this.addClass = function (newClass) {
if (typeof newClass === 'string') {
this.domNode.className += ' ' + newClass;
}
};
this.addListener = function (event, func, capture) {
if (this.domNode.addEventListener) {
this.domNode.addEventListener(event, func, capture);
} else if (this.domNode.attachEvent) {
this.domNode.attachEvent('on' + event, func);
}
};
this.blur = function () {
this.domNode.blur();
};
this.disable = function () {
this.disabled = true;
};
this.enable = function () {
this.disabled = false;
};
this.focus = function () {
this.domNode.focus();
};
this.getHeight = function () {
return this.domNode.offsetHeight;
};
this.getWidth = function () {
return this.domNode.offsetWidth;
};
this.hide = function () {
this.domNode.style.display = 'none';
};
this.isDisabled = function () {
return this.disabled;
};
this.removeClass = function (classToRemove) {
var classArray = this.domNode.className.split(' ');
classArray.splice(classArray.indexOf(classToRemove), 1);
this.domNode.className = classArray.join(' ');
};
this.removeListener = function () {
//Remove DOM element listener
};
this.show = function () {
this.domNode.style.display = this.displayType;
};
init(this);
};
CS.Displayable.prototype = Object.create(CS.Element.prototype, {
constructor: {value: CS.Displayable, configurable: true}
});
I should be quite clear and say that it's not quite working yet, but mostly I'd like your opinion on whether I'm even on the right track. You mentioned "instance-specific properties and methods" in a comment in your example. Does that mean that my this.setText method and others are wrongly placed, and won't be available to descendant items on the prototype chain?
Also, when used, it seems that the order of declaration now matters (I can't access CS.Displayable.prototype, because (I think) CS.Button is listed first, and CS.Displayable is undefined at the time that I'm trying to reference it). Is that something I'll just have to man up and deal with (put things in order of ancestry in the code rather than my OCD alphabetical order) or is there something I'm overlooking there as well?
Vehicles.Airplane = Object.create(Vehicles.Vehicle());
That line is wrong. You seem to want to use new Vehicles.Vehicle - never call a constructor without new!
Still, I'm not sure which pattern you want to use. Two are coming to my mind:
Classical Pattern
You are using constructor functions just as in standard JS. Inheritance is done by inheriting the prototype objects from each other, and applying the parent constructor on child instances. Your code should then look like this:
Vehicles.Vehicle = function () {
// instance-specific properties and methods,
// initialising
}
Vehicles.Vehicle.prototype.go = function () {
//go forwards
};
Vehicles.Vehicle.prototype.stop = function () {
//stop
};
Vehicles.Airplane = function() {
// Vehicles.Vehicle.apply(this, arguments);
// not needed here as "Vehicle" is empty
// maybe airplane-spefic instance initialisation
}
Vehicles.Airplane.prototype = Object.create(Vehicles.Vehicle.prototype, {
constructor: {value:Vehicles.Airplane, configurable:true}
}); // inheriting from Vehicle prototype, and overwriting constructor property
Vehicles.Airplane.prototype.takeOff = function () {
//take off stuff
};
// usage:
var airplane = new Vehicles.Airplace(params);
Pure Prototypical Pattern
You are using plain objects instead of constructor functions - no initialisation. To create instances, and to set up inheritance, only Object.create is used. It is like having only the prototype objects, and empty constructors. instancof does not work here. The code would look like this:
Vehicles.Vehicle = {
go: function () {
//go forwards
},
stop: function () {
//stop
}
}; // just an object literal
Vehicles.Airplane = Object.create(Vehicles.Vehicle); // a new object inheriting the go & stop methods
Vehicles.Airplane.takeOff = function () {
//take off stuff
};
// usage:
var airplane = Object.create(Vehicles.Airplane);
airplane.prop = params; // maybe also an "init" function, but that seems weird to me
You got Object.create wrong. The first argument should be an object (maybe that's why people suggested you pass a literal).
In your first example, you're actually passing undefined:
Vehicles.Airplane = Object.create(Vehicles.Vehicle()); // the function call will
// return undefined
The following would work, but it's not very Crockford-ish:
Vehicles.Airplane = Object.create(new Vehicles.Vehicle());
The way I believe Crockford would do it (or, at least, wouldn't complain of):
var Vehicles = {};
Vehicles.Vehicle = {
go : function() {
// go stuff
},
stop : function() {
// go stuff
}
};
Vehicles.Airplane = Object.create(Vehicles.Vehicle, {
takeOff : {
value : function() {
// take-off stuff
}
},
land : {
value: function() {
// land stuff
}
}
});
Note that Vehicles.Vehicle is just a literal, which will be used as the prototype for other objects. When we call Object.create, we pass Vehicles.Vehicle as the prototype, and takeOff and land will be own properties of Vehicles.Airplane. You may then call Object.create again, passing Vehicles.Airplane as the prototype, if you want to create e.g. a Boeing.
The own properties passed as the second parameter are packed in an object that contains a representation of their property descriptors. The outer keys are the names of your properties/methods, and each one points to another object containing the actual implementation as the value. You may also include other keys like enumerable; if you don't they'll take the default values. You can read more about descriptors on the MDN page about Object.defineProperty.

javascript class inherit from Function class

I like that in javascript, I can create a function, and then add further methods and attributes to that function
myInstance = function() {return 5}
myInstance.attr = 10
I would like to create a class to generate these objects. I assume I have to inherit from the Function base class.
In other words, I would like to:
var myInstance = new myFunctionClass()
var x = myInstance()
// x == 5
But I don't know how to create the myFunctionClass. I have tried the following, but it does not work:
var myFunctionClass = function() {Function.call(this, "return 5")}
myFunctionClass.prototype = new Function()
myInstance = new myFunctionClass()
myInstance()
// I would hope this would return 5, but instead I get
// TypeError: Property 'myInstance' of object #<Object> is not a function
I also tried the more complicated (and more proper?) inheritance method found here: How to "properly" create a custom object in JavaScript?, with no more luck. I have also tried using the util.inherits(myFunctionClass, Function) found in node.js. Still no luck
I have exhausted Google, and therefore feel that I must be missing something fundamental or obvious. Help would be greatly appreciated.
Your trying to inherit from Function. This is a right pain to do. I suggest you do the following instead
Live Example
var Proto = Object.create(Function.prototype);
Object.extend(Proto, {
constructor: function (d) {
console.log("construct, argument : ", d);
this.d = d;
// this is your constructor logic
},
call: function () {
console.log("call", this.d);
// this get's called when you invoke the "function" that is the instance
return "from call";
},
method: function () {
console.log("method");
// some method
return "return from method";
},
// some attr
attr: 42
});
You want to create a prototype object that forms the basis of your "class". It has your generic methods/attributes. It also has a constructor that gets invoked on object construction and a call method that gets invoked when you call the function
var functionFactory = function (proto) {
return function () {
var f = function () {
return f.call.apply(f, arguments);
};
Object.keys(proto).forEach(function (key) {
f[key] = proto[key];
});
f.constructor.apply(f, arguments);
return f;
}
}
A function factory takes a prototype object and returns a factory for it. The returned function when called will give you a new function object that "inherits" from your prototype object.
var protoFactory = functionFactory(proto);
var instance = protoFactory();
Here you create your factory and then create your instance.
However this isn't proper prototypical OO. we are just shallow copying properties of a prototype into a new object. So changes to the prototype will not reflect back to the original object.
If you want real prototypical OO then you need to use a hack.
var f = function () {
// your logic here
};
f.__proto__ = Proto;
Notice how we use the non-standard deprecated .__proto__ and we are mutating the value of [[Prototype]] at run-time which is considered evil.
JS does not allow a constructor to return a function, even though functions are objects. So you cant have an instantiation of a prototype that is itself executable. (Am I right in this? please correct if I'm not, it's an interesting question).
Though you could do a factory function:
var makeCoolFunc = function() {
var f = function() { return 5 };
f.a = 123;
f.b = 'hell yes!'
return f;
};
var func = makeCoolFunc();
var x = func();
You can extend Function and pass the wanted function body as String to the super constructor. The context of the function can be accessed with arguments.callee.
Example for an observable Attribute class:
export default class Attribute extends Function {
constructor(defaultValue){
super("value", "return arguments.callee.apply(arguments);");
this.value = defaultValue;
this.defaultValue = defaultValue;
this.changeListeners = [];
}
apply([value]){
if(value!==undefined){
if(value!==this.value){
var oldValue = this.value;
this.value=value;
this.changeListeners.every((changeListener)=>changeListener(oldValue, value));
}
}
return this.value;
}
clear(){
this.value=undefined;
}
reset(){
this.value=this.defaultValue;
}
addChangeListener(listener){
this.changeListeners.push(listener);
}
removeChangeListener(listener){
this.changeListeners.remove(listener);
}
clearChangeListeners(){
this.changeListeners = [];
}
}
Example usage:
import Attribute from './attribute.js';
var name= new Attribute();
name('foo'); //set value of name to 'foo'
name.addChangeListener((oldValue, newValue)=>{
alert('value changed from ' +oldValue+ ' to ' +newValue);
});
alert(name()); //show value of name: 'foo'
name('baa'); //set value of name to new value 'baa' and trigger change listener

Obj.apply(Obj): is it safe and performant?

I came up with a simple design pattern that was inspired by several other design patterns. Its main purpose is to have private methods (instead of all global), methods visually nested and grouped within an object, and having "self" as an available variable to access the scope, which is really useful when using calling functions with a callback parameter.
It seems to work fine, but is it safe (performance - and scope-wise) to do Obj.apply(Obj);?
The code:
function Obj() {
var self = this;
var privateFunc = function() {
console.log('private');
self.otherPublic();
};
self.publicFunc = function() {
console.log('pub1ic');
privateFunc();
};
self.otherPublic = function() {
console.log('pub2');
};
} Obj.apply(Obj);
I call it like this:
Obj.publicFunc();
Totally pointless brother. What you're doing by Obj.apply(Obj); is taking the function Obj, and adding to it those methods, in an unintuitive manner.
This:
var Obj = (function(){
var priv = function(){ console.log('2'); },
privVar = 6;
return {
pub1: function(){ console.log('1'); },
pub2: function(){ priv(); }
};
})();
Does the same thing, although better. I say better because (1) it's intuitive, and (2) Obj is now a simple javascript object (typeof Obj === 'object') whereas your Obj is a function with properties augmented (typeof Obj === 'function').
If you want a reference to self it's not hard (although it seems unnecessary), just create the object which will be returned at the top of the function, and augment the public methods, either at the end, or as you make them...
It's safe, but pointless.
Also, note that these methods won't scale well, because for each instance of Obj we create each function is recreated, which is memory-wise wasteful. This pattern above is fine because we created it with an anonymous function, so by definition there can only be one instance, although for types you need to instantiate multiple times the prototype should be used.
Don't be scared of it, it's there to be helpful.
UPDATE:
var Obj = (function(){
var priv = function(){ pub2(); },
privVar = 6,
pub1 = function(){ priv(); },
pub2 = function(){ console.log('1'); };
return {
pub1: pub1,
pub2: pub2
};
})();
Obj.pub1();
Notice that I call a public function, which calls a private function, which calls a public function - no special binding, no object reference.
UPDATE 2:
var Obj = (function(){
var public = {},
priv = function(){ public.pub2(); },
privVar = 6;
public.pub1 = function(){ priv(); },
public.pub2 = function(){ console.log('1'); };
return public;
})();
Obj.pub1();

Encapsulation in javascript

I need to create simple reusable javascript object publishing several methods and parameterized constructor. After reading through several "OOP in JavaScript" guides I'm sitting here with an empty head. How on the Earth can I do this?
Here my last non-working code:
SomeClass = function(id) {
this._id = id;
}
(function() {
function intFun() {
return this._id;
}
SomeClass.prototype.extFun = function() {
return incFun();
}
})();
This is my usual approach:
MyClass = function(x, y, z) {
// This is the constructor. When you use it with "new MyClass(),"
// then "this" refers to the new object being constructed. So you can
// assign member variables to it.
this.x = x;
...
};
MyClass.prototype = {
doSomething: function() {
// Here we can use the member variable that
// we created in the constructor.
return this.x;
},
somethingElse: function(a) {
}
};
var myObj = new MyClass(1,2,3);
alert(myObj.doSomething()); // this will return the object's "x" member
alert(myObj.x); // this will do the same, by accessing the member directly
Normally the "this" keyword, when used in one of the object's methods, will refer to the object itself. When you use it in the constructor, it will refer to the new object that's being created. So in the above example, both alert statements will display "1".
An exception to this rule is when you pass one of your member functions somewhere else, and then call it. For example,
myDiv.onclick = myObj.doSomething;
In this case, JavaScript ignores the fact that "doSomething" belongs to "myObj". As a result, the "this" inside doSomething will point to another object, so the method won't work as expected. To get around this, you need to specify the object to which "this" should refer. You can do so with JavaScript's "call" function:
myDiv.onclick = function() {
myObj.doSomething.call(myObj);
}
It's weird, but you'll get used to it eventually. The bottom line is that, when passing around methods, you also need to pass around the object that they should be called on.
I usually don't worry too much about hiding the internals, although I do prefix them with underscores to mark them as not intended to be used outside the "class". Normally what I will do is:
var MyClass = function() {};
MyClass.prototype = {
_someVar : null,
_otherVar : null,
initialize: function( optionHash ) {
_someVar = optionsHash["varValue"];
_otherVar = optionsHash["otherValue"];
},
method: function( arg ) {
return _someVar + arg;
},
};
And use it as so...
var myClass = new MyClass( { varValue: -1, otherValue: 10 } );
var foo = myClass.method(6);
All vars are private:
SomeClass = function (id) {
var THIS = this; // unambiguous reference
THIS._id = id;
var intFun = function () { // private
return THIS._id;
}
this.extFun = function () { // public
return intFun();
}
}
Use THIS within private methods since this won't equal what you might expect.
From http://learn.jquery.com/code-organization/concepts/#the-module-pattern:
// The module pattern
var feature = (function() {
// private variables and functions
var privateThing = "secret";
var publicThing = "not secret";
var changePrivateThing = function() {
privateThing = "super secret";
};
var sayPrivateThing = function() {
console.log( privateThing );
changePrivateThing();
};
// public API
return {
publicThing: publicThing,
sayPrivateThing: sayPrivateThing
};
})();
feature.publicThing; // "not secret"
// logs "secret" and changes the value of privateThing
feature.sayPrivateThing();
So using returning an object that aliases its "methods" could be another way to do it.
I've read from http://www.amazon.com/Programming-Oracle-Press-Poornachandra-Sarang-ebook/dp/B0079GI6CW that it is always good practice to use getters and setters rather that accessing the variable directly from outside the object, so that would eliminate the need of returning variables by reference.
BTW you could just use this.variable to reference/declare a public variable and var variable to declare a private variable.
I know this is a late answer, but I hope it helps anyone who reads it in the future.

Categories

Resources