Generating unique random numbers (integers) between 0 and 'x' - javascript

I need to generate a set of unique (no duplicate) integers, and between 0 and a given number.
That is:
var limit = 10;
var amount = 3;
How can I use Javascript to generate 3 unique numbers between 1 and 10?

Use the basic Math methods:
Math.random() returns a random number between 0 and 1 (including 0, excluding 1).
Multiply this number by the highest desired number (e.g. 10)
Round this number downward to its nearest integer
Math.floor(Math.random()*10) + 1
Example:
//Example, including customisable intervals [lower_bound, upper_bound)
var limit = 10,
amount = 3,
lower_bound = 1,
upper_bound = 10,
unique_random_numbers = [];
if (amount > limit) limit = amount; //Infinite loop if you want more unique
//Natural numbers than exist in a
// given range
while (unique_random_numbers.length < limit) {
var random_number = Math.floor(Math.random()*(upper_bound - lower_bound) + lower_bound);
if (unique_random_numbers.indexOf(random_number) == -1) {
// Yay! new random number
unique_random_numbers.push( random_number );
}
}
// unique_random_numbers is an array containing 3 unique numbers in the given range

Math.floor(Math.random() * (limit+1))
Math.random() generates a floating point number between 0 and 1, Math.floor() rounds it down to an integer.
By multiplying it by a number, you effectively make the range 0..number-1. If you wish to generate it in range from num1 to num2, do:
Math.floor(Math.random() * (num2-num1 + 1) + num1)
To generate more numbers, just use a for loop and put results into an array or write them into the document directly.

function generateRange(pCount, pMin, pMax) {
min = pMin < pMax ? pMin : pMax;
max = pMax > pMin ? pMax : pMin;
var resultArr = [], randNumber;
while ( pCount > 0) {
randNumber = Math.round(min + Math.random() * (max - min));
if (resultArr.indexOf(randNumber) == -1) {
resultArr.push(randNumber);
pCount--;
}
}
return resultArr;
}
Depending on range needed the method of returning the integer can be changed to: ceil (a,b], round [a,b], floor [a,b), for (a,b) is matter of adding 1 to min with floor.

Math.floor(Math.random()*limit)+1

for(i = 0;i <amount; i++)
{
var randomnumber=Math.floor(Math.random()*limit)+1
document.write(randomnumber)
}

Here’s another algorithm for ensuring the numbers are unique:
generate an array of all the numbers from 0 to x
shuffle the array so the elements are in random order
pick the first n
Compared to the method of generating random numbers until you get a unique one, this method uses more memory, but it has a more stable running time – the results are guaranteed to be found in finite time. This method works better if the upper limit is relatively low or if the amount to take is relatively high.
My answer uses the Lodash library for simplicity, but you could also implement the algorithm described above without that library.
// assuming _ is the Lodash library
// generates `amount` numbers from 0 to `upperLimit` inclusive
function uniqueRandomInts(upperLimit, amount) {
var possibleNumbers = _.range(upperLimit + 1);
var shuffled = _.shuffle(possibleNumbers);
return shuffled.slice(0, amount);
}

Something like this
var limit = 10;
var amount = 3;
var nums = new Array();
for(int i = 0; i < amount; i++)
{
var add = true;
var n = Math.round(Math.random()*limit + 1;
for(int j = 0; j < limit.length; j++)
{
if(nums[j] == n)
{
add = false;
}
}
if(add)
{
nums.push(n)
}
else
{
i--;
}
}

var randomNums = function(amount, limit) {
var result = [],
memo = {};
while(result.length < amount) {
var num = Math.floor((Math.random() * limit) + 1);
if(!memo[num]) { memo[num] = num; result.push(num); };
}
return result; }
This seems to work, and its constant lookup for duplicates.

These answers either don't give unique values, or are so long (one even adding an external library to do such a simple task).
1. generate a random number.
2. if we have this random already then goto 1, else keep it.
3. if we don't have desired quantity of randoms, then goto 1.
function uniqueRandoms(qty, min, max){
var rnd, arr=[];
do { do { rnd=Math.floor(Math.random()*max)+min }
while(arr.includes(rnd))
arr.push(rnd);
} while(arr.length<qty)
return arr;
}
//generate 5 unique numbers between 1 and 10
console.log( uniqueRandoms(5, 1, 10) );
...and a compressed version of the same function:
function uniqueRandoms(qty,min,max){var a=[];do{do{r=Math.floor(Math.random()*max)+min}while(a.includes(r));a.push(r)}while(a.length<qty);return a}

/**
* Generates an array with numbers between
* min and max randomly positioned.
*/
function genArr(min, max, numOfSwaps){
var size = (max-min) + 1;
numOfSwaps = numOfSwaps || size;
var arr = Array.apply(null, Array(size));
for(var i = 0, j = min; i < size & j <= max; i++, j++) {
arr[i] = j;
}
for(var i = 0; i < numOfSwaps; i++) {
var idx1 = Math.round(Math.random() * (size - 1));
var idx2 = Math.round(Math.random() * (size - 1));
var temp = arr[idx1];
arr[idx1] = arr[idx2];
arr[idx2] = temp;
}
return arr;
}
/* generating the array and using it to get 3 uniques numbers */
var arr = genArr(1, 10);
for(var i = 0; i < 3; i++) {
console.log(arr.pop());
}

I think, this is the most human approach (with using break from while loop), I explained it's mechanism in comments.
function generateRandomUniqueNumbersArray (limit) {
//we need to store these numbers somewhere
const array = new Array();
//how many times we added a valid number (for if statement later)
let counter = 0;
//we will be generating random numbers until we are satisfied
while (true) {
//create that number
const newRandomNumber = Math.floor(Math.random() * limit);
//if we do not have this number in our array, we will add it
if (!array.includes(newRandomNumber)) {
array.push(newRandomNumber);
counter++;
}
//if we have enought of numbers, we do not need to generate them anymore
if (counter >= limit) {
break;
}
}
//now hand over this stuff
return array;
}
You can of course add different limit (your amount) to the last 'if' statement, if you need less numbers, but be sure, that it is less or equal to the limit of numbers itself - otherwise it will be infinite loop.

Just as another possible solution based on ES6 Set ("arr. that can contain unique values only").
Examples of usage:
// Get 4 unique rnd. numbers: from 0 until 4 (inclusive):
getUniqueNumbersInRange(4, 0, 5) //-> [5, 0, 4, 1];
// Get 2 unique rnd. numbers: from -1 until 2 (inclusive):
getUniqueNumbersInRange(2, -1, 2) //-> [1, -1];
// Get 0 unique rnd. numbers (empty result): from -1 until 2 (inclusive):
getUniqueNumbersInRange(0, -1, 2) //-> [];
// Get 7 unique rnd. numbers: from 1 until 7 (inclusive):
getUniqueNumbersInRange(7, 1, 7) //-> [ 3, 1, 6, 2, 7, 5, 4];
The implementation:
function getUniqueNumbersInRange(uniqueNumbersCount, fromInclusive, untilInclusive) {
// 0/3. Check inputs.
if (0 > uniqueNumbersCount) throw new Error('The number of unique numbers cannot be negative.');
if (fromInclusive > untilInclusive) throw new Error('"From" bound "' + fromInclusive
+ '" cannot be greater than "until" bound "' + untilInclusive + '".');
const rangeLength = untilInclusive - fromInclusive + 1;
if (uniqueNumbersCount > rangeLength) throw new Error('The length of the range is ' + rangeLength + '=['
+ fromInclusive + '…' + untilInclusive + '] that is smaller than '
+ uniqueNumbersCount + ' (specified count of result numbers).');
if (uniqueNumbersCount === 0) return [];
// 1/3. Create a new "Set" – object that stores unique values of any type, whether primitive values or object references.
// MDN - https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
// Support: Google Chrome 38+(2014.10), Firefox 13+, IE 11+
const uniqueDigits = new Set();
// 2/3. Fill with random numbers.
while (uniqueNumbersCount > uniqueDigits.size) {
// Generate and add an random integer in specified range.
const nextRngNmb = Math.floor(Math.random() * rangeLength) + fromInclusive;
uniqueDigits.add(nextRngNmb);
}
// 3/3. Convert "Set" with unique numbers into an array with "Array.from()".
// MDN – https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
// Support: Google Chrome 45+ (2015.09+), Firefox 32+, not IE
const resArray = Array.from(uniqueDigits);
return resArray;
}
The benefits of the current implementation:
Have a basic check of input arguments – you will not get an unexpected output when the range is too small, etc.
Support the negative range (not only from 0), e. g. randoms from -1000 to 500, etc.
Expected behavior: the current most popular answer will extend the range (upper bound) on its own if input bounds are too small. An example: get 10000 unique numbers with a specified range from 0 until 10 need to throw an error due to too small range (10-0+1=11 possible unique numbers only). But the current top answer will hiddenly extend the range until 10000.

I wrote this C# code a few years back, derived from a Wikipedia-documented algorithm, which I forget now (feel free to comment...). Uniqueness is guaranteed for the lifetime of the HashSet. Obviously, if you will be using a database, you could store the generated numbers there. Randomness was ok for my needs, but probably can be improved using a different RNG. Note: count must be <= max - min (duh!) and you can easily modify to generate ulongs.
private static readonly Random RndGen = new Random();
public static IEnumerable<int> UniqueRandomIntegers(int count, int min, int max)
{
var rv = new HashSet<int>();
for (var i = max - min - count + 1; i <= max - min; i++)
{
var r = (int)(RndGen.NextDouble() * i);
var v = rv.Contains(r) ? i : r;
rv.Add(v);
yield return v;
}
}

Randomized Array, Sliced
Similar to #rory-okane's answer, but without lodash.
Both Time Complexity and Space Complexity = O(n) where n=limit
Has a consistent runtime
Supports a positive or negative range of numbers
Theoretically, this should support a range from 0 to ±2^32 - 1
This limit is due to Javascript arrays only supporting 2^32 - 1 indexes as per the ECMAScript specification
I stopped testing it at 10^8 because my browser got weird around here and strangely only negative numbers to -10^7 - I got an Uncaught RangeError: Invalid array length error (shrug)
Bonus feature: Generate a randomized array of n length 0 to limit if you pass only one argument
let uniqueRandomNumbers = (limit, amount = limit) => {
let array = Array(Math.abs(limit));
for (let i = 0; i < array.length; i++) array[i] = i * Math.sign(limit);
let currentIndex = array.length;
let randomIndex;
while(currentIndex > 0) {
randomIndex = Math.floor(Math.random() * currentIndex--);
[array[currentIndex], array[randomIndex]] = [array[randomIndex], array[currentIndex]];
}
return array.slice(0, Math.abs(amount));
}
console.log(uniqueRandomNumbers(10, 3));
console.log(uniqueRandomNumbers(-10, 3));
//bonus feature:
console.log(uniqueRandomNumbers(10));
Credit:
I personally got here because I was trying to generate random arrays of n length. Other SO questions that helped me arrive at this answer for my own use case are below. Thank you everyone for your contributions, you made my life better today.
Most efficient way to create a zero filled JavaScript array?
How to randomize (shuffle) a JavaScript array?
Also the answer from #ashleedawg is where I started, but when I discovered the infinite loop issues I ended up at the sliced randomized array approach.

const getRandomNo = (min, max) => {
min = Math.ceil(min);
max = Math.floor(max);
return Math.floor(Math.random() * (max - min + 1)) + min;
}
This function returns a random integer between the specified values. The value is no lower than min (or the next integer greater than min if min isn't an integer) and is less than (but not equal to) max.
Example
console.log(`Random no between 0 and 10 ${getRandomNo(0,10)}`)

Here's a simple, one-line solution:
var limit = 10;
var amount = 3;
randoSequence(1, limit).slice(0, amount);
It uses randojs.com to generate a randomly shuffled array of integers from 1 through 10 and then cuts off everything after the third integer. If you want to use this answer, toss this within the head tag of your HTML document:
<script src="https://randojs.com/1.0.0.js"></script>

Related

JavaScript: Generate a unique 'x' numbers base on the range & set given [duplicate]

How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}​
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)

Array of random numbers optimization

I have a function that generates an array of random numbers. It works, but I feel that it might works slow on big numbers. Is there a way how to optimize it?
function renerateRandomNumbers(maxNumber, randomNumbersCount) {
let i;
const arrResult = [];
for (i = 0; i < randomNumbersCount; i++) {
let rand = Math.random() * (maxNumber);
rand = Math.round(rand);
if (arrResult.indexOf(rand) === -1 ) {
arrResult.push(rand);
} else {
i--;
}
}
return arrResult;
}
EDIT - To any future users, #ScottSauyet's solution should be the accepted answer. It is a more consistently efficient solution than mine.
I think the most algorithmically efficient way to solve this would be to generate the list of all possible numbers from 0-maxNumber, shuffle that array (O(n)), and then take the first randomNumbersCount numbers from the shuffled array. It would look like the following:
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
function generateRandomNumbers(maxNumber, randomNumbersCount) {
var possibleNumbers = [];
// populate array with all possible values
for (var i = 0; i <= maxNumber; i++) { possibleNumbers.push(i); }
// shuffle the array to get a random order of the possible numbers O(n)
shuffleArray(possibleNumbers);
// trim the array down to only the first n numbers where n = randomNumbersCount
possibleNumbers.length = randomNumbersCount;
return possibleNumbers;
}
console.log (generateRandomNumbers(10, 5));
console.log (generateRandomNumbers(10, 5));
console.log (generateRandomNumbers(10, 5));
The problem of your code is that complexity grows geometrically because it have a chance generate number that was already picked multiple times.
What we need to achieve is to get number on every iteration to achieve iterations count to be equal to the randomNumbersCount.
How to avoid multiple same random numbers?
let's say you want to have 5 random numbers from 0-10 range
First iteration
Create an array with values var candidates = [0,1...10]
Generate random number let's say 0
Store the number candidates[0] in results
Remove 0 from candidates. To avaoid reindexing of the candidates array we will put candidates[candidates.length - 1] into candidates[0] and remove candidates[candidates.length - 1]
and then will do this operation randomNumbersCount times.
Second iteration
Our candidates array is now [10,1,2,3,4,5,6,7,8,9]
Generate random number let's say 0 again. Wow we generated similar random number, but so what?
we alreay have 0 in our results, but candidates[0] is not a 0 anymore candidates[0] is 10 right now
so we pick candidates[0] that is 10 and will store it and remove it from candidates. Put candidates[candidates.length - 1] (9) into candidates[0] and remove candidates[candidates.length - 1]
our result is [0, 10] right now
Third iteration
Our candidates is now [9,1,2,3,4,5,6,7,8]
Generate random number let's say 0
we are not worring anymore because we know that candidates[0] is 9
add candidates[0] (witch is 9) we are saving to results, and remove it from candidates
our result is [0,10,9], candidates is [8,1,2,3,4,5,6,7]
And so on
BTW implementation is much shorter than explanation:
function renerateRandomNumbers(maxNumber, randomNumbersCount) {
var candidates = [...Array(maxNumber).keys()];
return Array(randomNumbersCount).fill()
.map(() => {
const randomIndex = Math.floor(Math.random() * candidates.length)
const n = candidates[randomIndex]
candidates[randomIndex] = candidates[candidates.length - 1]
candidates.length = candidates.length - 1
return n
})
.sort((a, b) => a - b) // sort if needed
}
console.log (renerateRandomNumbers(10, 5))
The solution from mhodges is reasonably efficient, but only when the sought count is fairly close to the max number. If your count is significantly smaller, this can be a problem, as the solution is O(m + n) where m is the maximum and n is the desired count. It's also O(m) in space. If m is large, this could be a problem.
A variant would make this approximately O(n) in time and space, by doing the same thing, but stopping the shuffle when when we've reached count items and by not pre-filling the array but instead defaulting to its indices.
function venerateRandomNumbers(max, count) {
// todo: error if count > max
const arr = new Array(max + 1)
for (let i = max; i > max - count; i--) {
const j = Math.floor(Math.random() * (i + 1))
const temp = arr[j] || j
arr[j] = arr[i] || i
arr[i] = temp
}
return arr.slice(-count)
}
console.log(venerateRandomNumbers(1000000, 10))
You can see performance comparisons on repl.it

Unique random number generator in JavaScript [duplicate]

How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}​
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)

How to divide number n in javascript into x parts, where the sum of all the parts equals the number?

I have a number which I need to divide into 5 parts. However, I want each part to be a random number. But when all the parts are added together, they equal the original number. I am unsure of how to do this with JavaScript. Furthermore, I don't want the min of the divided parts to be 0 or 1, I want to set the min myself.
For example, the number is 450. I want the divided parts to be no less than 60. So to start, the array would be [60,60,60,60,60]. But I want to randomize so that they all add up to 450. What would be the best way to go about doing this?
Thank you!
This is what I've tried so far:
let i = 0;
let number = 450;
let numArray = [];
while(i <= 5){
while(number > 0) {
let randomNum = Math.round(Math.random() * number) + 1;
numArray.push(randomNum);
number -= randomNum;
}
i += 1;
}
let your number be N, and let pn be the nth part. To get 5 parts:
p1 = random number between 0 and N
p2 = random number between 0 and N - p1
p3 = random number between 0 and N - p2 - p1
p4 = random number between 0 and N - p3 - p2 - p1
p5 = N - p4 - p3 - p2 - p1
Edit 2017
To make it seem more random, shuffle the numbers after you generate them
Edit 2020
I guess some code wouldn't hurt. Using ES7 generators:
function* splitNParts(num, parts) {
let sumParts = 0;
for (let i = 0; i < parts - 1; i++) {
const pn = Math.ceil(Math.random() * (num - sumParts))
yield pn
sumParts += pn
}
yield num - sumParts;
}
Fiddle Link
Sum the five minimums (eg min = 60) up:
var minSum = 5 * min
Then get the difference between your original number (orNumber = 450) and minSum.
var delta = orNumber - minSum
Now you get 4 different random numbers in the range from 0 to exclusive 1.
Sort these numbers ascending.
Foreach of these randoms do the following:
Subtract it from the last one (or zero for the first)
Multiply this number with the delta and you get one of the parts.
The last part is the delta minus all other parts.
Afterwards you just have to add your min to all of the parts.
This function generates random numbers from 0 to 1, adds them together to figure out what they need to be multiplied by to provide the correct range. It has the benefit of all the numbers being fairly distributed.
function divvy(number, parts, min) {
var randombit = number - min * parts;
var out = [];
for (var i=0; i < parts; i++) {
out.push(Math.random());
}
var mult = randombit / out.reduce(function (a,b) {return a+b;});
return out.map(function (el) { return el * mult + min; });
}
var d = divvy(450, 6, 60)
console.log(d);
console.log("sum - " + d.reduce(function(a,b){return a+b}));
You can use a do..while loop to subtract a minimum number from original number, keep a copy of original number for subtraction at conclusion of loop to push the remainder to the array
let [n, total, m = n] = [450, 0];
const [min, arr] = [60, []];
do {
n -= min; // subtract `min` from `n`
arr.push(n > min ? min : m - total); // push `min` or remainder
total += arr[arr.length - 1]; // keep track of total
} while (n > min);
console.log(arr);
To randomize output at resulting array select a number greater than min and less than n to create a random number within a specific range
let [n, total, m = n] = [450, 0];
const [min, arr, range = min + min / 2] = [60, []];
do {
let r = Math.random() * (range - min) + min; // random number in our range
n -= r; // subtract `min` from `n`
arr.push(n > min ? r : m - total); // push `r` or remainder
total += arr[arr.length - 1]; // keep track of total
} while (n > min);
console.log(arr);
I made a longer version for beginners.
const n = 450;
const iterations = 5;
const parts = [];
// we'll use this to store what's left on each iteration
let remainder = n;
for (let i = 1; i <= iterations; i += 1) {
// if it's the last iteration, we should just use whatever
// is left after removing all the other random numbers
// from our 450
if (i === iterations) {
parts.push(remainder);
break;
}
// every time we loop, a random number is created.
// on the first iteration, the remainder is still 450
const part = Math.round(Math.random() * remainder);
parts.push(part);
// we must store how much is left after our random numbers
// are deducted from our 450. we will use the lower number
// to calculate the next random number
remainder -= part;
}
// let's print out the array and the proof it still adds up
const total = totalFromParts(parts);
console.log(parts);
console.log('Total is still ' + total);
// this function loops through each array item, and adds it to the last
// just here to test the result
function totalFromParts(parts) {
return parts.reduce((sum, value) => sum + value, 0);
}
There are much more efficient ways to code this, but in the interest of explaining the logic of solving the problem, this walks through that step by step, transforming the values and explaining the logic.
// Set start number, number of fragments
// minimum fragment size, define fragments array
var n = 450
var x = 5
var minNumber = 60
var fragment = n / x
// stuff array with equal sized fragment values
var fragments = []
for (i = 0; i < x; i++) {
fragments[i] = fragment;
}
document.write("fragments: " + fragments);
var delta = [];
// iterate through fragments array
// get a random number each time between the fragment size
// and the minimum fragment sized defined above
// for even array slots, subtract the value from the fragment
// for odd array slots, add the value to the fragment
// skip the first [0] value
for (i = 1; i< x; i++) {
delta[i] = Math.floor(Math.random() * (fragment - minNumber));
document.write("<br />delta: " + delta[i]);
if((i % 2) == 1) {
fragments[i] -= delta[i]
}
else {
fragments[i] += delta[i]
}
}
// set the initial fragment value to 0
fragments[0] = 0
// defines a function we can use to total the array values
function getSum(total, num) {
return total + num;
}
// get the total of the array values, remembering the first is 0
var partialTotal = fragments.reduce(getSum)
document.write("<br />partial sum: " + partialTotal);
// set the first array value to the difference between
// the total of all the other array values and the original
// number the array was to sum up to
fragments[0] = (n - partialTotal)
// write the values out and profit.
document.write("<br />fragments: " + fragments);
var grandTotal = fragments.reduce(getSum)
document.write("<br />Grand total: " + grandTotal);
https://plnkr.co/edit/oToZe7LGpQS4dIVgYHPi?p=preview

Get a random number focused on center

Is it possible to get a random number between 1-100 and keep the results mainly within the 40-60 range? I mean, it will go out of that range rarely, but I want it to be mainly within that range... Is it possible with JavaScript/jQuery?
Right now I'm just using the basic Math.random() * 100 + 1.
The simplest way would be to generate two random numbers from 0-50 and add them together.
This gives a distribution biased towards 50, in the same way rolling two dice biases towards 7.
In fact, by using a larger number of "dice" (as #Falco suggests), you can make a closer approximation to a bell-curve:
function weightedRandom(max, numDice) {
let num = 0;
for (let i = 0; i < numDice; i++) {
num += Math.random() * (max/numDice);
}
return num;
}
JSFiddle: http://jsfiddle.net/797qhcza/1/
You have some good answers here that give specific solutions; let me describe for you the general solution. The problem is:
I have a source of more-or-less uniformly distributed random numbers between 0 and 1.
I wish to produce a sequence of random numbers that follow a different distribution.
The general solution to this problem is to work out the quantile function of your desired distribution, and then apply the quantile function to the output of your uniform source.
The quantile function is the inverse of the integral of your desired distribution function. The distribution function is the function where the area under a portion of the curve is equal to the probability that the randomly-chosen item will be in that portion.
I give an example of how to do so here:
http://ericlippert.com/2012/02/21/generating-random-non-uniform-data/
The code in there is in C#, but the principles apply to any language; it should be straightforward to adapt the solution to JavaScript.
Taking arrays of numbers, etc. isn't efficient. You should take a mapping which takes a random number between 0 to 100 and maps to the distribution you need. So in your case, you could take f(x)=-(1/25)x2+4x to get a distribution with the most values in the middle of your range.
I might do something like setup a "chance" for the number to be allowed to go "out of bounds". In this example, a 20% chance the number will be 1-100, otherwise, 40-60:
$(function () {
$('button').click(function () {
var outOfBoundsChance = .2;
var num = 0;
if (Math.random() <= outOfBoundsChance) {
num = getRandomInt(1, 100);
} else {
num = getRandomInt(40, 60);
}
$('#out').text(num);
});
function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
});
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<button>Generate</button>
<div id="out"></div>
fiddle: http://jsfiddle.net/kbv39s9w/
I needed to solve this problem a few years ago and my solution was easier than any of the other answers.
I generated 3 randoms between the bounds and averaged them. This pulls the result towards the centre but leaves it completely possible to reach the extremities.
It looks stupid but you can use rand twice:
var choice = Math.random() * 3;
var result;
if (choice < 2){
result = Math.random() * 20 + 40; //you have 2/3 chance to go there
}
else {
result = Math.random() * 100 + 1;
}
Sure it is possible. Make a random 1-100. If the number is <30 then generate number in range 1-100 if not generate in range 40-60.
There is a lot of different ways to generate such random numbers. One way to do it is to compute the sum of multiple uniformly random numbers. How many random numbers you sum and what their range is will determine how the final distribution will look.
The more numbers you sum up, the more it will be biased towards the center. Using the sum of 1 random number was already proposed in your question, but as you notice is not biased towards the center of the range. Other answers have propose using the sum of 2 random numbers or the sum of 3 random numbers.
You can get even more bias towards the center of the range by taking the sum of more random numbers. At the extreme you could take the sum of 99 random numbers which each were either 0 or 1. That would be a binomial distribution. (Binomial distributions can in some sense be seen as the discrete version of normal distributions). This can still in theory cover the full range, but it has so much bias towards the center that you should never expect to see it reach the endpoints.
This approach means you can tweak just how much bias you want.
What about using something like this:
var loops = 10;
var tries = 10;
var div = $("#results").html(random());
function random() {
var values = "";
for(var i=0; i < loops; i++) {
var numTries = tries;
do {
var num = Math.floor((Math.random() * 100) + 1);
numTries--;
}
while((num < 40 || num >60) && numTries > 1)
values += num + "<br/>";
}
return values;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<div id="results"></div>
The way I've coded it allows you to set a couple of variables:
loops = number of results
tries = number of times the function will try to get a number between 40-60 before it stops running through the while loop
Added bonus: It uses do while!!! Awesomeness at its best
You can write a function that maps random values between [0, 1) to [1, 100] according to weight. Consider this example:
Here, the value 0.95 maps to value between [61, 100].
In fact we have .05 / .1 = 0.5, which, when mapped to [61, 100], yields 81.
Here is the function:
/*
* Function that returns a function that maps random number to value according to map of probability
*/
function createDistributionFunction(data) {
// cache data + some pre-calculations
var cache = [];
var i;
for (i = 0; i < data.length; i++) {
cache[i] = {};
cache[i].valueMin = data[i].values[0];
cache[i].valueMax = data[i].values[1];
cache[i].rangeMin = i === 0 ? 0 : cache[i - 1].rangeMax;
cache[i].rangeMax = cache[i].rangeMin + data[i].weight;
}
return function(random) {
var value;
for (i = 0; i < cache.length; i++) {
// this maps random number to the bracket and the value inside that bracket
if (cache[i].rangeMin <= random && random < cache[i].rangeMax) {
value = (random - cache[i].rangeMin) / (cache[i].rangeMax - cache[i].rangeMin);
value *= cache[i].valueMax - cache[i].valueMin + 1;
value += cache[i].valueMin;
return Math.floor(value);
}
}
};
}
/*
* Example usage
*/
var distributionFunction = createDistributionFunction([
{ weight: 0.1, values: [1, 40] },
{ weight: 0.8, values: [41, 60] },
{ weight: 0.1, values: [61, 100] }
]);
/*
* Test the example and draw results using Google charts API
*/
function testAndDrawResult() {
var counts = [];
var i;
var value;
// run the function in a loop and count the number of occurrences of each value
for (i = 0; i < 10000; i++) {
value = distributionFunction(Math.random());
counts[value] = (counts[value] || 0) + 1;
}
// convert results to datatable and display
var data = new google.visualization.DataTable();
data.addColumn("number", "Value");
data.addColumn("number", "Count");
for (value = 0; value < counts.length; value++) {
if (counts[value] !== undefined) {
data.addRow([value, counts[value]]);
}
}
var chart = new google.visualization.ColumnChart(document.getElementById("chart"));
chart.draw(data);
}
google.load("visualization", "1", { packages: ["corechart"] });
google.setOnLoadCallback(testAndDrawResult);
<script src="https://www.google.com/jsapi"></script>
<div id="chart"></div>
Here's a weighted solution at 3/4 40-60 and 1/4 outside that range.
function weighted() {
var w = 4;
// number 1 to w
var r = Math.floor(Math.random() * w) + 1;
if (r === 1) { // 1/w goes to outside 40-60
var n = Math.floor(Math.random() * 80) + 1;
if (n >= 40 && n <= 60) n += 40;
return n
}
// w-1/w goes to 40-60 range.
return Math.floor(Math.random() * 21) + 40;
}
function test() {
var counts = [];
for (var i = 0; i < 2000; i++) {
var n = weighted();
if (!counts[n]) counts[n] = 0;
counts[n] ++;
}
var output = document.getElementById('output');
var o = "";
for (var i = 1; i <= 100; i++) {
o += i + " - " + (counts[i] | 0) + "\n";
}
output.innerHTML = o;
}
test();
<pre id="output"></pre>
Ok, so I decided to add another answer because I felt like my last answer, as well as most answers here, use some sort of half-statistical way of obtaining a bell-curve type result return. The code I provide below works the same way as when you roll a dice. Therefore, it is hardest to get 1 or 99, but easiest to get 50.
var loops = 10; //Number of numbers generated
var min = 1,
max = 50;
var div = $("#results").html(random());
function random() {
var values = "";
for (var i = 0; i < loops; i++) {
var one = generate();
var two = generate();
var ans = one + two - 1;
var num = values += ans + "<br/>";
}
return values;
}
function generate() {
return Math.floor((Math.random() * (max - min + 1)) + min);
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<div id="results"></div>
I'd recommend using the beta distribution to generate a number between 0-1, then scale it up. It's quite flexible and can create many different shapes of distributions.
Here's a quick and dirty sampler:
rbeta = function(alpha, beta) {
var a = 0
for(var i = 0; i < alpha; i++)
a -= Math.log(Math.random())
var b = 0
for(var i = 0; i < beta; i++)
b -= Math.log(Math.random())
return Math.ceil(100 * a / (a+b))
}
var randNum;
// generate random number from 1-5
var freq = Math.floor(Math.random() * (6 - 1) + 1);
// focus on 40-60 if the number is odd (1,3, or 5)
// this should happen %60 of the time
if (freq % 2){
randNum = Math.floor(Math.random() * (60 - 40) + 40);
}
else {
randNum = Math.floor(Math.random() * (100 - 1) + 1);
}
The best solution targeting this very problem is the one proposed by BlueRaja - Danny Pflughoeft but I think a somewhat faster and more general solution is also worth mentioning.
When I have to generate random numbers (strings, coordinate pairs, etc.) satisfying the two requirements of
The result set is quite small. (not larger than 16K numbers)
The result set is discreet. (like integer numbers only)
I usually start by creating an array of numbers (strings, coordinate pairs, etc.) fulfilling the requirement (In your case: an array of numbers containing the more probable ones multiple times.), then choose a random item of that array. This way, you only have to call the expensive random function once per item.
Distribution
5% for [ 0,39]
90% for [40,59]
5% for [60,99]
Solution
var f = Math.random();
if (f < 0.05) return random(0,39);
else if (f < 0.95) return random(40,59);
else return random(60,99);
Generic Solution
random_choose([series(0,39),series(40,59),series(60,99)],[0.05,0.90,0.05]);
function random_choose (collections,probabilities)
{
var acc = 0.00;
var r1 = Math.random();
var r2 = Math.random();
for (var i = 0; i < probabilities.length; i++)
{
acc += probabilities[i];
if (r1 < acc)
return collections[i][Math.floor(r2*collections[i].length)];
}
return (-1);
}
function series(min,max)
{
var i = min; var s = [];
while (s[s.length-1] < max) s[s.length]=i++;
return s;
}
You can use a helper random number to whether generate random numbers in 40-60 or 1-100:
// 90% of random numbers should be between 40 to 60.
var weight_percentage = 90;
var focuse_on_center = ( (Math.random() * 100) < weight_percentage );
if(focuse_on_center)
{
// generate a random number within the 40-60 range.
alert (40 + Math.random() * 20 + 1);
}
else
{
// generate a random number within the 1-100 range.
alert (Math.random() * 100 + 1);
}
If you can use the gaussian function, use it. This function returns normal number with average 0 and sigma 1.
95% of this number are within average +/- 2*sigma. Your average = 50, and sigma = 5 so
randomNumber = 50 + 5*gaussian()
The best way to do that is generating a random number that is distributed equally in a certain set of numbers, and then apply a projection function to the set between 0 and a 100 where the projection is more likely to hit the numbers you want.
Typically the mathematical way of achieving this is plotting a probability function of the numbers you want. We could use the bell curve, but let's for the sake of easier calculation just work with a flipped parabola.
Let's make a parabola such that its roots are at 0 and 100 without skewing it. We get the following equation:
f(x) = -(x-0)(x-100) = -x * (x-100) = -x^2 + 100x
Now, all the area under the curve between 0 and 100 is representative of our first set where we want the numbers generated. There, the generation is completely random. So, all we need to do is find the bounds of our first set.
The lower bound is, of course, 0. The upper bound is the integral of our function at 100, which is
F(x) = -x^3/3 + 50x^2
F(100) = 500,000/3 = 166,666.66666 (let's just use 166,666, because rounding up would make the target out of bounds)
So we know that we need to generate a number somewhere between 0 and 166,666. Then, we simply need to take that number and project it to our second set, which is between 0 and 100.
We know that the random number we generated is some integral of our parabola with an input x between 0 and 100. That means that we simply have to assume that the random number is the result of F(x), and solve for x.
In this case, F(x) is a cubic equation, and in the form F(x) = ax^3 + bx^2 + cx + d = 0, the following statements are true:
a = -1/3
b = 50
c = 0
d = -1 * (your random number)
Solving this for x yields you the actual random number your are looking for, which is guaranteed to be in the [0, 100] range and a much higher likelihood to be close to the center than the edges.
This answer is really good. But I would like to post implementation instructions (I'm not into JavaScript, so I hope you will understand) for different situation.
Assume you have ranges and weights for every range:
ranges - [1, 20], [21, 40], [41, 60], [61, 100]
weights - {1, 2, 100, 5}
Initial Static Information, could be cached:
Sum of all weights (108 in sample)
Range selection boundaries. It basically this formula: Boundary[n] = Boundary[n - 1] + weigh[n - 1] and Boundary[0] = 0. Sample has Boundary = {0, 1, 3, 103, 108}
Number generation:
Generate random number N from range [0, Sum of all weights).
for (i = 0; i < size(Boundary) && N > Boundary[i + 1]; ++i)
Take ith range and generate random number in that range.
Additional note for performance optimizations. Ranges don't have to be ordered neither ascending nor descending order, so for faster range look-up range that has highest weight should go first and one with lowest weight should go last.

Categories

Resources