Please explan this javascript function definition and their best use (Module Pattern) - javascript

What type of function is the following and which is their best use?
var f = function (){
var a = 0;
return {
f1 : function(){
},
f2 : function(param){
}
};
}();
I tried to convert it to:
var f = {
a : 0,
f1: function (){
},
f2: function (param){
}
}
But seems does not works the same way.

It's just a plain old function that is invoked immediately, and returns an object which is then referenced by f.
The functions referenced by object returned retain their ability to reference the a variable.
No code outside that immediately invoked function can reference a so it enjoys some protection since you control exactly what happens to a via the functions you exported.
This pattern is sometimes called a module pattern.
Regarding your updated question, it doesn't work the same because a is now a publicly available property of the object.
For the functions to reference it, they'll either do:
f.a;
or if the function will be called from the f object, they can do:
this.a;
Like this:
var f = {
a : 0,
f1: function (){
alert( this.a );
},
f2: function (param){
this.a = param;
}
}
f.f2( 123 );
f.f1(); // alerts 123
But the key thing is that a is publicly available. Any code that has access to f can access f.a and therefore make changes to it without using your f1 and f2 functions.
That's the beauty of the first code. You get to control exactly what happens to a.

Basically that creates a "class" - JS doesn't have classes so a class is basically a function such as your function f.
The interesting thing about the code you posted is that it creates a private variable a and two public functions f1 and f2. They are public because the constructor - the outer function - returns them.
This is a common pattern for organising and encapsulating JS code.
You can read more about it here

It's a simple function to create and return an object. It's immediately executed, and its result is saved to your variable f
It first declares a local (or private) variable a, visible only withing the scope of the function. Then it constructs an object which has members f1 and f2, both of which are functions. Since this return object is declared within the same scope that a is declared, both f1 and f2 will have access to a.
Your conversion simply creates a single object. Where before you had a function that would create endless objects, you now have a single object, and no more. I'm not sure exactly why it doesn't work, but one major difference is that a is now visible to the world, where before it was private to the return object.

Related

"this" and object literals in JavaScript [duplicate]

I just came across an interesting situation in JavaScript. I have a class with a method that defines several objects using object-literal notation. Inside those objects, the this pointer is being used. From the behavior of the program, I have deduced that the this pointer is referring to the class on which the method was invoked, and not the object being created by the literal.
This seems arbitrary, though it is the way I would expect it to work. Is this defined behavior? Is it cross-browser safe? Is there any reasoning underlying why it is the way it is beyond "the spec says so" (for instance, is it a consequence of some broader design decision/philosophy)? Pared-down code example:
// inside class definition, itself an object literal, we have this function:
onRender: function() {
this.menuItems = this.menuItems.concat([
{
text: 'Group by Module',
rptletdiv: this
},
{
text: 'Group by Status',
rptletdiv: this
}]);
// etc
}
Cannibalized from another post of mine, here's more than you ever wanted to know about this.
Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)
The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.
There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.
As a Method
A method is a function that's attached to an object
var foo = {};
foo.someMethod = function(){
alert(this);
}
When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.
As A Function
If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.
var foo = function(){
alert(this);
}
foo();
This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.
Many people get around the problem by doing something like, um, this
var foo = {};
foo.someMethod = function (){
var that=this;
function bar(){
alert(that);
}
}
You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.
NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).
As a Constructor
You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.
You invoke a function as a Constructor with the new keyword.
function Foo(){
this.confusing = 'hell yeah';
}
var myObject = new Foo();
When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.
Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.
With the Apply Method
Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.
function foo(a,b){
alert(a);
alert(b);
alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);
Function calls
Functions are just a type of Object.
All Function objects have call and apply methods which execute the Function object they're called on.
When called, the first argument to these methods specifies the object which will be referenced by the this keyword during execution of the Function - if it's null or undefined, the global object, window, is used for this.
Thus, calling a Function...
whereAmI = "window";
function foo()
{
return "this is " + this.whereAmI + " with " + arguments.length + " + arguments";
}
...with parentheses - foo() - is equivalent to foo.call(undefined) or foo.apply(undefined), which is effectively the same as foo.call(window) or foo.apply(window).
>>> foo()
"this is window with 0 arguments"
>>> foo.call()
"this is window with 0 arguments"
Additional arguments to call are passed as the arguments to the function call, whereas a single additional argument to apply can specify the arguments for the function call as an Array-like object.
Thus, foo(1, 2, 3) is equivalent to foo.call(null, 1, 2, 3) or foo.apply(null, [1, 2, 3]).
>>> foo(1, 2, 3)
"this is window with 3 arguments"
>>> foo.apply(null, [1, 2, 3])
"this is window with 3 arguments"
If a function is a property of an object...
var obj =
{
whereAmI: "obj",
foo: foo
};
...accessing a reference to the Function via the object and calling it with parentheses - obj.foo() - is equivalent to foo.call(obj) or foo.apply(obj).
However, functions held as properties of objects are not "bound" to those objects. As you can see in the definition of obj above, since Functions are just a type of Object, they can be referenced (and thus can be passed by reference to a Function call or returned by reference from a Function call). When a reference to a Function is passed, no additional information about where it was passed from is carried with it, which is why the following happens:
>>> baz = obj.foo;
>>> baz();
"this is window with 0 arguments"
The call to our Function reference, baz, doesn't provide any context for the call, so it's effectively the same as baz.call(undefined), so this ends up referencing window. If we want baz to know that it belongs to obj, we need to somehow provide that information when baz is called, which is where the first argument to call or apply and closures come into play.
Scope chains
function bind(func, context)
{
return function()
{
func.apply(context, arguments);
};
}
When a Function is executed, it creates a new scope and has a reference to any enclosing scope. When the anonymous function is created in the above example, it has a reference to the scope it was created in, which is bind's scope. This is known as a "closure."
[global scope (window)] - whereAmI, foo, obj, baz
|
[bind scope] - func, context
|
[anonymous scope]
When you attempt to access a variable this "scope chain" is walked to find a variable with the given name - if the current scope doesn't contain the variable, you look at the next scope in the chain, and so on until you reach the global scope. When the anonymous function is returned and bind finishes executing, the anonymous function still has a reference to bind's scope, so bind's scope doesn't "go away".
Given all the above you should now be able to understand how scope works in the following example, and why the technique for passing a function around "pre-bound" with a particular value of this it will have when it is called works:
>>> baz = bind(obj.foo, obj);
>>> baz(1, 2);
"this is obj with 2 arguments"
Is this defined behavior? Is it
cross-browser safe?
Yes. And yes.
Is there any reasoning underlying why
it is the way it is...
The meaning of this is pretty simple to deduce:
If this is used inside a constructor function, and the function was invoked with the new keyword, this refers to the object that will be created. this will continue to mean the object even in public methods.
If this is used anywhere else, including nested protected functions, it refers to the global scope (which in the case of the browser is the window object).
The second case is obviously a design flaw, but it's pretty easy to work around it by using closures.
In this case the inner this is bound to the global object instead of to the this variable of the outer function.
It's the way the language is designed.
See "JavaScript: The Good Parts" by Douglas Crockford for a good explanation.
I found a nice tutorial about the ECMAScript this
A this value is a special object which is related with the execution
context. Therefore, it may be named as a context object (i.e. an
object in which context the execution context is activated).
Any object may be used as this value of the context.
a this value is a property of the execution context, but not a
property of the variable object.
This feature is very important, because in contrary to variables, this value never participates in identifier resolution process. I.e. when accessing this in a code, its value is taken directly from the execution context and without any scope chain lookup. The value of this is determinate only once when entering the context.
In the global context, a this value is the global object itself (that means, this value here equals to variable object)
In case of a function context, this value in every single function call may be different
Reference Javascript-the-core and Chapter-3-this
All the answers here are very helpful but I still had a hard time to figure out what this point to in my case, which involved object destructuring. So I would like to add one more answer using a simplified version of my code,
let testThis = {
x: 12,
y: 20,
add({ a, b, c }) {
let d = a + b + c()
console.log(d)
},
test() {
//the result is NaN
this.add({
a: this.x,
b: this.y,
c: () => {
//this here is testThis, NOT the object literal here
return this.a + this.b
},
})
},
test2() {
//64 as expected
this.add({
a: this.x,
b: this.y,
c: () => {
return this.x + this.y
},
})
},
test3() {
//NaN
this.add({
a: this.x,
b: this.y,
c: function () {
//this here is the global object
return this.x + this.y
},
})
},
}
As here explained Javascript - destructuring object - 'this' set to global or undefined, instead of object it actually has nothing to do with object destructuring but how c() is called, but it is not easy to see through it here.
MDN says "arrow function expressions are best suited for non-method functions" but arrow function works here.
this in JS:
There are 3 types of functions where this has a different meaning. They are best explained via example:
Constructor
// In a constructor function this refers to newly created object
// Every function can be a constructor function in JavaScript e.g.
function Dog(color){
this.color = color;
}
// constructor functions are invoked by putting new in front of the function call
const myDog = new Dog('red');
// logs Dog has color red
console.log('Dog has color ' + myDog.color);
Normal function or method
// Browswer example:
console.log(this === window) // true
function myFn(){
console.log(this === window)
}
myFn(); // logs true
// The value of this depends on the context object.
// In this case the context from where the function is called is global.
// For the global context in the browser the context object is window.
const myObj = {fn: myFn}
myObj.fn() // logs false
// In this case the context from where the function is called is myObj.
// Therefore, false is logged.
myObj.fn2 = function myFn(){
console.log(this === myObj)
}
myObj.fn2() // logs true
// In this case the context from where the function is called is myObj.
// Therefore, true is logged.
Event listener
Inside the function of an event handler this will refer to the DOM element which detected the event. See this question: Using this inside an event handler

Javascript Scope/Closure: Why can I access internal vars here?

I am currently working on a relatively simple project and discovered something:
var test = (function() {
var internal = 5;
return {
init: function() {
$(document).on('click', function() {
alert(internal);
});
}
};
}());
test.init();
I thought closure and javascript scope (as I understood it) meant that a function can only access its own variables, and those 1 level above it. So Why does this work? When I click on the document I get an alert of "5", I expected to get undefined.
Here is a JSFiddle showing what I'm doing:
http://jsfiddle.net/mcraig_brs/m644L/1/
I thought closure and javascript scope (as I understood it) meant that a function can only access its own variables, and those 1 level above it.
Nope, it's all levels above it. In fact, that's how global variables work in JavaScript; they're just an example of closures in action.
So Why does this work?
When the JavaScript engine needs to resolve a symbol, it looks first (loosely) in the execution context that the symbol appears in (in this case, the one created by the call to the anonymous function you're passing into on). If it doesn't find a matching variable there, it looks at the execution context that surrounds that one (in this case, the one created by calling init). If it doesn't find it there, it looks at the next one out (the one created by calling your outermost anonymous function). And if not there, the next level out, until it reaches the global execution context.
More about closures (on my blog): Closures are not complicated
Note that I kept saying "...created by the call to..." above. This is a critical point: There can be (almost always are) multiple execution contexts created for a given scope as a program runs. Consider:
function foo(name) {
return function() {
alert(name);
};
}
(This is only two levels again, but it applies to as many levels as you like.)
foo, when called, creates and returns a function that, when called, shows us the name that was passed into foo when that function was created:
var f1 = foo("one");
var f2 = foo("two");
f1(); // "one"
f2(); // "two"
Calling foo creates an execution context. The function foo creates has an enduring reference to the part of that context that contains variables for that call (the spec calls it the "variable binding object"). That binding object still exists after foo returns, which is why when we call the function foo creates, it still has access to the relevant name variable.
It's important to remember that it isn't that closures get a copy of the value of the variable. They get an enduring reference to that variable. Which is why this works:
function foo(a) {
return function() {
alert(++a);
};
}
var f = foo(0);
f(); // 1
f(); // 2
f(); // 3
Javascript is statically scoped. when you are writing a function, you will have access to all the variables available to you inside the function as they are available from where you are accessing it.
var a = 10;
function foo() {
// now i have access in a
var b = 20;
// i have access to both a and b
function bar() {
// still have access to both a and b
var c = 30;
// any more nested function will have access to a,b and c
}
}

Verifying my understanding of the scope chain

(Question 1)
In Flanagan's JS Definitive Guide, he defines the Function method bind() in case it's not available (wasn't available n ECMAScript 3).
It looks like this:
function bind(f, o) {
if (f.bind) return f.bind(o); // Use the bind method, if there is one
else return function() { // Otherwise, bind it like this
return f.apply(o, arguments);
};
}
He illustrates the use of it with an example (which I have modified to change the 3rd line from f.bind(o)):
function f(y) { return this.x + y; } // This function needs to be bound
var o = { x : 1 }; // An object we'll bind to
var g = bind(f, o); // Calling g(x) invokes o.f(x)
g(2) // => 3
When I first saw this, I thought "Wouldn't arguments refer to the arguments variable within the bind function we're defining? But we want the arguments property of the function we eventually apply it to, like g in the example above..."
I verified that his example did indeed work and surmised that the line return f.apply(o, arguments) isn't evaluated until var g = bind(f, o) up above. That is, I thought, when you return a function, are you just returning the source code for that function, no? Until its evaluated? So I tested this theory by trying out a slightly different version of bind:
function mybind2(f, o) {
var arguments = 6;
return function() { // Otherwise, bind it like this
return f.apply(o, arguments);
};
}
If it's simply returning tbe unevaluated function source, there's no way that it stores arguments = 6 when later evaluated, right? And after checking, I still got g(2) => 3. But then I realized -- if it's just returning unevaluated code, how is the o in return f.apply(o, arguments) getting passed?
So I decided that what must be happening is this:
The o and the arguments variables (even when arguments equals 6) are getting passed on to the function. It's just that when the function g is eventually called, the arguments variable is redefined by the interpreter to be the arguments of g (in g(2)) and hence the original value of arguments that I tried to pass on was replaced. But this implies that it was sort of storing the function as text up until then, because otherwise o and arguments would have simply been data in the program, rather than variables that could be overwritten. Is this explanation correct?
(Question 2) Earlier on the same page, he defines the following function which makes use the apply method to trace a function for debugging:
function trace(o, m) {
var original = o[m]; // Remember original method in the closure.
o[m] = function() { // Now define the new method.
console.log(new Date(), "Entering:", m); // Log message.
var result = original.apply(this, arguments); // Invoke original.
console.log(new Date(), "Exiting:", m); // Log message.
return result; // Return result.
};
}
Wouldn't the this here refer to the function that we're defining, rather than the object o? Or are those two things one and the same?
Question 1
For your first question, let's simplify the example so it's clear what being done:
function bind(func, thisArg) {
return function () {
return func.apply(thisArg, arguments);
};
}
What happens here is that a closure is created that allows the access of the original function and the value of this that is passed. The anonymous function returned will keep the original function in its scope, which ends up being like the following:
var func = function () {};
var thisArg = {};
func.apply(thisArg, [/*arguments*/]);
About your issue with arguments, that variable is implicitly defined in the scope of all functions created, so therefore the inner arguments will shadow the outer arguments, making it work as expected.
Question 2
Your problem is to your misunderstanding of the late binding of this -- this is one of the more confusing things about JavaScript to people used to more object-oriented languages that also have their own this keyword. The value of this is only set when it is called, and where it is called defines the value of this when it is called. It is simply the value of the parent object from where it is at the time the function is called, with the exception of cases where the this value is overridden.
For example, see this:
function a() {return this;};
a(); // global object;
var b = {};
b.a = a;
b.a(); // object b
If this was set when the function was defined, calling b.a would result in the global object, not the b object. Let's also simplify what happens with the second function given:
function trace(obj, property) {
var method = obj[property]; // Remember original method in the closure.
obj[property] = function () { // Now define the new method.
console.log(1); // Log message.
// Invoke original method and return its result
return original.apply(this, arguments);
};
}
What happens in this case is that the original method is stored in a closure. Assigning to the object that the method was originally in does not overwrite the method object. Just like a normal method assignment, the principles of the this value still work the same -- it will return the parent object, not the function that you've defined. If you do a simple assignment:
var obj = {};
obj.foo = function () { return this; };
obj.foo(); // obj
It does what was expected, returns the parent object at the time of calling. Placing your code in a nested function makes no difference in this regard.
Some good resources
If you'd like to learn more about writing code in JavaScript, I'd highly recommend taking a look at Fully Understanding the this Keyword by Cody Lindley -- it goes into much more detail about how the this keyword behaves in different contexts and the things you can do with it.
But this implies that it was sort of storing the function as text up until then, because otherwise o and arguments would have simply been data in the program, rather than variables that could be overwritten. Is this explanation correct?
No. this and arguments are just special variables which are implicitly set when a function is executed. They don't adhere to normal "closure rules". The function definition itself is still evaluated immediately and bind returns a function object.
You can easily verify this with:
var g = bind(f, o);
console.log(typeof g);
Here is a simpler example which doesn't involve higher order functions:
var arguments = 42;
function foo() {
console.log(arguments);
}
foo(1, 2);
I think you see that the definition of foo is evaluated like you'd expect. Yet, console.log(arguments) logs [1, 2] and not 42.
Wouldn't the this here refer to the function that we're defining, rather than the object o? Or are those two things one and the same?
this never refers to the function itself (unless you explicitly set it so). The value of this is completely determined by how the function is called. That's why this is often called "the context". The MDN documentation provides extensive information about this.
Reading material:
MDN - this
MDN - arguments

calling inner-function dynamically in javascript

is it possible to call inner function dynamically(by it's name)?
e.g.
function a(){
function b(){..}
var funcName = "b";
//calling the function b somehow using funcName
}
I know it's possible by using eval, but I rather not using eval, if b was global function I could use window[funcName] or global[funcName]...
Sounds like you want to access b through its name ("b") magically, without recording the name b in a separate structure.
You are correct that global variables are properties of the global object, generally accessed through the identifier window in web environments. It's fun how that works actually, as window is a property of the global object pointing to itself, but, that is off topic.
Local variables are properties of an object, too -- the call object. This object exists temporarily during the call. If you could get to the call object directly, then you would be able to say something like theCallObject[funcName], because the nested function is still a local variable, although hoisted. Alas, this object is not directly accessible, so you basically have to revert to the techniques shown in the earlier answers.
Here is an SO question with info: How to output call object in javascript?.
I suppose it is possible to write a JS engine with an extension permitting access to the call object, much like Mozilla gave us the non-standard __proto__.
Well, if you can declare it differently, and it's not so hard:
function a(){
this.b = function() {...};
// dynamic access
var funcName = "b";
this[funcName]();
// still need static access?
var b = this.b;
b();
}
You can mix it up, of course. But Functions are just objects (both a and b), so they can be assigned, moved around, and even have instance members.
A variation on OverZealous's answer that does not muck with this:
function a(){
function b(){..}
var internalFuncs = {"b": b}
var funcName = "b"
internalFuncs[funcName]()
}
Happy coding.
Another approach:
var a = (function() {
return {
b: function() { alert("b"); },
c: function() { alert("c"); },
d: function() { alert("d"); }
}
})();
a["b"]();
Fiddle: http://jsfiddle.net/raSKW/

How does "this" keyword work within a function?

I just came across an interesting situation in JavaScript. I have a class with a method that defines several objects using object-literal notation. Inside those objects, the this pointer is being used. From the behavior of the program, I have deduced that the this pointer is referring to the class on which the method was invoked, and not the object being created by the literal.
This seems arbitrary, though it is the way I would expect it to work. Is this defined behavior? Is it cross-browser safe? Is there any reasoning underlying why it is the way it is beyond "the spec says so" (for instance, is it a consequence of some broader design decision/philosophy)? Pared-down code example:
// inside class definition, itself an object literal, we have this function:
onRender: function() {
this.menuItems = this.menuItems.concat([
{
text: 'Group by Module',
rptletdiv: this
},
{
text: 'Group by Status',
rptletdiv: this
}]);
// etc
}
Cannibalized from another post of mine, here's more than you ever wanted to know about this.
Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)
The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.
There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.
As a Method
A method is a function that's attached to an object
var foo = {};
foo.someMethod = function(){
alert(this);
}
When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.
As A Function
If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.
var foo = function(){
alert(this);
}
foo();
This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.
Many people get around the problem by doing something like, um, this
var foo = {};
foo.someMethod = function (){
var that=this;
function bar(){
alert(that);
}
}
You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.
NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).
As a Constructor
You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.
You invoke a function as a Constructor with the new keyword.
function Foo(){
this.confusing = 'hell yeah';
}
var myObject = new Foo();
When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.
Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.
With the Apply Method
Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.
function foo(a,b){
alert(a);
alert(b);
alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);
Function calls
Functions are just a type of Object.
All Function objects have call and apply methods which execute the Function object they're called on.
When called, the first argument to these methods specifies the object which will be referenced by the this keyword during execution of the Function - if it's null or undefined, the global object, window, is used for this.
Thus, calling a Function...
whereAmI = "window";
function foo()
{
return "this is " + this.whereAmI + " with " + arguments.length + " + arguments";
}
...with parentheses - foo() - is equivalent to foo.call(undefined) or foo.apply(undefined), which is effectively the same as foo.call(window) or foo.apply(window).
>>> foo()
"this is window with 0 arguments"
>>> foo.call()
"this is window with 0 arguments"
Additional arguments to call are passed as the arguments to the function call, whereas a single additional argument to apply can specify the arguments for the function call as an Array-like object.
Thus, foo(1, 2, 3) is equivalent to foo.call(null, 1, 2, 3) or foo.apply(null, [1, 2, 3]).
>>> foo(1, 2, 3)
"this is window with 3 arguments"
>>> foo.apply(null, [1, 2, 3])
"this is window with 3 arguments"
If a function is a property of an object...
var obj =
{
whereAmI: "obj",
foo: foo
};
...accessing a reference to the Function via the object and calling it with parentheses - obj.foo() - is equivalent to foo.call(obj) or foo.apply(obj).
However, functions held as properties of objects are not "bound" to those objects. As you can see in the definition of obj above, since Functions are just a type of Object, they can be referenced (and thus can be passed by reference to a Function call or returned by reference from a Function call). When a reference to a Function is passed, no additional information about where it was passed from is carried with it, which is why the following happens:
>>> baz = obj.foo;
>>> baz();
"this is window with 0 arguments"
The call to our Function reference, baz, doesn't provide any context for the call, so it's effectively the same as baz.call(undefined), so this ends up referencing window. If we want baz to know that it belongs to obj, we need to somehow provide that information when baz is called, which is where the first argument to call or apply and closures come into play.
Scope chains
function bind(func, context)
{
return function()
{
func.apply(context, arguments);
};
}
When a Function is executed, it creates a new scope and has a reference to any enclosing scope. When the anonymous function is created in the above example, it has a reference to the scope it was created in, which is bind's scope. This is known as a "closure."
[global scope (window)] - whereAmI, foo, obj, baz
|
[bind scope] - func, context
|
[anonymous scope]
When you attempt to access a variable this "scope chain" is walked to find a variable with the given name - if the current scope doesn't contain the variable, you look at the next scope in the chain, and so on until you reach the global scope. When the anonymous function is returned and bind finishes executing, the anonymous function still has a reference to bind's scope, so bind's scope doesn't "go away".
Given all the above you should now be able to understand how scope works in the following example, and why the technique for passing a function around "pre-bound" with a particular value of this it will have when it is called works:
>>> baz = bind(obj.foo, obj);
>>> baz(1, 2);
"this is obj with 2 arguments"
Is this defined behavior? Is it
cross-browser safe?
Yes. And yes.
Is there any reasoning underlying why
it is the way it is...
The meaning of this is pretty simple to deduce:
If this is used inside a constructor function, and the function was invoked with the new keyword, this refers to the object that will be created. this will continue to mean the object even in public methods.
If this is used anywhere else, including nested protected functions, it refers to the global scope (which in the case of the browser is the window object).
The second case is obviously a design flaw, but it's pretty easy to work around it by using closures.
In this case the inner this is bound to the global object instead of to the this variable of the outer function.
It's the way the language is designed.
See "JavaScript: The Good Parts" by Douglas Crockford for a good explanation.
I found a nice tutorial about the ECMAScript this
A this value is a special object which is related with the execution
context. Therefore, it may be named as a context object (i.e. an
object in which context the execution context is activated).
Any object may be used as this value of the context.
a this value is a property of the execution context, but not a
property of the variable object.
This feature is very important, because in contrary to variables, this value never participates in identifier resolution process. I.e. when accessing this in a code, its value is taken directly from the execution context and without any scope chain lookup. The value of this is determinate only once when entering the context.
In the global context, a this value is the global object itself (that means, this value here equals to variable object)
In case of a function context, this value in every single function call may be different
Reference Javascript-the-core and Chapter-3-this
All the answers here are very helpful but I still had a hard time to figure out what this point to in my case, which involved object destructuring. So I would like to add one more answer using a simplified version of my code,
let testThis = {
x: 12,
y: 20,
add({ a, b, c }) {
let d = a + b + c()
console.log(d)
},
test() {
//the result is NaN
this.add({
a: this.x,
b: this.y,
c: () => {
//this here is testThis, NOT the object literal here
return this.a + this.b
},
})
},
test2() {
//64 as expected
this.add({
a: this.x,
b: this.y,
c: () => {
return this.x + this.y
},
})
},
test3() {
//NaN
this.add({
a: this.x,
b: this.y,
c: function () {
//this here is the global object
return this.x + this.y
},
})
},
}
As here explained Javascript - destructuring object - 'this' set to global or undefined, instead of object it actually has nothing to do with object destructuring but how c() is called, but it is not easy to see through it here.
MDN says "arrow function expressions are best suited for non-method functions" but arrow function works here.
this in JS:
There are 3 types of functions where this has a different meaning. They are best explained via example:
Constructor
// In a constructor function this refers to newly created object
// Every function can be a constructor function in JavaScript e.g.
function Dog(color){
this.color = color;
}
// constructor functions are invoked by putting new in front of the function call
const myDog = new Dog('red');
// logs Dog has color red
console.log('Dog has color ' + myDog.color);
Normal function or method
// Browswer example:
console.log(this === window) // true
function myFn(){
console.log(this === window)
}
myFn(); // logs true
// The value of this depends on the context object.
// In this case the context from where the function is called is global.
// For the global context in the browser the context object is window.
const myObj = {fn: myFn}
myObj.fn() // logs false
// In this case the context from where the function is called is myObj.
// Therefore, false is logged.
myObj.fn2 = function myFn(){
console.log(this === myObj)
}
myObj.fn2() // logs true
// In this case the context from where the function is called is myObj.
// Therefore, true is logged.
Event listener
Inside the function of an event handler this will refer to the DOM element which detected the event. See this question: Using this inside an event handler

Categories

Resources