Related
I'm currently working on a JavaScript exercise in FreeCodeCamp, and one of the test-cases my code should work with is a function call that looks like this:
addTogether(2)(3);
here is the bare-bones function I'm given:
function addTogether() {
return;
}
When I run the code below:
function addTogether() {
return arguments;
}
In the console, that the editor provides, I get:
TypeError: addTogether(...) is not a function
The instructions hint at using the arguments object, and it works well with test-case function calls that only have one argument object (i.e. addTogether(2, 3);), but not with the one I've shown above.
Is there a way to access/utilize the separate argument objects when they're in the format I showed above?
Note: I don't want any sort of answer to solve the problem, just info on any techniques on accessing the arguments of these type of function calls.
Help, is greatly appreciated.
Don't think of it as two separate sets of arguments. Think of it as you're calling another function (which you are). Functions are first-class values in JavaScript so you can use them just like any other value. This includes returning them from functions.
var f = function(y) {
console.log('f:', y);
};
var getF = function(x) {
console.log('getF:', x);
return f;
};
getF(1)(2);
Functions can also use values that exist in any parent scope. Loosely speaking, functions which do this are called closures.
function createGetX(x) {
return function() {
// Since x is in the parent scope, we can use it here
return x;
}
}
var one = createGetX(1);
console.log(one()); // Always
console.log(one()); // returns
console.log(one()); // one
Sometimes it helps me to think in a certain order. You can read the code "addTogether(2)" and stop before reading the "(3)".
From there you can see the exercise wants you to have that first part "addTogether(2)" return a function...since anytime there are "()" that means a function is getting called.
So "addTogether(2)" needs to return a function that takes one argument. Later that 3 will be one example of an input.
I think the name "addTogether" is a bit confusing..since that function's job is to make up and return the actual function that adds.
Sort of hard to explain this one without helping too much, but the bulk of your job here is to return a custom function, which includes the first variable (from it's scope) and expects another variable when it's called.
You could do this with closures.
function addTogether(x) {
return function(y) {
return x+y;
}
}
I was reading some posts about closures and saw this everywhere, but there is no clear explanation how it works - everytime I was just told to use it...:
// Create a new anonymous function, to use as a wrapper
(function(){
// The variable that would, normally, be global
var msg = "Thanks for visiting!";
// Binding a new function to a global object
window.onunload = function(){
// Which uses the 'hidden' variable
alert( msg );
};
// Close off the anonymous function and execute it
})();
Ok I see that we will create new anonymous function and then execute it. So after that this simple code should work (and it does):
(function (msg){alert(msg)})('SO');
My question is what kind of magic happens here? I thought that when I wrote:
(function (msg){alert(msg)})
then a new unnamed function would be created like function ""(msg) ...
but then why doesn't this work?
(function (msg){alert(msg)});
('SO');
Why does it need to be in the same line?
Could you please point me some posts or give me an explanation?
Drop the semicolon after the function definition.
(function (msg){alert(msg)})
('SO');
Above should work.
DEMO Page: https://jsfiddle.net/e7ooeq6m/
I have discussed this kind of pattern in this post:
jQuery and $ questions
EDIT:
If you look at ECMA script specification, there are 3 ways you can define a function. (Page 98, Section 13 Function Definition)
1. Using Function constructor
var sum = new Function('a','b', 'return a + b;');
alert(sum(10, 20)); //alerts 30
2. Using Function declaration.
function sum(a, b)
{
return a + b;
}
alert(sum(10, 10)); //Alerts 20;
3. Function Expression
var sum = function(a, b) { return a + b; }
alert(sum(5, 5)); // alerts 10
So you may ask, what's the difference between declaration and expression?
From ECMA Script specification:
FunctionDeclaration :
function Identifier ( FormalParameterListopt ){ FunctionBody
}
FunctionExpression :
function Identifieropt ( FormalParameterListopt ){ FunctionBody
}
If you notice, 'identifier' is optional for function expression. And when you don't give an identifier, you create an anonymous function. It doesn't mean that you can't specify an identifier.
This means following is valid.
var sum = function mySum(a, b) { return a + b; }
Important point to note is that you can use 'mySum' only inside the mySum function body, not outside. See following example:
var test1 = function test2() { alert(typeof test2); }
alert(typeof(test2)); //alerts 'undefined', surprise!
test1(); //alerts 'function' because test2 is a function.
Live Demo
Compare this to
function test1() { alert(typeof test1) };
alert(typeof test1); //alerts 'function'
test1(); //alerts 'function'
Armed with this knowledge, let's try to analyze your code.
When you have code like,
function(msg) { alert(msg); }
You created a function expression. And you can execute this function expression by wrapping it inside parenthesis.
(function(msg) { alert(msg); })('SO'); //alerts SO.
It's called a self-invoked function.
What you are doing when you call (function(){}) is returning a function object. When you append () to it, it is invoked and anything in the body is executed. The ; denotes the end of the statement, that's why the 2nd invocation fails.
One thing I found confusing is that the "()" are grouping operators.
Here is your basic declared function.
Ex. 1:
var message = 'SO';
function foo(msg) {
alert(msg);
}
foo(message);
Functions are objects, and can be grouped. So let's throw parens around the function.
Ex. 2:
var message = 'SO';
function foo(msg) { //declares foo
alert(msg);
}
(foo)(message); // calls foo
Now instead of declaring and right-away calling the same function, we can use basic substitution to declare it as we call it.
Ex. 3.
var message = 'SO';
(function foo(msg) {
alert(msg);
})(message); // declares & calls foo
Finally, we don't have a need for that extra foo because we're not using the name to call it! Functions can be anonymous.
Ex. 4.
var message = 'SO';
(function (msg) { // remove unnecessary reference to foo
alert(msg);
})(message);
To answer your question, refer back to Example 2. Your first line declares some nameless function and groups it, but does not call it. The second line groups a string. Both do nothing. (Vincent's first example.)
(function (msg){alert(msg)});
('SO'); // nothing.
(foo);
(msg); //Still nothing.
But
(foo)
(msg); //works
An anonymous function is not a function with the name "". It is simply a function without a name.
Like any other value in JavaScript, a function does not need a name to be created. Though it is far more useful to actually bind it to a name just like any other value.
But like any other value, you sometimes want to use it without binding it to a name. That's the self-invoking pattern.
Here is a function and a number, not bound, they do nothing and can never be used:
function(){ alert("plop"); }
2;
So we have to store them in a variable to be able to use them, just like any other value:
var f = function(){ alert("plop"); }
var n = 2;
You can also use syntatic sugar to bind the function to a variable:
function f(){ alert("plop"); }
var n = 2;
But if naming them is not required and would lead to more confusion and less readability, you could just use them right away.
(function(){ alert("plop"); })(); // will display "plop"
alert(2 + 3); // will display 5
Here, my function and my numbers are not bound to a variable, but they can still be used.
Said like this, it looks like self-invoking function have no real value. But you have to keep in mind that JavaScript scope delimiter is the function and not the block ({}).
So a self-invoking function actually has the same meaning as a C++, C# or Java block. Which means that variable created inside will not "leak" outside the scope. This is very useful in JavaScript in order not to pollute the global scope.
It's just how JavaScript works. You can declare a named function:
function foo(msg){
alert(msg);
}
And call it:
foo("Hi!");
Or, you can declare an anonymous function:
var foo = function (msg) {
alert(msg);
}
And call that:
foo("Hi!");
Or, you can just never bind the function to a name:
(function(msg){
alert(msg);
})("Hi!");
Functions can also return functions:
function make_foo() {
return function(msg){ alert(msg) };
}
(make_foo())("Hi!");
It's worth nothing that any variables defined with "var" in the body of make_foo will be closed over by each function returned by make_foo. This is a closure, and it means that the any change made to the value by one function will be visible by another.
This lets you encapsulate information, if you desire:
function make_greeter(msg){
return function() { alert(msg) };
}
var hello = make_greeter("Hello!");
hello();
It's just how nearly every programming language but Java works.
The code you show,
(function (msg){alert(msg)});
('SO');
consist of two statements. The first is an expression which yields a function object (which will then be garbage collected because it is not saved). The second is an expression which yields a string. To apply the function to the string, you either need to pass the string as an argument to the function when it is created (which you also show above), or you will need to actually store the function in a variable, so that you can apply it at a later time, at your leisure. Like so:
var f = (function (msg){alert(msg)});
f('SO');
Note that by storing an anonymous function (a lambda function) in a variable, your are effectively giving it a name. Hence you may just as well define a regular function:
function f(msg) {alert(msg)};
f('SO');
In summary of the previous comments:
function() {
alert("hello");
}();
when not assigned to a variable, yields a syntax error. The code is parsed as a function statement (or definition), which renders the closing parentheses syntactically incorrect. Adding parentheses around the function portion tells the interpreter (and programmer) that this is a function expression (or invocation), as in
(function() {
alert("hello");
})();
This is a self-invoking function, meaning it is created anonymously and runs immediately because the invocation happens in the same line where it is declared. This self-invoking function is indicated with the familiar syntax to call a no-argument function, plus added parentheses around the name of the function: (myFunction)();.
There is a good SO discussion JavaScript function syntax.
My understanding of the asker's question is such that:
How does this magic work:
(function(){}) ('input') // Used in his example
I may be wrong. However, the usual practice that people are familiar with is:
(function(){}('input') )
The reason is such that JavaScript parentheses AKA (), can't contain statements and when the parser encounters the function keyword, it knows to parse it as a function expression and not a function declaration.
Source: blog post Immediately-Invoked Function Expression (IIFE)
examples without brackets:
void function (msg) { alert(msg); }
('SO');
(this is the only real use of void, afaik)
or
var a = function (msg) { alert(msg); }
('SO');
or
!function (msg) { alert(msg); }
('SO');
work as well. the void is causing the expression to evaluate, as well as the assignment and the bang. the last one works with ~, +, -, delete, typeof, some of the unary operators (void is one as well). not working are of couse ++, -- because of the requirement of a variable.
the line break is not necessary.
This answer is not strictly related to the question, but you might be interested to find out that this kind of syntax feature is not particular to functions. For example, we can always do something like this:
alert(
{foo: "I am foo", bar: "I am bar"}.foo
); // alerts "I am foo"
Related to functions. As they are objects, which inherit from Function.prototype, we can do things like:
Function.prototype.foo = function () {
return function () {
alert("foo");
};
};
var bar = (function () {}).foo();
bar(); // alerts foo
And you know, we don't even have to surround functions with parenthesis in order to execute them. Anyway, as long as we try to assign the result to a variable.
var x = function () {} (); // this function is executed but does nothing
function () {} (); // syntax error
One other thing you may do with functions, as soon as you declare them, is to invoke the new operator over them and obtain an object. The following are equivalent:
var obj = new function () {
this.foo = "bar";
};
var obj = {
foo : "bar"
};
There is one more property JavaScript function has. If you want to call same anonymous function recursively.
(function forInternalOnly(){
//you can use forInternalOnly to call this anonymous function
/// forInternalOnly can be used inside function only, like
var result = forInternalOnly();
})();
//this will not work
forInternalOnly();// no such a method exist
It is a self-executing anonymous function. The first set of brackets contain the expressions to be executed, and the second set of brackets executes those expressions.
(function () {
return ( 10 + 20 );
})();
Peter Michaux discusses the difference in An Important Pair of Parentheses.
It is a useful construct when trying to hide variables from the parent namespace. All the code within the function is contained in the private scope of the function, meaning it can't be accessed at all from outside the function, making it truly private.
See:
Closure (computer science)
JavaScript Namespacing
Important Pair of Javascript Parentheses
Another point of view
First, you can declare an anonymous function:
var foo = function(msg){
alert(msg);
}
Then you call it:
foo ('Few');
Because foo = function(msg){alert(msg);} so you can replace foo as:
function(msg){
alert(msg);
} ('Few');
But you should wrap your entire anonymous function inside pair of braces to avoid syntax error of declaring function when parsing. Then we have,
(function(msg){
alert(msg);
}) ('Few');
By this way, It's easy understand for me.
When you did:
(function (msg){alert(msg)});
('SO');
You ended the function before ('SO') because of the semicolon. If you just write:
(function (msg){alert(msg)})
('SO');
It will work.
Working example: http://jsfiddle.net/oliverni/dbVjg/
The simple reason why it doesn't work is not because of the ; indicating the end of the anonymous function. It is because without the () on the end of a function call, it is not a function call. That is,
function help() {return true;}
If you call result = help(); this is a call to a function and will return true.
If you call result = help; this is not a call. It is an assignment where help is treated like data to be assigned to result.
What you did was declaring/instantiating an anonymous function by adding the semicolon,
(function (msg) { /* Code here */ });
and then tried to call it in another statement by using just parentheses... Obviously because the function has no name, but this will not work:
('SO');
The interpreter sees the parentheses on the second line as a new instruction/statement, and thus it does not work, even if you did it like this:
(function (msg){/*code here*/});('SO');
It still doesn't work, but it works when you remove the semicolon because the interpreter ignores white spaces and carriages and sees the complete code as one statement.
(function (msg){/*code here*/}) // This space is ignored by the interpreter
('SO');
Conclusion: a function call is not a function call without the () on the end unless under specific conditions such as being invoked by another function, that is, onload='help' would execute the help function even though the parentheses were not included. I believe setTimeout and setInterval also allow this type of function call too, and I also believe that the interpreter adds the parentheses behind the scenes anyhow which brings us back to "a function call is not a function call without the parentheses".
(function (msg){alert(msg)})
('SO');
This is a common method of using an anonymous function as a closure which many JavaScript frameworks use.
This function called is automatically when the code is compiled.
If placing ; at the first line, the compiler treated it as two different lines. So you can't get the same results as above.
This can also be written as:
(function (msg){alert(msg)}('SO'));
For more details, look into JavaScript/Anonymous Functions.
The IIFE simply compartmentalizes the function and hides the msg variable so as to not "pollute" the global namespace. In reality, just keep it simple and do like below unless you are building a billion dollar website.
var msg = "later dude";
window.onunload = function(msg){
alert( msg );
};
You could namespace your msg property using a Revealing Module Pattern like:
var myScript = (function() {
var pub = {};
//myscript.msg
pub.msg = "later dude";
window.onunload = function(msg) {
alert(msg);
};
//API
return pub;
}());
Anonymous functions are functions that are dynamically declared at
runtime. They’re called anonymous functions because they aren’t
given a name in the same way as normal functions.
Anonymous functions are declared using the function operator instead
of the function declaration. You can use the function operator to
create a new function wherever it’s valid to put an expression. For
example, you could declare a new function as a parameter to a
function call or to assign a property of another object.
Here’s a typical example of a named function:
function flyToTheMoon() {
alert("Zoom! Zoom! Zoom!");
}
flyToTheMoon();
Here’s the same example created as an anonymous function:
var flyToTheMoon = function() {
alert("Zoom! Zoom! Zoom!");
}
flyToTheMoon();
For details please read http://helephant.com/2008/08/23/javascript-anonymous-functions/
Anonymous functions are meant to be one-shot deal where you define a function on the fly so that it generates an output from you from an input that you are providing. Except that you did not provide the input. Instead, you wrote something on the second line ('SO'); - an independent statement that has nothing to do with the function. What did you expect? :)
If i need to write a java script function that takes an argument and returns a function that returns that argument, i can think of following two implementations. Are both of these same ? or there is anything different technically ? Both works and returns the same result.
/*Implemenation 1*/
function myWieredFunc(arg){
var retf=function inner(){
return arg;
};
return retf;
}
/* Implemenation 2 */
function myWieredFunc(arg){
return function(){
return arg;
};
}
To use these:
var f = myWieredFunc(84);
alert(f());
This would be the way to write it
function wrap(arg) {
return function() {
return arg;
};
};
If you wanted to make it more flexible you could allow multiple arguments:
function wrap() {
var args = arguments;
return function() {
return args;
};
};
var later = wrap('hello', 'world');
var result = later();
console.log(result); // ["hello", "world"]
There is no reason for the variable in the code shown - functions are objects are values. As you've shown this means that function-objects can be assigned to a variable which is later evaluated and returned, or returned directly from the Function Expression.
As such, both forms are generally held equivalent and the closure over arg is unaffected.
However, in the first form..
Function.toString and stack-traces will normally include the function name, this makes "named functions", as in the first example sometimes more useful in debugging. Additionally, Firefox will expose function names - e.g. "inner" - through the non-standard Function.name property. (The function name can be specified without the use of the retf variable.)
Two additional bindings are introduced - retf in the outer function and inner in the inner function. These variables could be observed in the the applicable scope when stopping via a break-point - but are not otherwise accessible in the code shown.
They are the same thing, the second is using an "Anonymous" function which just means its a function that is not given a name or assigned to a variable.
I was reading some posts about closures and saw this everywhere, but there is no clear explanation how it works - everytime I was just told to use it...:
// Create a new anonymous function, to use as a wrapper
(function(){
// The variable that would, normally, be global
var msg = "Thanks for visiting!";
// Binding a new function to a global object
window.onunload = function(){
// Which uses the 'hidden' variable
alert( msg );
};
// Close off the anonymous function and execute it
})();
Ok I see that we will create new anonymous function and then execute it. So after that this simple code should work (and it does):
(function (msg){alert(msg)})('SO');
My question is what kind of magic happens here? I thought that when I wrote:
(function (msg){alert(msg)})
then a new unnamed function would be created like function ""(msg) ...
but then why doesn't this work?
(function (msg){alert(msg)});
('SO');
Why does it need to be in the same line?
Could you please point me some posts or give me an explanation?
Drop the semicolon after the function definition.
(function (msg){alert(msg)})
('SO');
Above should work.
DEMO Page: https://jsfiddle.net/e7ooeq6m/
I have discussed this kind of pattern in this post:
jQuery and $ questions
EDIT:
If you look at ECMA script specification, there are 3 ways you can define a function. (Page 98, Section 13 Function Definition)
1. Using Function constructor
var sum = new Function('a','b', 'return a + b;');
alert(sum(10, 20)); //alerts 30
2. Using Function declaration.
function sum(a, b)
{
return a + b;
}
alert(sum(10, 10)); //Alerts 20;
3. Function Expression
var sum = function(a, b) { return a + b; }
alert(sum(5, 5)); // alerts 10
So you may ask, what's the difference between declaration and expression?
From ECMA Script specification:
FunctionDeclaration :
function Identifier ( FormalParameterListopt ){ FunctionBody
}
FunctionExpression :
function Identifieropt ( FormalParameterListopt ){ FunctionBody
}
If you notice, 'identifier' is optional for function expression. And when you don't give an identifier, you create an anonymous function. It doesn't mean that you can't specify an identifier.
This means following is valid.
var sum = function mySum(a, b) { return a + b; }
Important point to note is that you can use 'mySum' only inside the mySum function body, not outside. See following example:
var test1 = function test2() { alert(typeof test2); }
alert(typeof(test2)); //alerts 'undefined', surprise!
test1(); //alerts 'function' because test2 is a function.
Live Demo
Compare this to
function test1() { alert(typeof test1) };
alert(typeof test1); //alerts 'function'
test1(); //alerts 'function'
Armed with this knowledge, let's try to analyze your code.
When you have code like,
function(msg) { alert(msg); }
You created a function expression. And you can execute this function expression by wrapping it inside parenthesis.
(function(msg) { alert(msg); })('SO'); //alerts SO.
It's called a self-invoked function.
What you are doing when you call (function(){}) is returning a function object. When you append () to it, it is invoked and anything in the body is executed. The ; denotes the end of the statement, that's why the 2nd invocation fails.
One thing I found confusing is that the "()" are grouping operators.
Here is your basic declared function.
Ex. 1:
var message = 'SO';
function foo(msg) {
alert(msg);
}
foo(message);
Functions are objects, and can be grouped. So let's throw parens around the function.
Ex. 2:
var message = 'SO';
function foo(msg) { //declares foo
alert(msg);
}
(foo)(message); // calls foo
Now instead of declaring and right-away calling the same function, we can use basic substitution to declare it as we call it.
Ex. 3.
var message = 'SO';
(function foo(msg) {
alert(msg);
})(message); // declares & calls foo
Finally, we don't have a need for that extra foo because we're not using the name to call it! Functions can be anonymous.
Ex. 4.
var message = 'SO';
(function (msg) { // remove unnecessary reference to foo
alert(msg);
})(message);
To answer your question, refer back to Example 2. Your first line declares some nameless function and groups it, but does not call it. The second line groups a string. Both do nothing. (Vincent's first example.)
(function (msg){alert(msg)});
('SO'); // nothing.
(foo);
(msg); //Still nothing.
But
(foo)
(msg); //works
An anonymous function is not a function with the name "". It is simply a function without a name.
Like any other value in JavaScript, a function does not need a name to be created. Though it is far more useful to actually bind it to a name just like any other value.
But like any other value, you sometimes want to use it without binding it to a name. That's the self-invoking pattern.
Here is a function and a number, not bound, they do nothing and can never be used:
function(){ alert("plop"); }
2;
So we have to store them in a variable to be able to use them, just like any other value:
var f = function(){ alert("plop"); }
var n = 2;
You can also use syntatic sugar to bind the function to a variable:
function f(){ alert("plop"); }
var n = 2;
But if naming them is not required and would lead to more confusion and less readability, you could just use them right away.
(function(){ alert("plop"); })(); // will display "plop"
alert(2 + 3); // will display 5
Here, my function and my numbers are not bound to a variable, but they can still be used.
Said like this, it looks like self-invoking function have no real value. But you have to keep in mind that JavaScript scope delimiter is the function and not the block ({}).
So a self-invoking function actually has the same meaning as a C++, C# or Java block. Which means that variable created inside will not "leak" outside the scope. This is very useful in JavaScript in order not to pollute the global scope.
It's just how JavaScript works. You can declare a named function:
function foo(msg){
alert(msg);
}
And call it:
foo("Hi!");
Or, you can declare an anonymous function:
var foo = function (msg) {
alert(msg);
}
And call that:
foo("Hi!");
Or, you can just never bind the function to a name:
(function(msg){
alert(msg);
})("Hi!");
Functions can also return functions:
function make_foo() {
return function(msg){ alert(msg) };
}
(make_foo())("Hi!");
It's worth nothing that any variables defined with "var" in the body of make_foo will be closed over by each function returned by make_foo. This is a closure, and it means that the any change made to the value by one function will be visible by another.
This lets you encapsulate information, if you desire:
function make_greeter(msg){
return function() { alert(msg) };
}
var hello = make_greeter("Hello!");
hello();
It's just how nearly every programming language but Java works.
The code you show,
(function (msg){alert(msg)});
('SO');
consist of two statements. The first is an expression which yields a function object (which will then be garbage collected because it is not saved). The second is an expression which yields a string. To apply the function to the string, you either need to pass the string as an argument to the function when it is created (which you also show above), or you will need to actually store the function in a variable, so that you can apply it at a later time, at your leisure. Like so:
var f = (function (msg){alert(msg)});
f('SO');
Note that by storing an anonymous function (a lambda function) in a variable, your are effectively giving it a name. Hence you may just as well define a regular function:
function f(msg) {alert(msg)};
f('SO');
In summary of the previous comments:
function() {
alert("hello");
}();
when not assigned to a variable, yields a syntax error. The code is parsed as a function statement (or definition), which renders the closing parentheses syntactically incorrect. Adding parentheses around the function portion tells the interpreter (and programmer) that this is a function expression (or invocation), as in
(function() {
alert("hello");
})();
This is a self-invoking function, meaning it is created anonymously and runs immediately because the invocation happens in the same line where it is declared. This self-invoking function is indicated with the familiar syntax to call a no-argument function, plus added parentheses around the name of the function: (myFunction)();.
There is a good SO discussion JavaScript function syntax.
My understanding of the asker's question is such that:
How does this magic work:
(function(){}) ('input') // Used in his example
I may be wrong. However, the usual practice that people are familiar with is:
(function(){}('input') )
The reason is such that JavaScript parentheses AKA (), can't contain statements and when the parser encounters the function keyword, it knows to parse it as a function expression and not a function declaration.
Source: blog post Immediately-Invoked Function Expression (IIFE)
examples without brackets:
void function (msg) { alert(msg); }
('SO');
(this is the only real use of void, afaik)
or
var a = function (msg) { alert(msg); }
('SO');
or
!function (msg) { alert(msg); }
('SO');
work as well. the void is causing the expression to evaluate, as well as the assignment and the bang. the last one works with ~, +, -, delete, typeof, some of the unary operators (void is one as well). not working are of couse ++, -- because of the requirement of a variable.
the line break is not necessary.
This answer is not strictly related to the question, but you might be interested to find out that this kind of syntax feature is not particular to functions. For example, we can always do something like this:
alert(
{foo: "I am foo", bar: "I am bar"}.foo
); // alerts "I am foo"
Related to functions. As they are objects, which inherit from Function.prototype, we can do things like:
Function.prototype.foo = function () {
return function () {
alert("foo");
};
};
var bar = (function () {}).foo();
bar(); // alerts foo
And you know, we don't even have to surround functions with parenthesis in order to execute them. Anyway, as long as we try to assign the result to a variable.
var x = function () {} (); // this function is executed but does nothing
function () {} (); // syntax error
One other thing you may do with functions, as soon as you declare them, is to invoke the new operator over them and obtain an object. The following are equivalent:
var obj = new function () {
this.foo = "bar";
};
var obj = {
foo : "bar"
};
There is one more property JavaScript function has. If you want to call same anonymous function recursively.
(function forInternalOnly(){
//you can use forInternalOnly to call this anonymous function
/// forInternalOnly can be used inside function only, like
var result = forInternalOnly();
})();
//this will not work
forInternalOnly();// no such a method exist
It is a self-executing anonymous function. The first set of brackets contain the expressions to be executed, and the second set of brackets executes those expressions.
(function () {
return ( 10 + 20 );
})();
Peter Michaux discusses the difference in An Important Pair of Parentheses.
It is a useful construct when trying to hide variables from the parent namespace. All the code within the function is contained in the private scope of the function, meaning it can't be accessed at all from outside the function, making it truly private.
See:
Closure (computer science)
JavaScript Namespacing
Important Pair of Javascript Parentheses
Another point of view
First, you can declare an anonymous function:
var foo = function(msg){
alert(msg);
}
Then you call it:
foo ('Few');
Because foo = function(msg){alert(msg);} so you can replace foo as:
function(msg){
alert(msg);
} ('Few');
But you should wrap your entire anonymous function inside pair of braces to avoid syntax error of declaring function when parsing. Then we have,
(function(msg){
alert(msg);
}) ('Few');
By this way, It's easy understand for me.
When you did:
(function (msg){alert(msg)});
('SO');
You ended the function before ('SO') because of the semicolon. If you just write:
(function (msg){alert(msg)})
('SO');
It will work.
Working example: http://jsfiddle.net/oliverni/dbVjg/
The simple reason why it doesn't work is not because of the ; indicating the end of the anonymous function. It is because without the () on the end of a function call, it is not a function call. That is,
function help() {return true;}
If you call result = help(); this is a call to a function and will return true.
If you call result = help; this is not a call. It is an assignment where help is treated like data to be assigned to result.
What you did was declaring/instantiating an anonymous function by adding the semicolon,
(function (msg) { /* Code here */ });
and then tried to call it in another statement by using just parentheses... Obviously because the function has no name, but this will not work:
('SO');
The interpreter sees the parentheses on the second line as a new instruction/statement, and thus it does not work, even if you did it like this:
(function (msg){/*code here*/});('SO');
It still doesn't work, but it works when you remove the semicolon because the interpreter ignores white spaces and carriages and sees the complete code as one statement.
(function (msg){/*code here*/}) // This space is ignored by the interpreter
('SO');
Conclusion: a function call is not a function call without the () on the end unless under specific conditions such as being invoked by another function, that is, onload='help' would execute the help function even though the parentheses were not included. I believe setTimeout and setInterval also allow this type of function call too, and I also believe that the interpreter adds the parentheses behind the scenes anyhow which brings us back to "a function call is not a function call without the parentheses".
(function (msg){alert(msg)})
('SO');
This is a common method of using an anonymous function as a closure which many JavaScript frameworks use.
This function called is automatically when the code is compiled.
If placing ; at the first line, the compiler treated it as two different lines. So you can't get the same results as above.
This can also be written as:
(function (msg){alert(msg)}('SO'));
For more details, look into JavaScript/Anonymous Functions.
The IIFE simply compartmentalizes the function and hides the msg variable so as to not "pollute" the global namespace. In reality, just keep it simple and do like below unless you are building a billion dollar website.
var msg = "later dude";
window.onunload = function(msg){
alert( msg );
};
You could namespace your msg property using a Revealing Module Pattern like:
var myScript = (function() {
var pub = {};
//myscript.msg
pub.msg = "later dude";
window.onunload = function(msg) {
alert(msg);
};
//API
return pub;
}());
Anonymous functions are functions that are dynamically declared at
runtime. They’re called anonymous functions because they aren’t
given a name in the same way as normal functions.
Anonymous functions are declared using the function operator instead
of the function declaration. You can use the function operator to
create a new function wherever it’s valid to put an expression. For
example, you could declare a new function as a parameter to a
function call or to assign a property of another object.
Here’s a typical example of a named function:
function flyToTheMoon() {
alert("Zoom! Zoom! Zoom!");
}
flyToTheMoon();
Here’s the same example created as an anonymous function:
var flyToTheMoon = function() {
alert("Zoom! Zoom! Zoom!");
}
flyToTheMoon();
For details please read http://helephant.com/2008/08/23/javascript-anonymous-functions/
Anonymous functions are meant to be one-shot deal where you define a function on the fly so that it generates an output from you from an input that you are providing. Except that you did not provide the input. Instead, you wrote something on the second line ('SO'); - an independent statement that has nothing to do with the function. What did you expect? :)
Examine this code
var _class=function()
{
this.Test=100;
this.Callback=function(msg)
{
alert(msg+"\r\n"+this.Test);
}
}
function run(call)
{
call("Hello world");
}
var obj=new _class();
run(obj.Callback);
I got the result :
[Alert]
Hello world
undefined
but when i call
obj.Callback("Hello world")
i got expected
[Alert]
Hello world
100
why ?
thank for help
There's no intrinsic relationship between an object and the functions defined "inside" it. The only thing that determines the value of this (called the "receiving" object) in a function call is the way in which the function is called.
Call a function with object.func(), and this will be bound to object.
Call a function with "call()" or "apply()", and this is determined by the first parameter.
If a function is called without any implicit object context, however, as in your "callback" example, then this won't refer to anything your object — it will refer to window (or whatever the global context is).
The trick is that when you want to use a function as if it were a "method" on an object, such that the relationship remains intact even though the function reference has been yanked away from the object, you can pre-bind this in a couple of ways:
You can wrap the function in another function, so that you explicitly retain this in a closure.
You can use ".bind()" to (essentially) do the same thing.
The first way would look like this:
run(function() { obj.Callback(); });
The second way would look like this:
run(obj.Callback.bind(obj));
JavaScript is quite different from languages like C# or Java in this respect. In those languages, a function is sort-of stuck forever in a relationship with its class (or instances of its class). Not JavaScript; it really doesn't matter at all, in fact, where a function is defined. Your "_class" function would be equivalent if it were written like this:
function helloThere() {
alert(msg + "\r\n" + this.Test);
}
var _class = function() {
this.Test = 100;
this.Callback = helloThere;
};
edit — #jamietre correctly notes that had your "_class" function contained some var declarations or local functions, then there most certainly would be a difference (though not with respect to the way this behaves when "Callback" is invoked).
edit again — Thanks #Koolinc
this.Test is not defined. The scope of this in that context is the callback function.
This is a quick fix:
var _class=function()
{
var self = this;
this.Test=100;
this.Callback=function(msg)
{
console.log(msg+"\r\n"+self.Test);
}
}