Generating Fibonacci Sequence - javascript
var x = 0;
var y = 1;
var z;
fib[0] = 0;
fib[1] = 1;
for (i = 2; i <= 10; i++) {
alert(x + y);
fib[i] = x + y;
x = y;
z = y;
}
I'm trying to get to generate a simple Fibonacci Sequence but there no output.
Can anybody let me know what's wrong?
You have never declared fib to be an array. Use var fib = []; to solve this.
Also, you're never modifying the y variable, neither using it.
The code below makes more sense, plus, it doesn't create unused variables:
var i;
var fib = [0, 1]; // Initialize array!
for (i = 2; i <= 10; i++) {
// Next fibonacci number = previous + one before previous
// Translated to JavaScript:
fib[i] = fib[i - 2] + fib[i - 1];
console.log(fib[i]);
}
According to the Interview Cake question, the sequence goes 0,1,1,2,3,5,8,13,21. If this is the case, this solution works and is recursive without the use of arrays.
function fibonacci(n) {
return n < 1 ? 0
: n <= 2 ? 1
: fibonacci(n - 1) + fibonacci(n - 2)
}
console.log(fibonacci(4))
Think of it like this.
fibonacci(4) .--------> 2 + 1 = 3
| / |
'--> fibonacci(3) + fibonacci(2)
| ^
| '----------- 2 = 1 + 1 <----------.
1st step -> | ^ |
| | |
'----> fibonacci(2) -' + fibonacci(1)-'
Take note, this solution is not very efficient though.
Yet another answer would be to use es6 generator functions.
function* fib() {
var current = a = b = 1;
yield 1;
while (true) {
current = b;
yield current;
b = a + b;
a = current;
}
}
sequence = fib();
sequence.next(); // 1
sequence.next(); // 1
sequence.next(); // 2
// ...
Here's a simple function to iterate the Fibonacci sequence into an array using arguments in the for function more than the body of the loop:
fib = function(numMax){
for(var fibArray = [0,1], i=0,j=1,k=0; k<numMax;i=j,j=x,k++ ){
x=i+j;
fibArray.push(x);
}
console.log(fibArray);
}
fib(10)
[ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ]
You should've declared the fib variable to be an array in the first place (such as var fib = [] or var fib = new Array()) and I think you're a bit confused about the algorithm.
If you use an array to store the fibonacci sequence, you do not need the other auxiliar variables (x,y,z) :
var fib = [0, 1];
for(var i=fib.length; i<10; i++) {
fib[i] = fib[i-2] + fib[i-1];
}
console.log(fib);
Click for the demo
You should consider the recursive method too (note that this is an optimised version) :
function fib(n, undefined){
if(fib.cache[n] === undefined){
fib.cache[n] = fib(n-1) + fib(n-2);
}
return fib.cache[n];
}
fib.cache = [0, 1, 1];
and then, after you call the fibonacci function, you have all the sequence in the fib.cache field :
fib(1000);
console.log(fib.cache);
The golden ration "phi" ^ n / sqrt(5) is asymptotic to the fibonacci of n, if we round that value up, we indeed get the fibonacci value.
function fib(n) {
let phi = (1 + Math.sqrt(5))/2;
let asymp = Math.pow(phi, n) / Math.sqrt(5);
return Math.round(asymp);
}
fib(1000); // 4.346655768693734e+208 in just a few milliseconds
This runs faster on large numbers compared to the recursion based solutions.
You're not assigning a value to z, so what do you expect y=z; to do? Likewise you're never actually reading from the array. It looks like you're trying a combination of two different approaches here... try getting rid of the array entirely, and just use:
// Initialization of x and y as before
for (i = 2; i <= 10; i++)
{
alert(x + y);
z = x + y;
x = y;
y = z;
}
EDIT: The OP changed the code after I'd added this answer. Originally the last line of the loop was y = z; - and that makes sense if you've initialized z as per my code.
If the array is required later, then obviously that needs to be populated still - but otherwise, the code I've given should be fine.
Another easy way to achieve this:
function fibonacciGenerator(n) {
// declare the array starting with the first 2 values of the fibonacci sequence
// starting at array index 1, and push current index + previous index to the array
for (var fibonacci = [0, 1], i = 2; i < n; i++)
fibonacci.push(fibonacci[i-1] + fibonacci[i - 2])
return fibonacci
}
console.log( fibonacciGenerator(10) )
function fib(n) {
if (n <= 1) {
return n;
} else {
return fib(n - 1) + fib(n - 2);
}
}
fib(10); // returns 55
fibonacci 1,000 ... 10,000 ... 100,000
Some answers run into issues when trying to calculate large fibonacci numbers. Others are approximating numbers using phi. This answer will show you how to calculate a precise series of large fibonacci numbers without running into limitations set by JavaScript's floating point implementation.
Below, we generate the first 1,000 fibonacci numbers in a few milliseconds. Later, we'll do 100,000!
const { fromInt, toString, add } =
Bignum
const bigfib = function* (n = 0)
{
let a = fromInt (0)
let b = fromInt (1)
let _
while (n >= 0) {
yield toString (a)
_ = a
a = b
b = add (b, _)
n = n - 1
}
}
console.time ('bigfib')
const seq = Array.from (bigfib (1000))
console.timeEnd ('bigfib')
// 25 ms
console.log (seq.length)
// 1001
console.log (seq)
// [ 0, 1, 1, 2, 3, ... 995 more elements ]
Let's see the 1,000th fibonacci number
console.log (seq [1000])
// 43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875
10,000
This solution scales quite nicely. We can calculate the first 10,000 fibonacci numbers in under 2 seconds. At this point in the sequence, the numbers are over 2,000 digits long – way beyond the capacity of JavaScript's floating point numbers. Still, our result includes precise values without making approximations.
console.time ('bigfib')
const seq = Array.from (bigfib (10000))
console.timeEnd ('bigfib')
// 1877 ms
console.log (seq.length)
// 10001
console.log (seq [10000] .length)
// 2090
console.log (seq [10000])
// 3364476487 ... 2070 more digits ... 9947366875
Of course all of that magic takes place in Bignum, which we will share now. To get an intuition for how we will design Bignum, recall how you added big numbers using pen and paper as a child...
1259601512351095520986368
+ 50695640938240596831104
---------------------------
?
You add each column, right to left, and when a column overflows into the double digits, remembering to carry the 1 over to the next column...
... <-001
1259601512351095520986368
+ 50695640938240596831104
---------------------------
... <-472
Above, we can see that if we had two 10-digit numbers, it would take approximately 30 simple additions (3 per column) to compute the answer. This is how we will design Bignum to work
const Bignum =
{ fromInt: (n = 0) =>
n < 10
? [ n ]
: [ n % 10, ...Bignum.fromInt (n / 10 >> 0) ]
, fromString: (s = "0") =>
Array.from (s, Number) .reverse ()
, toString: (b) =>
Array.from (b) .reverse () .join ('')
, add: (b1, b2) =>
{
const len = Math.max (b1.length, b2.length)
let answer = []
let carry = 0
for (let i = 0; i < len; i = i + 1) {
const x = b1[i] || 0
const y = b2[i] || 0
const sum = x + y + carry
answer.push (sum % 10)
carry = sum / 10 >> 0
}
if (carry > 0) answer.push (carry)
return answer
}
}
We'll run a quick test to verify our example above
const x =
fromString ('1259601512351095520986368')
const y =
fromString ('50695640938240596831104')
console.log (toString (add (x,y)))
// 1310297153289336117817472
And now a complete program demonstration. Expand it to calculate the precise 10,000th fibonacci number in your own browser! Note, the result is the same as the answer provided by wolfram alpha
const Bignum =
{ fromInt: (n = 0) =>
n < 10
? [ n ]
: [ n % 10, ...Bignum.fromInt (n / 10 >> 0) ]
, fromString: (s = "0") =>
Array.from (s, Number) .reverse ()
, toString: (b) =>
Array.from (b) .reverse () .join ('')
, add: (b1, b2) =>
{
const len = Math.max (b1.length, b2.length)
let answer = []
let carry = 0
for (let i = 0; i < len; i = i + 1) {
const x = b1[i] || 0
const y = b2[i] || 0
const sum = x + y + carry
answer.push (sum % 10)
carry = sum / 10 >> 0
}
if (carry > 0) answer.push (carry)
return answer
}
}
const { fromInt, toString, add } =
Bignum
const bigfib = function* (n = 0)
{
let a = fromInt (0)
let b = fromInt (1)
let _
while (n >= 0) {
yield toString (a)
_ = a
a = b
b = add (b, _)
n = n - 1
}
}
console.time ('bigfib')
const seq = Array.from (bigfib (10000))
console.timeEnd ('bigfib')
// 1877 ms
console.log (seq.length)
// 10001
console.log (seq [10000] .length)
// 2090
console.log (seq [10000])
// 3364476487 ... 2070 more digits ... 9947366875
100,000
I was just curious how far this little script could go. It seems like the only limitation is just time and memory. Below, we calculate the first 100,000 fibonacci numbers without approximation. Numbers at this point in the sequence are over 20,000 digits long, wow! It takes 3.18 minutes to complete but the result still matches the answer from wolfram alpha
console.time ('bigfib')
const seq = Array.from (bigfib (100000))
console.timeEnd ('bigfib')
// 191078 ms
console.log (seq .length)
// 100001
console.log (seq [100000] .length)
// 20899
console.log (seq [100000])
// 2597406934 ... 20879 more digits ... 3428746875
BigInt
JavaScript now has native support for BigInt. This allows for calculating huge integers very quickly -
function* fib (n)
{ let a = 0n
let b = 1n
let _
while (n >= 0) {
yield a.toString()
_ = a
a = b
b = b + _
n = n - 1
}
}
console.time("fib(1000)")
const result = Array.from(fib(1000))
console.timeEnd("fib(1000)")
document.body.textContent = JSON.stringify(result, null, 2)
body {
font-family: monospace;
white-space: pre;
}
I like the fact that there are so many ways to create a fibonacci sequence in JS. I will try to reproduce a few of them. The goal is to output a sequence to console (like {n: 6, fiboNum: 8})
Good ol' closure
// The IIFE form is purposefully omitted. See below.
const fiboGenClosure = () => {
let [a, b] = [0, 1];
let n = 0;
return (fiboNum = a) => {
[a, b] = [b, a + b];
return {
n: n++,
fiboNum: fiboNum
};
};
}
// Gets the sequence until given nth number. Always returns a new copy of the main function, so it is possible to generate multiple independent sequences.
const generateFiboClosure = n => {
const newSequence = fiboGenClosure();
for (let i = 0; i <= n; i++) {
console.log(newSequence());
}
}
generateFiboClosure(21);
Fancy ES6 generator
Similar to the closure pattern above, using the advantages of generator function and for..of loop.
// The 'n' argument is a substitute for index.
function* fiboGen(n = 0) {
let [a, b] = [0, 1];
while (true) {
yield [a, n++];
[a, b] = [b, a + b];
}
}
// Also gives a new sequence every time is invoked.
const generateFibonacci = n => {
const iterator = fiboGen();
for (let [value, index] of iterator) {
console.log({
n: index,
fiboNum: value
});
if (index >= n) break;
}
}
generateFibonacci(21);
Tail call recursion
This one is a little tricky, because, now in late 2018, TC optimization is still an issue. But honestly – if you don't use any smart tricks to allow the default JS engine to use a really big numbers, it will get dizzy and claims that the next fibonacci number is "Infinity" by iteration 1477. The stack would probably overflow somewhere around iteration 10 000 (vastly depends on browser, memory etc…). Could be probably padded by try… catch block or check if "Infinity" was reached.
const fibonacciRTC = (n, i = 0, a = 0, b = 1) => {
console.log({
n: i,
fibonacci: a
});
if (n === 0) return;
return fibonacciRTC(--n, ++i, b, a + b);
}
fibonacciRTC(21)
It can be written as a one-liner, if we throe away the console.log thing and simply return a number:
const fibonacciRTC2 = (n, a = 0, b = 1) => n === 0 ? a : fibonacciRTC2(n - 1, b, a + b);
console.log(fibonacciRTC2(21))
Important note!
As I found out reading this mathIsFun article, the fibonacci sequence is valid for negative numbers as well! I tried to implement that in the recursive tail call form above like that:
const fibonacciRTC3 = (n, a = 0, b = 1, sign = n >= 0 ? 1 : -1) => {
if (n === 0) return a * sign;
return fibonacciRTC3(n - sign, b, a + b, sign);
}
console.log(fibonacciRTC3(8)); // 21
console.log(fibonacciRTC3(-8)); // -21
There is also a generalization of Binet's formula for negative integers:
static float phi = (1.0f + sqrt(5.0f)) / 2.0f;
int generalized_binet_fib(int n) {
return round( (pow(phi, n) - cos(n * M_PI) * pow(phi, -n)) / sqrt(5.0f) );
}
...
for(int i = -10; i < 10; ++i)
printf("%i ", generalized_binet_fib(i));
A quick way to get ~75
ty #geeves for the catch, I replaced Math.floor for Math.round which seems to get it up to 76 where floating point issues come into play :/ ...
either way, I wouldn't want to be using recursion up and until that point.
/**
* Binet Fibonacci number formula for determining
* sequence values
* #param {int} pos - the position in sequence to lookup
* #returns {int} the Fibonacci value of sequence #pos
*/
var test = [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170,1836311903,2971215073,4807526976,7778742049,12586269025,20365011074,32951280099,53316291173,86267571272,139583862445,225851433717,365435296162,591286729879,956722026041,1548008755920,2504730781961,4052739537881,6557470319842,10610209857723,17167680177565,27777890035288,44945570212853,72723460248141,117669030460994,190392490709135,308061521170129,498454011879264,806515533049393,1304969544928657,2111485077978050,3416454622906707,5527939700884757,8944394323791464,14472334024676221,23416728348467685,37889062373143906,61305790721611591,99194853094755497,160500643816367088,259695496911122585,420196140727489673,679891637638612258,1100087778366101931,1779979416004714189,2880067194370816120,4660046610375530309,7540113804746346429,12200160415121876738,19740274219868223167,31940434634990099905,51680708854858323072,83621143489848422977,135301852344706746049,218922995834555169026];
var fib = function (pos) {
return Math.round((Math.pow( 1 + Math.sqrt(5), pos)
- Math.pow( 1 - Math.sqrt(5), pos))
/ (Math.pow(2, pos) * Math.sqrt(5)));
};
/* This is only for the test */
var max = test.length,
i = 0,
frag = document.createDocumentFragment(),
_div = document.createElement('div'),
_text = document.createTextNode(''),
div,
text,
err,
num;
for ( ; i < max; i++) {
div = _div.cloneNode();
text = _text.cloneNode();
num = fib(i);
if (num !== test[i]) {
err = i + ' == ' + test[i] + '; got ' + num;
div.style.color = 'red';
}
text.nodeValue = i + ': ' + num;
div.appendChild(text);
frag.appendChild(div);
}
document.body.appendChild(frag);
You can get some cache to speedup the algorithm...
var tools = {
fibonacci : function(n) {
var cache = {};
// optional seed cache
cache[2] = 1;
cache[3] = 2;
cache[4] = 3;
cache[5] = 5;
cache[6] = 8;
return execute(n);
function execute(n) {
// special cases 0 or 1
if (n < 2) return n;
var a = n - 1;
var b = n - 2;
if(!cache[a]) cache[a] = execute(a);
if(!cache[b]) cache[b] = execute(b);
return cache[a] + cache[b];
}
}
};
If using ES2015
const fib = (n, prev = 0, current = 1) => n
? fib(--n, current, prev + current)
: prev + current
console.log( fib(10) )
If you need to build a list of fibonacci numbers easily you can use array destructuring assignment to ease your pain:
function fibonacci(n) {
let fibList = [];
let [a, b] = [0, 1]; // array destructuring to ease your pain
while (a < n) {
fibList.push(a);
[a, b] = [b, a + b]; // less pain, more gain
}
return fibList;
}
console.log(fibonacci(10)); // prints [0, 1, 1, 2, 3, 5, 8]
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>fibonacci series</title>
<script type="text/javascript">
function generateseries(){
var fno = document.getElementById("firstno").value;
var sno = document.getElementById("secondno").value;
var a = parseInt(fno);
var result = new Array();
result[0] = a;
var b = ++fno;
var c = b;
while (b <= sno) {
result.push(c);
document.getElementById("maindiv").innerHTML = "Fibonacci Series between "+fno+ " and " +sno+ " is " +result;
c = a + b;
a = b;
b = c;
}
}
function numeric(evt){
var theEvent = evt || window.event;
var key = theEvent.keyCode || theEvent.which;
key = String.fromCharCode(key);
var regex = /[0-9]|\./;
if (!regex.test(key)) {
theEvent.returnValue = false;
if (theEvent.preventDefault)
theEvent.preventDefault();
}
}
</script>
<h1 align="center">Fibonacci Series</h1>
</head>
<body>
<div id="resultdiv" align="center">
<input type="text" name="firstno" id="firstno" onkeypress="numeric(event)"><br>
<input type="text" name="secondno" id="secondno" onkeypress="numeric(event)"><br>
<input type="button" id="result" value="Result" onclick="generateseries();">
<div id="maindiv"></div>
</div>
</body>
</html>
I know this is a bit of an old question, but I realized that many of the answers here are utilizing for loops rather than while loops.
Sometimes, while loops are faster than for loops, so I figured I'd contribute some code that runs the Fibonacci sequence in a while loop as well! Use whatever you find suitable to your needs.
function fib(length) {
var fibArr = [],
i = 0,
j = 1;
fibArr.push(i);
fibArr.push(j);
while (fibArr.length <= length) {
fibArr.push(fibArr[j] + fibArr[i]);
j++;
i++;
}
return fibArr;
};
fib(15);
sparkida, found an issue with your method. If you check position 10, it returns 54 and causes all subsequent values to be incorrect. You can see this appearing here: http://jsfiddle.net/createanaccount/cdrgyzdz/5/
(function() {
function fib(n) {
var root5 = Math.sqrt(5);
var val1 = (1 + root5) / 2;
var val2 = 1 - val1;
var value = (Math.pow(val1, n) - Math.pow(val2, n)) / root5;
return Math.floor(value + 0.5);
}
for (var i = 0; i < 100; i++) {
document.getElementById("sequence").innerHTML += (0 < i ? ", " : "") + fib(i);
}
}());
<div id="sequence">
</div>
Here are examples how to write fibonacci using recursion, generator and reduce.
'use strict'
//------------- using recursion ------------
function fibonacciRecursion(n) {
return (n < 2) ? n : fibonacciRecursion(n - 2) + fibonacciRecursion(n - 1)
}
// usage
for (let i = 0; i < 10; i++) {
console.log(fibonacciRecursion(i))
}
//-------------- using generator -----------------
function* fibonacciGenerator() {
let a = 1,
b = 0
while (true) {
yield b;
[a, b] = [b, a + b]
}
}
// usage
const gen = fibonacciGenerator()
for (let i = 0; i < 10; i++) {
console.log(gen.next().value)
}
//------------- using reduce ---------------------
function fibonacciReduce(n) {
return new Array(n).fill(0)
.reduce((prev, curr) => ([prev[0], prev[1]] = [prev[1], prev[0] + prev[1]], prev), [0, 1])[0]
}
// usage
for (let i = 0; i < 10; i++) {
console.log(fibonacciReduce(i))
}
I just would like to contribute with a tail call optimized version by ES6. It's quite simple;
var fibonacci = (n, f = 0, s = 1) => n === 0 ? f : fibonacci(--n, s, f + s);
console.log(fibonacci(12));
There is no need for slow loops, generators or recursive functions (with or without caching). Here is a fast one-liner using Array and reduce.
ECMAScript 6:
var fibonacci=(n)=>Array(n).fill().reduce((a,b,c)=>a.concat(c<2?c:a[c-1]+a[c-2]),[])
ECMAScript 5:
function fibonacci(n){
return Array.apply(null,{length:n}).reduce(function(a,b,c){return a.concat((c<2)?c:a[c-1]+a[c-2]);},[]);
}
Tested in Chrome 59 (Windows 10):
fibonacci(10); // 0 ms -> (10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
JavaScript can handle numbers up to 1476 before reaching Infinity.
fibonacci(1476); // 11ms -> (1476) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...]
Another implementation, while recursive is very fast and uses single inline function. It hits the javascript 64-bit number precision limit, starting 80th sequence (as do all other algorithms):
For example if you want the 78th term (78 goes in the last parenthesis):
(function (n,i,p,r){p=(p||0)+r||1;i=i?i+1:1;return i<=n?arguments.callee(n,i,r,p):r}(78));
will return: 8944394323791464
This is backwards compatible all the way to ECMASCRIPT4 - I tested it with IE7 and it works!
This script will take a number as parameter, that you want your Fibonacci sequence to go.
function calculateFib(num) {
var fibArray = [];
var counter = 0;
if (fibArray.length == 0) {
fibArray.push(
counter
);
counter++
};
fibArray.push(fibArray[fibArray.length - 1] + counter);
do {
var lastIndex = fibArray[fibArray.length - 1];
var snLastIndex = fibArray[fibArray.length - 2];
if (lastIndex + snLastIndex < num) {
fibArray.push(lastIndex + snLastIndex);
}
} while (lastIndex + snLastIndex < num);
return fibArray;
};
This is what I came up with
//fibonacci numbers
//0,1,1,2,3,5,8,13,21,34,55,89
//print out the first ten fibonacci numbers
'use strict';
function printFobonacciNumbers(n) {
var firstNumber = 0,
secondNumber = 1,
fibNumbers = [];
if (n <= 0) {
return fibNumbers;
}
if (n === 1) {
return fibNumbers.push(firstNumber);
}
//if we are here,we should have at least two numbers in the array
fibNumbers[0] = firstNumber;
fibNumbers[1] = secondNumber;
for (var i = 2; i <= n; i++) {
fibNumbers[i] = fibNumbers[(i - 1)] + fibNumbers[(i - 2)];
}
return fibNumbers;
}
var result = printFobonacciNumbers(10);
if (result) {
for (var i = 0; i < result.length; i++) {
console.log(result[i]);
}
}
Beginner, not too elegant, but shows the basic steps and deductions in JavaScript
/* Array Four Million Numbers */
var j = [];
var x = [1,2];
var even = [];
for (var i = 1;i<4000001;i++){
j.push(i);
}
// Array Even Million
i = 1;
while (i<4000001){
var k = j[i] + j[i-1];
j[i + 1] = k;
if (k < 4000001){
x.push(k);
}
i++;
}
var total = 0;
for (w in x){
if (x[w] %2 === 0){
even.push(x[w]);
}
}
for (num in even){
total += even[num];
}
console.log(x);
console.log(even);
console.log(total);
My 2 cents:
function fibonacci(num) {
return Array.apply(null, Array(num)).reduce(function(acc, curr, idx) {
return idx > 2 ? acc.concat(acc[idx-1] + acc[idx-2]) : acc;
}, [0, 1, 1]);
}
console.log(fibonacci(10));
I would like to add some more code as an answer :), Its never too late to code :P
function fibonacciRecursive(a, b, counter, len) {
if (counter <= len) {
console.log(a);
fibonacciRecursive(b, a + b, counter + 1, len);
}
}
fibonacciRecursive(0, 1, 1, 20);
Result
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
function fibo(count) {
//when count is 0, just return
if (!count) return;
//Push 0 as the first element into an array
var fibArr = [0];
//when count is 1, just print and return
if (count === 1) {
console.log(fibArr);
return;
}
//Now push 1 as the next element to the same array
fibArr.push(1);
//Start the iteration from 2 to the count
for(var i = 2, len = count; i < len; i++) {
//Addition of previous and one before previous
fibArr.push(fibArr[i-1] + fibArr[i-2]);
}
//outputs the final fibonacci series
console.log(fibArr);
}
Whatever count we need, we can give it to above fibo method and get the fibonacci series upto the count.
fibo(20); //output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]
Fibonacci (one-liner)
function fibonacci(n) {
return (n <= 1) ? n : fibonacci(n - 1) + fibonacci(n - 2);
}
Fibonacci (recursive)
function fibonacci(number) {
// n <= 1
if (number <= 0) {
return n;
} else {
// f(n) = f(n-1) + f(n-2)
return fibonacci(number - 1) + fibonacci(number - 2);
}
};
console.log('f(14) = ' + fibonacci(14)); // 377
Fibonacci (iterative)
function fibonacci(number) {
// n < 2
if (number <= 0) {
return number ;
} else {
var n = 2; // n = 2
var fn_1 = 0; // f(n-2), if n=2
var fn_2 = 1; // f(n-1), if n=2
// n >= 2
while (n <= number) {
var aa = fn_2; // f(n-1)
var fn = fn_1 + fn_2; // f(n)
// Preparation for next loop
fn_1 = aa;
fn_2 = fn;
n++;
}
return fn_2;
}
};
console.log('f(14) = ' + fibonacci(14)); // 377
Fibonacci (with Tail Call Optimization)
function fibonacci(number) {
if (number <= 1) {
return number;
}
function recursion(length, originalLength, previous, next) {
if (length === originalLength)
return previous + next;
return recursion(length + 1, originalLength, next, previous + next);
}
return recursion(1, number - 1, 0, 1);
}
console.log(`f(14) = ${fibonacci(14)}`); // 377
Related
find all possible combinations of two integers
Each time I can climb 1 or 2 steps to reach the top (3 steps for example) 1 + 1 + 1, 1 + 2, 2 + 1. There are three cases (scenarios). Here's my voodoo code (the thing is some numbers (missing) don't appear for n = 5 it's 1211. the solution would be to do the reverse string and store two versions of such strings in the hash, so duplicates will disappear and after the cycle sums them. function setCharAt(str, index, chr) { if (index > str.length - 1) return str; return str.substring(0, index) + chr + str.substring(index + 1); } let n = 9; find(n); function find(n) { let origin = n; //every loop n decreases by one when it 0 while returns false, let sum = 1; n -= 1; //because n once once of 1's (n = 5) 1+1+1+1+1 then 1111, 1112 etc. if (n <= 1) return sum; while (origin <= n * 2) { //if n = 10; only"22222" can give 10, we don't go deeper let str = "1".repeat(n); //from "1" of n(4) to "1111" let copyStr = str; while (str.length === copyStr.length) { //at the end we get 2222 then 22221, // therefore the length will change, we exit the loop let s = str.split('').reduce((a, b) => Number(a) + Number(b), 0); //countinng elems console.log(str, "=", s); if (s === origin) ++sum; //if elems equals the target we increase the amount by one let one = str.lastIndexOf("1"); let two = str.lastIndexOf("2"); if (str[one] === "1" && str[one + 1] === "2") { str = setCharAt(str, one, "2"); str = setCharAt(str, one + 1, "1"); } else { str = setCharAt(str, one, "2"); } } --n; } console.log(sum) }
If i understood your question, you wanna for let say n = 5 get all combinations of 1 and 2 (when you sum it) that give a sum of 5 (11111, 1112, etc)? It is most likely that you wanna use recursion in these kind of situations, because its much easier. If you have just two values (1 and 2) you can achieve this pretty easily: getAllCombinations = (n = 1) => { const combinations = []; const recursion = (n, sum = 0, str = "") => { if (sum > n) return; if (sum === n) { combinations.push(str); return; } // Add 1 to sum recursion(n, sum + 1, str + "1"); // Add 2 to sum recursion(n, sum + 2, str + "2"); }; recursion(n); return combinations; };
How to convert this O(n^2) algorithm to O(n)?
https://www.codewars.com/kata/is-my-friend-cheating/train/javascript My goal is to devise a function that finds number pairs (a, b) which satisfy the equation a * b == sum(1, 2, 3 ..., n-2, n-1, n) - a - b. The following code finds all the pairs, but is too slow and times out. I have seen in the comments for this challenge that the algorithm needs to have O(n) complexity to pass. How is this done? function removeNb (n) { if(n===1) return null; let sum = (n * (n+1))/2; let retArr = []; let a = n; while( a !== 0){ let b = n; while( b !== 0){ if(b != a && a*b == ((sum - b) - a) ){ retArr.push([a,b]); } b--; } a--; } retArr.sort( (a,b) => a[0] - b[0]); return retArr; } Thanks to all for the assistance! Here is my final solution: function removeNb (n) { let retArr = []; let a = 1; let b = 0; let sumN = (n * (n+1))/2; while( a <= n){ b = parseInt((sumN - a) / (a + 1)); if( b < n && a*b == ((sumN - b) - a) ) retArr.push([a,b]); a++; } return retArr; } I think my main issue was an (embarrassing) error with my algebra when I attempted to solve for b. Here are the proper steps for anyone wondering: a*b = sum(1 to n) - a - b ab + b = sumN - a b(a + 1) = sumN - a b = (sumN - a) / (a + 1)
You can solve for b and get: b = (sum - a)/(a + 1) (given a != -1) Now iterate over a once -> O(n)
let n = 100; let sumOfNum = n => { return (n * (n + 1)) / 2; }; let sum = sumOfNum(n); let response = []; for (let i = 1; i <= 26; i++) { let s = (sum - i) / (i + 1); if (s % 1 == 0 && s * i == sum - s - i && s <= n) { response.push([s, i]); } } // this is O(N) time complexity
Here's an implementation: function removeNb(n){ var sum = (1 + n) * n / 2; var candidates = []; // O(n) for(var y = n; y >= 1; y--){ x = (-y + sum) / (y + 1); /* * Since there are infinite real solutions, * we only record the integer solutions that * are 1 <= x <= n. */ if(x % 1 == 0 && 1 <= x && x <= n) // Assuming .push is O(1) candidates.push([x, y]); } // Output is guaranteed to be sorted because // y is iterated from large to small. return candidates; } console.log(removeNb(26)); console.log(removeNb(100)); https://jsfiddle.net/DerekL/anx2ox49/ From your question, it also states that Within that sequence, he chooses two numbers, a and b. However it does not mention that a and b are unique numbers, so a check is not included in the code.
As explained in other answers, it is possible to make a O(n) algorithm solving for b. Moreover, given the symmetry of solution -- if (a,b) is a solution, also (b,a) is -- it is also possible to save some iterations adding a couple of solutions at a time. To know how many iterations are required, let us note that b > a if and only if a < -1+sqrt(1+sum). To prove it: (sum-a)/(a+1) > a ; sum-a > a^2+a ; sum > a^2+2a ; a^2+2a-sum < 0 ; a_1 < a < a_2 where a_1 and a_2 comes from 2-degree equation solution: a_1 = -1-sqrt(1+sum) ; a_2 = -1+sqrt(1+sum) Since a_1 < 0 and a > 0, finally we proved that b > a if and only if a < a_2. Therefore we can avoid iterations after -1+sqrt(1+sum). A working example: function removeNb (n) { if(n===1) return null; let sum = (n * (n+1))/2; let retArr = []; for(let a=1;a<Math.round(Math.sqrt(1+sum));++a) { if((sum-a)%(a+1)===0) { let b=(sum-a)/(a+1); if(a!==b && b<=n) retArr.push([a,b],[b,a]); } } retArr.sort( (a,b) => a[0] - b[0]); return retArr; } However, with this implementation we still need the final sort. To avoid it, we can note that b=(sum-a)/(a+1) is a decreasing function of a (derive it to prove). Therefore we can build retArr concatenating two arrays, one adding elements to the end (push), one adding elements at the beginning (unshift). A working example follows: function removeNb (n) { if(n===1) return null; let sum = (n * (n+1))/2; let retArr = []; let retArr2 = []; for(let a=1;a<Math.round(Math.sqrt(1+sum));++a) { if((sum-a)%(a+1)===0) { let b=(sum-a)/(a+1); if(a!==b && b<=n) { retArr.push([a,b]); retArr2.unshift([b,a]); // b>a and b decreases with a } } } retArr=retArr.concat(retArr2); // the final array is ordered in the 1st component return retArr; } As a non-native speaker, I would say that the phrase from the reference "all (a, b) which are the possible removed numbers in the sequence 1 to n" implies a!=b, so I added this constraint.
Javascript How to return an array with odd numbers
I'm trying to return an array of numbers function numbers(l, r) { // l and r are any given numbers var x=[]; var i=l; while(x.push(i++)<r){}; return x; } console.log(numbers(10, 19)); So far so good. Now I want to get the odd numbers. How can I achieve that?
x.filter(n => n%2) will keep only odd numbers. if n is even, n%2 will return 0 and the item will be removed by the filter. let arr = [1,2,3,4,5,6,7,8,9,10,11,12] let odds = arr.filter(n => n%2) console.log(odds)
function* numbers(start, end) { let i = start%2 ? start : ++start; while(i <= end) { yield i; i += 2 } } console.log([...numbers(2, 10)]) or class Odd { constructor(l, r) { this.l = l; this.r = r; } *[Symbol.iterator]() { let i = this.l % 2 ? this.l : ++(this.l); while (i <= this.r) { yield i; i += 2 } } } const odd = new Odd(2,10); console.log([...odd])
Provided two values l (starting point) and r (ending point) you would create your array from l to r in increments of +1. Use that array to filter the desired values that meet the mod 2 or % 2 criteria. FYI mod 2 returns 0 if the value is an even number or 1 if the value is an odd number. The filter() method creates a new array with all elements that pass the test implemented by the provided function (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter). Do note that in JavaScript 0 is a falsy value so only positive integer values like 1 are returned thus the array is formed with all values that resulted in n % 2 equal to 1. function oddNumbers(l, r) { let arr = []; while (l <= r) { arr.push(l); l += 1; }; return arr.filter(n => n % 2); }
You could use an appropriate start value and increment by 2 for each pushing. function numbers(l, r) { var x = [], i = Math.floor(l / 2) * 2 + 1; // start with an odd number while(i <= r) { x.push(i); i += 2; }; return x; } console.log(numbers(10, 19)); console.log(numbers(3, 5)); .as-console-wrapper { max-height: 100% !important; top: 0; }
At first, make i odd: i = i+1-i%2; Then iterate over every second: while(x.push(i+=2)<r){}; Note that this returns r-1 numbers and not numbers up to r-1 Shorter var EverySecond = (start,length) => Array.from({length}).map((el,i)=>start+i*2); var even = (start,length) => EverySecond(start+start%2,length); var odd = (start,length) => EverySecond(start+1-start%2,length);
Try this for pairs: [0,1,2,3,4].filter(function(n){ return n%2 === 0; }); Try this for odds: [0,1,2,3,4].filter(function(n){ return n%2 !== 0; });
A code wars challenge
I have been struggling with this challenge and can't seem to find where I'm failing at: Some numbers have funny properties. For example: 89 --> 8¹ + 9² = 89 * 1 695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2 46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51 Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p we want to find a positive integer k, if it exists, such as the sum of the digits of n taken to the successive powers of p is equal to k * n. In other words: Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k If it is the case we will return k, if not return -1. Note: n, p will always be given as strictly positive integers. digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1 digPow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2 digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51 I'm new with javascript so there may be something off with my code but I can't find it. My whole purpose with this was learning javascript properly but now I want to find out what I'm doing wrong.I tried to convert given integer into digits by getting its modulo with 10, and dividing it with 10 using trunc to get rid of decimal parts. I tried to fill the array with these digits with their respective powers. But the test result just says I'm returning only 0.The only thing returning 0 in my code is the first part, but when I tried commenting it out, I was still returning 0. function digPow(n, p){ // ... var i; var sum; var myArray= new Array(); if(n<0) { return 0; } var holder; holder=n; for(i=n.length-1;i>=0;i--) { if(holder<10) { myArray[i]=holder; break; } myArray[i]=holder%10; holder=math.trunc(holder/10); myArray[i]=math.pow(myArray[i],p+i); sum=myArray[i]+sum; } if(sum%n==0) { return sum/n; } else { return -1; }}
Here is the another simple solution function digPow(n, p){ // convert the number into string let str = String(n); let add = 0; // convert string into array using split() str.split('').forEach(num=>{ add += Math.pow(Number(num) , p); p++; }); return (add % n) ? -1 : add/n; } let result = digPow(46288, 3); console.log(result);
Mistakes There are a few problems with your code. Here are some mistakes you've made. number.length is invalid. The easiest way to get the length of numbers in JS is by converting it to a string, like this: n.toString().length. Check this too: Length of Number in JavaScript the math object should be referenced as Math, not math. (Note the capital M) So math.pow and math.trunc should be Math.pow and Math.trunc. sum is undefined when the for loop is iterated the first time in sum=myArray[i]+sum;. Using var sum = 0; instead of var sum;. Fixed Code I fixed those mistakes and updated your code. Some parts have been removed--such as validating n, (the question states its strictly positive)--and other parts have been rewritten. I did some stylistic changes to make the code more readable as well. function digPow(n, p){ var sum = 0; var myArray = []; var holder = n; for (var i = n.toString().length-1; i >= 0; i--) { myArray[i] = holder % 10; holder = Math.trunc(holder/10); myArray[i] = Math.pow(myArray[i],p+i); sum += myArray[i]; } if(sum % n == 0) { return sum/n; } else { return -1; } } console.log(digPow(89, 1)); console.log(digPow(92, 1)); console.log(digPow(46288, 3)); My Code This is what I did back when I answered this question. Hope this helps. function digPow(n, p){ var digPowSum = 0; var temp = n; while (temp > 0) { digPowSum += Math.pow(temp % 10, temp.toString().length + p - 1); temp = Math.floor(temp / 10); } return (digPowSum % n === 0) ? digPowSum / n : -1; } console.log(digPow(89, 1)); console.log(digPow(92, 1)); console.log(digPow(46288, 3));
You have multiple problems: If n is a number it is not going to have a length property. So i is going to be undefined and your loop never runs since undefined is not greater or equal to zero for(i=n.length-1;i>=0;i--) //could be for(i=(""+n).length;i>=0;i--) //""+n quick way of converting to string You never initialize sum to 0 so it is undefined and when you add the result of the power calculation to sum you will continually get NaN var sum; //should be var sum=0; You have if(holder<10)...break you do not need this as the loop will end after the iteration where holder is a less than 10. Also you never do a power for it or add it to the sum. Simply remove that if all together. Your end code would look something like: function digPow(n, p) { var i; var sum=0; var myArray = new Array(); if (n < 0) { return 0; } var holder; holder = n; for (i = (""+n).length - 1; i >= 0; i--) { myArray[i] = holder % 10; holder = Math.trunc(holder / 10); myArray[i] = Math.pow(myArray[i], p + i); sum = myArray[i] + sum; } if (sum % n == 0) { return sum / n; } else { return -1; } } Note you could slim it down to something like function digPow(n,p){ if( isNaN(n) || (+n)<0 || n%1!=0) return -1; var sum = (""+n).split("").reduce( (s,num,index)=>Math.pow(num,p+index)+s,0); return sum%n ? -1 : sum/n; } (""+n) simply converts to string .split("") splits the string into an array (no need to do %10 math to get each number .reduce( function,0) call's the array's reduce function, which calls a function for each item in the array. The function is expected to return a value each time, second argument is the starting value (s,num,index)=>Math.pow(num,p+index+1)+s Fat Arrow function for just calling Math.pow with the right arguments and then adding it to the sum s and returning it
I have created a code that does exactly what you are looking for.The problem in your code was explained in the comment so I will not focus on that. FIDDLE Here is the code. function digPow(n, p) { var m = n; var i, sum = 0; var j = 0; var l = n.toString().length; var digits = []; while (n >= 10) { digits.unshift(n % 10); n = Math.floor(n / 10); } digits.unshift(n); for (i = p; i < l + p; i++) { sum += Math.pow(digits[j], i); j++; } if (sum % m == 0) { return sum / m; } else return -1; } alert(digPow(89, 1))
Just for a variety you may do the same job functionally as follows without using any string operations. function digPow(n,p){ var d = ~~Math.log10(n)+1; // number of digits r = Array(d).fill() .map(function(_,i){ var t = Math.pow(10,d-i); return Math.pow(~~((n%t)*10/t),p+i); }) .reduce((p,c) => p+c); return r%n ? -1 : r/n; } var res = digPow(46288,3); console.log(res);
How to find prime numbers between 0 - 100?
Want to improve this post? Provide detailed answers to this question, including citations and an explanation of why your answer is correct. Answers without enough detail may be edited or deleted. In Javascript how would i find prime numbers between 0 - 100? i have thought about it, and i am not sure how to find them. i thought about doing x % x but i found the obvious problem with that. this is what i have so far: but unfortunately it is the worst code ever. var prime = function (){ var num; for (num = 0; num < 101; num++){ if (num % 2 === 0){ break; } else if (num % 3 === 0){ break; } else if (num % 4=== 0){ break; } else if (num % 5 === 0){ break; } else if (num % 6 === 0){ break; } else if (num % 7 === 0){ break; } else if (num % 8 === 0){ break; } else if (num % 9 === 0){ break; } else if (num % 10 === 0){ break; } else if (num % 11 === 0){ break; } else if (num % 12 === 0){ break; } else { return num; } } }; console.log(prime());
Here's an example of a sieve implementation in JavaScript: function getPrimes(max) { var sieve = [], i, j, primes = []; for (i = 2; i <= max; ++i) { if (!sieve[i]) { // i has not been marked -- it is prime primes.push(i); for (j = i << 1; j <= max; j += i) { sieve[j] = true; } } } return primes; } Then getPrimes(100) will return an array of all primes between 2 and 100 (inclusive). Of course, due to memory constraints, you can't use this with large arguments. A Java implementation would look very similar.
Here's how I solved it. Rewrote it from Java to JavaScript, so excuse me if there's a syntax error. function isPrime (n) { if (n < 2) return false; /** * An integer is prime if it is not divisible by any prime less than or equal to its square root **/ var q = Math.floor(Math.sqrt(n)); for (var i = 2; i <= q; i++) { if (n % i == 0) { return false; } } return true; } A number, n, is a prime if it isn't divisible by any other number other than by 1 and itself. Also, it's sufficient to check the numbers [2, sqrt(n)].
Here is the live demo of this script: http://jsfiddle.net/K2QJp/ First, make a function that will test if a single number is prime or not. If you want to extend the Number object you may, but I decided to just keep the code as simple as possible. function isPrime(num) { if(num < 2) return false; for (var i = 2; i < num; i++) { if(num%i==0) return false; } return true; } This script goes through every number between 2 and 1 less than the number and tests if there is any number in which there is no remainder if you divide the number by the increment. If there is any without a remainder, it is not prime. If the number is less than 2, it is not prime. Otherwise, it is prime. Then make a for loop to loop through the numbers 0 to 100 and test each number with that function. If it is prime, output the number to the log. for(var i = 0; i < 100; i++){ if(isPrime(i)) console.log(i); }
Whatever the language, one of the best and most accessible ways of finding primes within a range is using a sieve. Not going to give you code, but this is a good starting point. For a small range, such as yours, the most efficient would be pre-computing the numbers.
I have slightly modified the Sieve of Sundaram algorithm to cut the unnecessary iterations and it seems to be very fast. This algorithm is actually two times faster than the most accepted #Ted Hopp's solution under this topic. Solving the 78498 primes between 0 - 1M takes like 20~25 msec in Chrome 55 and < 90 msec in FF 50.1. Also #vitaly-t's get next prime algorithm looks interesting but also results much slower. This is the core algorithm. One could apply segmentation and threading to get superb results. "use strict"; function primeSieve(n){ var a = Array(n = n/2), t = (Math.sqrt(4+8*n)-2)/4, u = 0, r = []; for(var i = 1; i <= t; i++){ u = (n-i)/(1+2*i); for(var j = i; j <= u; j++) a[i + j + 2*i*j] = true; } for(var i = 0; i<= n; i++) !a[i] && r.push(i*2+1); return r; } var primes = []; console.time("primes"); primes = primeSieve(1000000); console.timeEnd("primes"); console.log(primes.length); The loop limits explained: Just like the Sieve of Erasthotenes, the Sieve of Sundaram algorithm also crosses out some selected integers from the list. To select which integers to cross out the rule is i + j + 2ij ≤ n where i and j are two indices and n is the number of the total elements. Once we cross out every i + j + 2ij, the remaining numbers are doubled and oddified (2n+1) to reveal a list of prime numbers. The final stage is in fact the auto discounting of the even numbers. It's proof is beautifully explained here. Sieve of Sundaram is only fast if the loop indices start and end limits are correctly selected such that there shall be no (or minimal) redundant (multiple) elimination of the non-primes. As we need i and j values to calculate the numbers to cross out, i + j + 2ij up to n let's see how we can approach. i) So we have to find the the max value i and j can take when they are equal. Which is 2i + 2i^2 = n. We can easily solve the positive value for i by using the quadratic formula and that is the line with t = (Math.sqrt(4+8*n)-2)/4, j) The inner loop index j should start from i and run up to the point it can go with the current i value. No more than that. Since we know that i + j + 2ij = n, this can easily be calculated as u = (n-i)/(1+2*i); While this will not completely remove the redundant crossings it will "greatly" eliminate the redundancy. For instance for n = 50 (to check for primes up to 100) instead of doing 50 x 50 = 2500, we will do only 30 iterations in total. So clearly, this algorithm shouldn't be considered as an O(n^2) time complexity one. i j v 1 1 4 1 2 7 1 3 10 1 4 13 1 5 16 1 6 19 1 7 22 << 1 8 25 1 9 28 1 10 31 << 1 11 34 1 12 37 << 1 13 40 << 1 14 43 1 15 46 1 16 49 << 2 2 12 2 3 17 2 4 22 << dupe #1 2 5 27 2 6 32 2 7 37 << dupe #2 2 8 42 2 9 47 3 3 24 3 4 31 << dupe #3 3 5 38 3 6 45 4 4 40 << dupe #4 4 5 49 << dupe #5 among which there are only 5 duplicates. 22, 31, 37, 40, 49. The redundancy is around 20% for n = 100 however it increases to ~300% for n = 10M. Which means a further optimization of SoS bears the potentital to obtain the results even faster as n grows. So one idea might be segmentation and to keep n small all the time. So OK.. I have decided to take this quest a little further. After some careful examination of the repeated crossings I have come to the awareness of the fact that, by the exception of i === 1 case, if either one or both of the i or j index value is among 4,7,10,13,16,19... series, a duplicate crossing is generated. Then allowing the inner loop to turn only when i%3-1 !== 0, a further cut down like 35-40% from the total number of the loops is achieved. So for instance for 1M integers the nested loop's total turn count dropped to like 1M from 1.4M. Wow..! We are talking almost O(n) here. I have just made a test. In JS, just an empty loop counting up to 1B takes like 4000ms. In the below modified algorithm, finding the primes up to 100M takes the same amount of time. I have also implemented the segmentation part of this algorithm to push to the workers. So that we will be able to use multiple threads too. But that code will follow a little later. So let me introduce you the modified Sieve of Sundaram probably at it's best when not segmented. It shall compute the primes between 0-1M in about 15-20ms with Chrome V8 and Edge ChakraCore. "use strict"; function primeSieve(n){ var a = Array(n = n/2), t = (Math.sqrt(4+8*n)-2)/4, u = 0, r = []; for(var i = 1; i < (n-1)/3; i++) a[1+3*i] = true; for(var i = 2; i <= t; i++){ u = (n-i)/(1+2*i); if (i%3-1) for(var j = i; j < u; j++) a[i + j + 2*i*j] = true; } for(var i = 0; i< n; i++) !a[i] && r.push(i*2+1); return r; } var primes = []; console.time("primes"); primes = primeSieve(1000000); console.timeEnd("primes"); console.log(primes.length); Well... finally I guess i have implemented a sieve (which is originated from the ingenious Sieve of Sundaram) such that it's the fastest JavaScript sieve that i could have found over the internet, including the "Odds only Sieve of Eratosthenes" or the "Sieve of Atkins". Also this is ready for the web workers, multi-threading. Think it this way. In this humble AMD PC for a single thread, it takes 3,300 ms for JS just to count up to 10^9 and the following optimized segmented SoS will get me the 50847534 primes up to 10^9 only in 14,000 ms. Which means 4.25 times the operation of just counting. I think it's impressive. You can test it for yourself; console.time("tare"); for (var i = 0; i < 1000000000; i++); console.timeEnd("tare"); And here I introduce you to the segmented Seieve of Sundaram at it's best. "use strict"; function findPrimes(n){ function primeSieve(g,o,r){ var t = (Math.sqrt(4+8*(g+o))-2)/4, e = 0, s = 0; ar.fill(true); if (o) { for(var i = Math.ceil((o-1)/3); i < (g+o-1)/3; i++) ar[1+3*i-o] = false; for(var i = 2; i < t; i++){ s = Math.ceil((o-i)/(1+2*i)); e = (g+o-i)/(1+2*i); if (i%3-1) for(var j = s; j < e; j++) ar[i + j + 2*i*j-o] = false; } } else { for(var i = 1; i < (g-1)/3; i++) ar[1+3*i] = false; for(var i = 2; i < t; i++){ e = (g-i)/(1+2*i); if (i%3-1) for(var j = i; j < e; j++) ar[i + j + 2*i*j] = false; } } for(var i = 0; i < g; i++) ar[i] && r.push((i+o)*2+1); return r; } var cs = n <= 1e6 ? 7500 : n <= 1e7 ? 60000 : 100000, // chunk size cc = ~~(n/cs), // chunk count xs = n % cs, // excess after last chunk ar = Array(cs/2), // array used as map result = []; for(var i = 0; i < cc; i++) result = primeSieve(cs/2,i*cs/2,result); result = xs ? primeSieve(xs/2,cc*cs/2,result) : result; result[0] *=2; return result; } var primes = []; console.time("primes"); primes = findPrimes(1000000000); console.timeEnd("primes"); console.log(primes.length); Here I present a multithreaded and slightly improved version of the above algorithm. It utilizes all available threads on your device and resolves all 50,847,534 primes up to 1e9 (1 Billion) in the ballpark of 1.3 seconds on my trash AMD FX-8370 8 core desktop. While there exists some very sophisticated sublinear sieves, I believe the modified Segmented Sieve of Sundaram could only be stretced this far to being linear in time complexity. Which is not bad. class Threadable extends Function { constructor(f){ super("...as",`return ${f.toString()}.apply(this,as)`); } spawn(...as){ var code = `self.onmessage = m => self.postMessage(${this.toString()}.apply(null,m.data));`, blob = new Blob([code], {type: "text/javascript"}), wrkr = new Worker(window.URL.createObjectURL(blob)); return new Promise((v,x) => ( wrkr.onmessage = m => (v(m.data), wrkr.terminate()) , wrkr.onerror = e => (x(e.message), wrkr.terminate()) , wrkr.postMessage(as) )); } } function pi(n){ function scan(start,end,tid){ function sieve(g,o){ var t = (Math.sqrt(4+8*(g+o))-2)/4, e = 0, s = 0, a = new Uint8Array(g), c = 0, l = o ? (g+o-1)/3 : (g-1)/3; if (o) { for(var i = Math.ceil((o-1)/3); i < l; i++) a[1+3*i-o] = 0x01; for(var i = 2; i < t; i++){ if (i%3-1) { s = Math.ceil((o-i)/(1+2*i)); e = (g+o-i)/(1+2*i); for(var j = s; j < e; j++) a[i + j + 2*i*j-o] = 0x01; } } } else { for(var i = 1; i < l; i++) a[1+3*i] = 0x01; for(var i = 2; i < t; i++){ if (i%3-1){ e = (g-i)/(1+2*i); for(var j = i; j < e; j++) a[i + j + 2*i*j] = 0x01; } } } for (var i = 0; i < g; i++) !a[i] && c++; return c; } end % 2 && end--; start % 2 && start--; var n = end - start, cs = n < 2e6 ? 1e4 : n < 2e7 ? 2e5 : 4.5e5 , // Math.floor(3*n/1e3), // chunk size cc = Math.floor(n/cs), // chunk count xs = n % cs, // excess after last chunk pc = 0; for(var i = 0; i < cc; i++) pc += sieve(cs/2,(start+i*cs)/2); xs && (pc += sieve(xs/2,(start+cc*cs)/2)); return pc; } var tc = navigator.hardwareConcurrency, xs = n % tc, cs = (n-xs) / tc, st = new Threadable(scan), ps = Array.from( {length:tc} , (_,i) => i ? st.spawn(i*cs+xs,(i+1)*cs+xs,i) : st.spawn(0,cs+xs,i) ); return Promise.all(ps); } var n = 1e9, count; console.time("primes"); pi(n).then(cs => ( count = cs.reduce((p,c) => p+c) , console.timeEnd("primes") , console.log(count) ) ) .catch(e => console.log(`Error: ${e}`)); So this is as far as I could take the Sieve of Sundaram.
A number is a prime if it is not divisible by other primes lower than the number in question. So this builds up a primes array. Tests each new odd candidate n for division against existing found primes lower than n. As an optimization it does not consider even numbers and prepends 2 as a final step. var primes = []; for(var n=3;n<=100;n+=2) { if(primes.every(function(prime){return n%prime!=0})) { primes.push(n); } } primes.unshift(2);
To find prime numbers between 0 to n. You just have to check if a number x is getting divisible by any number between 0 - (square root of x). If we pass n and to find all prime numbers between 0 and n, logic can be implemented as - function findPrimeNums(n) { var x= 3,j,i=2, primeArr=[2],isPrime; for (;x<=n;x+=2){ j = (int) Math.sqrt (x); isPrime = true; for (i = 2; i <= j; i++) { if (x % i == 0){ isPrime = false; break; } } if(isPrime){ primeArr.push(x); } } return primeArr; }
var n=100; var counter = 0; var primeNumbers = "Prime Numbers: "; for(var i=2; i<=n; ++i) { counter=0; for(var j=2; j<=n; ++j) { if(i>=j && i%j == 0) { ++counter; } } if(counter == 1) { primeNumbers = primeNumbers + i + " "; } } console.log(primeNumbers);
Luchian's answer gives you a link to the standard technique for finding primes. A less efficient, but simpler approach is to turn your existing code into a nested loop. Observe that you are dividing by 2,3,4,5,6 and so on ... and turn that into a loop. Given that this is homework, and given that the aim of the homework is to help you learn basic programming, a solution that is simple, correct but somewhat inefficient should be fine.
Using recursion combined with the square root rule from here, checks whether a number is prime or not: function isPrime(num){ // An integer is prime if it is not divisible by any prime less than or equal to its square root var squareRoot = parseInt(Math.sqrt(num)); var primeCountUp = function(divisor){ if(divisor > squareRoot) { // got to a point where the divisor is greater than // the square root, therefore it is prime return true; } else if(num % divisor === 0) { // found a result that divides evenly, NOT prime return false; } else { // keep counting return primeCountUp(++divisor); } }; // start # 2 because everything is divisible by 1 return primeCountUp(2); }
You can try this method also, this one is basic but easy to understand: var tw = 2, th = 3, fv = 5, se = 7; document.write(tw + "," + th + ","+ fv + "," + se + ","); for(var n = 0; n <= 100; n++) { if((n % tw !== 0) && (n % th !==0) && (n % fv !==0 ) && (n % se !==0)) { if (n == 1) { continue; } document.write(n +","); } }
I recently came up with a one-line solution that accomplishes exactly this for a JS challenge on Scrimba (below). ES6+ const getPrimes=num=>Array(num-1).fill().map((e,i)=>2+i).filter((e,i,a)=>a.slice(0,i).every(x=>e%x!==0)); < ES6 function getPrimes(num){return ",".repeat(num).slice(0,-1).split(',').map(function(e,i){return i+1}).filter(function(e){return e>1}).filter(function(x){return ",".repeat(x).slice(0,-1).split(',').map(function(f,j){return j}).filter(function(e){return e>1}).every(function(e){return x%e!==0})})}; This is the logic explained: First, the function builds an array of all numbers leading up to the desired number (in this case, 100) via the .repeat() function using the desired number (100) as the repeater argument and then mapping the array to the indexes+1 to get the range of numbers from 0 to that number (0-100). A bit of string splitting and joining magic going on here. I'm happy to explain this step further if you like. We exclude 0 and 1 from the array as they should not be tested for prime, lest they give a false positive. Neither are prime. We do this using .filter() for only numbers > 1 (≥ 2). Now, we filter our new array of all integers between 2 and the desired number (100) for only prime numbers. To filter for prime numbers only, we use some of the same magic from our first step. We use .filter() and .repeat() once again to create a new array from 2 to each value from our new array of numbers. For each value's new array, we check to see if any of the numbers ≥ 2 and < that number are factors of the number. We can do this using the .every() method paired with the modulo operator % to check if that number has any remainders when divided by any of those values between 2 and itself. If each value has remainders (x%e!==0), the condition is met for all values from 2 to that number (but not including that number, i.e.: [2,99]) and we can say that number is prime. The filter functions returns all prime numbers to the uppermost return, thereby returning the list of prime values between 2 and the passed value. As an example, using one of these functions I've added above, returns the following: getPrimes(100); // => [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]
Here's a fast way to calculate primes in JavaScript, based on the previous prime value. function nextPrime(value) { if (value > 2) { var i, q; do { i = 3; value += 2; q = Math.floor(Math.sqrt(value)); while (i <= q && value % i) { i += 2; } } while (i <= q); return value; } return value === 2 ? 3 : 2; } Test var value = 0, result = []; for (var i = 0; i < 10; i++) { value = nextPrime(value); result.push(value); } console.log("Primes:", result); Output Primes: [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ] It is faster than other alternatives published here, because: It aligns the loop limit to an integer, which works way faster; It uses a shorter iteration loop, skipping even numbers. It can give you the first 100,000 primes in about 130ms, or the first 1m primes in about 4 seconds. function nextPrime(value) { if (value > 2) { var i, q; do { i = 3; value += 2; q = Math.floor(Math.sqrt(value)); while (i <= q && value % i) { i += 2; } } while (i <= q); return value; } return value === 2 ? 3 : 2; } var value, result = []; for (var i = 0; i < 10; i++) { value = nextPrime(value); result.push(value); } display("Primes: " + result.join(', ')); function display(msg) { document.body.insertAdjacentHTML( "beforeend", "<p>" + msg + "</p>" ); } UPDATE A modern, efficient way of doing it, using prime-lib: import {generatePrimes, stopWhen} from 'prime-lib'; const p = generatePrimes(); //=> infinite prime generator const i = stopWhen(p, a => a > 100); //=> Iterable<number> console.log(...i); //=> 2 3 5 7 11 ... 89 97
<code> <script language="javascript"> var n=prompt("Enter User Value") var x=1; if(n==0 || n==1) x=0; for(i=2;i<n;i++) { if(n%i==0) { x=0; break; } } if(x==1) { alert(n +" "+" is prime"); } else { alert(n +" "+" is not prime"); } </script>
Sieve of Eratosthenes. its bit look but its simple and it works! function count_prime(arg) { arg = typeof arg !== 'undefined' ? arg : 20; //default value var list = [2] var list2 = [0,1] var real_prime = [] counter = 2 while (counter < arg ) { if (counter % 2 !== 0) { list.push(counter) } counter++ } for (i = 0; i < list.length - 1; i++) { var a = list[i] for (j = 0; j < list.length - 1; j++) { if (list[j] % a === 0 && list[j] !== a) { list[j] = false; // assign false to non-prime numbers } } if (list[i] !== false) { real_prime.push(list[i]); // save all prime numbers in new array } } } window.onload=count_prime(100);
And this famous code from a famous JS Ninja var isPrime = n => Array(Math.ceil(Math.sqrt(n)+1)).fill().map((e,i)=>i).slice(2).every(m => n%m); console.log(Array(100).fill().map((e,i)=>i+1).slice(1).filter(isPrime));
A list built using the new features of ES6, especially with generator. Go to https://codepen.io/arius/pen/wqmzGp made in Catalan language for classes with my students. I hope you find it useful. function* Primer(max) { const infinite = !max && max !== 0; const re = /^.?$|^(..+?)\1+$/; let current = 1; while (infinite || max-- ) { if(!re.test('1'.repeat(current)) == true) yield current; current++ }; }; let [...list] = Primer(100); console.log(list);
Here's the very simple way to calculate primes between a given range(1 to limit). Simple Solution: public static void getAllPrimeNumbers(int limit) { System.out.println("Printing prime number from 1 to " + limit); for(int number=2; number<=limit; number++){ //***print all prime numbers upto limit*** if(isPrime(number)){ System.out.println(number); } } } public static boolean isPrime(int num) { if (num == 0 || num == 1) { return false; } if (num == 2) { return true; } for (int i = 2; i <= num / 2; i++) { if (num % i == 0) { return false; } } return true; }
A version without any loop. Use this against any array you have. ie., [1,2,3...100].filter(x=>isPrime(x)); const isPrime = n => { if(n===1){ return false; } if([2,3,5,7].includes(n)){ return true; } return n%2!=0 && n%3!=0 && n%5!=0 && n%7!=0; }
Here's my stab at it. Change the initial i=0 from 0 to whatever you want, and the the second i<100 from 100 to whatever to get primes in a different range. for(var i=0; i<100000; i++){ var devisableCount = 2; for(var x=0; x<=i/2; x++){ if (devisableCount > 3) { break; } if(i !== 1 && i !== 0 && i !== x){ if(i%x === 0){ devisableCount++; } } } if(devisableCount === 3){ console.log(i); } } I tried it with 10000000 - it takes some time but appears to be accurate.
Here are the Brute-force iterative method and Sieve of Eratosthenes method to find prime numbers upto n. The performance of the second method is better than first in terms of time complexity Brute-force iterative function findPrime(n) { var res = [2], isNotPrime; for (var i = 3; i < n; i++) { isNotPrime = res.some(checkDivisorExist); if ( !isNotPrime ) { res.push(i); } } function checkDivisorExist (j) { return i % j === 0; } return res; } Sieve of Eratosthenes method function seiveOfErasthones (n) { var listOfNum =range(n), i = 2; // CHeck only until the square of the prime is less than number while (i*i < n && i < n) { listOfNum = filterMultiples(listOfNum, i); i++; } return listOfNum; function range (num) { var res = []; for (var i = 2; i <= num; i++) { res.push(i); } return res; } function filterMultiples (list, x) { return list.filter(function (item) { // Include numbers smaller than x as they are already prime return (item <= x) || (item > x && item % x !== 0); }); } }
You can use this for any size of array of prime numbers. Hope this helps function prime() { var num = 2; var body = document.getElementById("solution"); var len = arguments.length; var flag = true; for (j = 0; j < len; j++) { for (i = num; i < arguments[j]; i++) { if (arguments[j] % i == 0) { body.innerHTML += arguments[j] + " False <br />"; flag = false; break; } else { flag = true; } } if (flag) { body.innerHTML += arguments[j] + " True <br />"; } } } var data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; prime.apply(null, data); <div id="solution"> </div>
public static void main(String[] args) { int m = 100; int a[] =new int[m]; for (int i=2; i<m; i++) for (int j=0; j<m; j+=i) a[j]++; for (int i=0; i<m; i++) if (a[i]==1) System.out.println(i); }
Using Sieve of Eratosthenes, source on Rosettacode fastest solution: https://repl.it/#caub/getPrimes-bench function getPrimes(limit) { if (limit < 2) return []; var sqrtlmt = limit**.5 - 2; var nums = Array.from({length: limit-1}, (_,i)=>i+2); for (var i = 0; i <= sqrtlmt; i++) { var p = nums[i] if (p) { for (var j = p * p - 2; j < nums.length; j += p) nums[j] = 0; } } return nums.filter(x => x); // return non 0 values } document.body.innerHTML = `<pre style="white-space:pre-wrap">${getPrimes(100).join(', ')}</pre>`; // for fun, this fantasist regexp way (very inefficient): // Array.from({length:101}, (_,i)=>i).filter(n => n>1&&!/^(oo+)\1+$/.test('o'.repeat(n))
Why try deleting by 4 (and 6,8,10,12) if we've already tried deleting by 2 ? Why try deleting by 9 if we've already tried deleting by 3 ? Why try deleting by 11 if 11 * 11 = 121 which is greater than 100 ? Why try deleting any odd number by 2 at all? Why try deleting any even number above 2 by anything at all? Eliminate the dead tests and you'll get yourself a good code, testing for primes below 100. And your code is very far from being the worst code ever. Many many others would try dividing 100 by 99. But the absolute champion would generate all products of 2..96 with 2..96 to test whether 97 is among them. That one really is astonishingly inefficient. Sieve of Eratosthenes of course is much better, and you can have one -- under 100 -- with no arrays of booleans (and no divisions too!): console.log(2) var m3 = 9, m5 = 25, m7 = 49, i = 3 for( ; i < 100; i += 2 ) { if( i != m3 && i != m5 && i != m7) console.log(i) else { if( i == m3 ) m3 += 6 if( i == m5 ) m5 += 10 if( i == m7 ) m7 += 14 } } "DONE" This is the sieve of Eratosthenes, were we skip over the composites - and that's what this code is doing. The timing of generation of composites and of skipping over them (by checking for equality) is mixed into one timeline. The usual sieve first generates composites and marks them in an array, then sweeps the array. Here the two stages are mashed into one, to avoid having to use any array at all (this only works because we know the top limit's square root - 10 - in advance and use only primes below it, viz. 3,5,7 - with 2's multiples, i.e. evens, implicitly skipped over in advance). In other words this is an incremental sieve of Eratosthenes and m3, m5, m7 form an implicit priority queue of the multiples of primes 3, 5, and 7.
I was searching how to find out prime number and went through above code which are too long. I found out a new easy solution for prime number and add them using filter. Kindly suggest me if there is any mistake in my code as I am a beginner. function sumPrimes(num) { let newNum = []; for(let i = 2; i <= num; i++) { newNum.push(i) } for(let i in newNum) { newNum = newNum.filter(item => item == newNum[i] || item % newNum[i] !== 0) } return newNum.reduce((a,b) => a+b) } sumPrimes(10);
Here is an efficient, short solution using JS generators. JSfiddle // Consecutive integers let nats = function* (n) { while (true) yield n++ } // Wrapper generator let primes = function* () { yield* sieve(primes(), nats(2)) } // The sieve itself; only tests primes up to sqrt(n) let sieve = function* (pg, ng) { yield ng.next().value; let n, p = pg.next().value; while ((n = ng.next().value) < p * p) yield n; yield* sieve(pg, (function* () { while (n = ng.next().value) if (n % p) yield n })()) } // Longest prefix of stream where some predicate holds let take = function* (vs, fn) { let nx; while (!(nx = vs.next()).done && fn(nx.value)) yield nx.value } document.querySelectorAll('dd')[0].textContent = // Primes smaller than 100 [...take(primes(), x => x < 100)].join(', ') <dl> <dt>Primes under 100</dt> <dd></dd> </dl>
First, change your inner code for another loop (for and while) so you can repeat the same code for different values. More specific for your problem, if you want to know if a given n is prime, you need to divide it for all values between 2 and sqrt(n). If any of the modules is 0, it is not prime. If you want to find all primes, you can speed it and check n only by dividing by the previously found primes. Another way of speeding the process is the fact that, apart from 2 and 3, all the primes are 6*k plus or less 1.
It would behoove you, if you're going to use any of the gazillion algorithms that you're going to be presented with in this thread, to learn to memoize some of them. See Interview question : What is the fastest way to generate prime number recursively?
Use following function to find out prime numbers : function primeNumbers() { var p var n = document.primeForm.primeText.value var d var x var prime var displayAll = 2 + " " for (p = 3; p <= n; p = p + 2) { x = Math.sqrt(p) prime = 1 for (d = 3; prime && (d <= x); d = d + 2) if ((p % d) == 0) prime = 0 else prime = 1 if (prime == 1) { displayAll = displayAll + p + " " } } document.primeForm.primeArea.value = displayAll }