Is it customary JS to write getters for simple properties? - javascript

Is this code idomatic, or should I just acess the properties directly?
self.isAlive = function() {
return self.alive;
}

It all depends on implementation.
If you feel the property is always going to be the value, accessing the property is adequate. If you feel like there's going to be some logic that determines returning a "properly formatted" value, I would use a method (or if the value could possibly be dynamic based on other factors, a method is a good idea).
To go a step further, other languages like C# have properties making it safe to expose values, but not necessarily alter them. JS doesn't have such a method of protecting it, so often get<Var> is used to expose the property, but in a read-only fashion.
It's all about how you would like the data, while also trying to anticipate what the worst-case scenario could be if you expose the property directly vs. through a method.

It seems that you are speaking of properties in the classical OOP sense, i.e., properties of classes. In the current version of Javascript, simulating this behavior is not completely clean. Consider the following example:
var Widget = function() {
var private = 'private';
}
'Widget' is a constructor function, and 'private' will be instantiated in the scope of just the constructor function. That means there is only one way to get access to 'private' from outside the constructor function scope:
var Widget = function() {
var private = 'private';
this.getPrivate = function() {
return private;
}
}
This will hide the private variable for each instance of Widget, but unfortunately, 'getPrivate' must now be added to each instance of Widget. You can see this occurring in the constructor function by the statement this.getPrivate = .... Every time you make an instance of Widget using var widget1 = new Widget(), that specific instance will have a new function, 'getPrivate', added to it.
The normal way to make reusable components in Javascript is to use its implementation of Prototypical Inheritance. You assign a prototype object to the constructor function that will have shared methods and properties across all instances of the component. I will provide an example below to explain, but there are caveats to prototypical inheritance that you should become aware of if you are doing object-oriented javascript. A great resource.
Here's an example of how this might come in to play for your example:
var Widget = function() {
this.alive = true;
}
Widget.prototype.isAlive = function() {
return this.alive;
}
var widget1 = new Widget();
widget1.isAlive(); // returns true
The problem here is that the property alive is being added to the object, and thus, it is publicly available, i.e., any user of your Widget can simply look through the DOM in their favorite variation of FireBug and see (as well as freely modify) this property.
Consider a variation where you attempt to hide alive to external users. Because alive is a property of Widget instances, you would want to include the code to hide it in the constructor, as shown below:
var Widget = function() {
var alive = true;
}
However, as stated at the beginning of this post, alive in this case is only exposed to the constructor function's scope; therefore, it would not be accessible to methods on the prototype. The reason for this is that each of those methods do not have the same scope as the constructor function, since Javascript only has function scope.
In conclusion, if you're trying to hide data in a reusable component, javascript does not provide a clean way to do it. If you don't mind having new memory allocated on each component instance for the same methods, then you can use my second code example in this post. However, if you prefer to have your methods allocated in memory only once, then you will need to expose properties on the object instance, e.g., this.alive = true.

That's subjective. Use of getters and setters is very discussed. Some people (like me) say you should always use getters and setters to follow the encapsulation principle, while others say that you shouldn't since your application would become unmaintainable.

This is good practice if you don't want outside js code to modify your property. If this is the desired effect you might consider assigning that property using var instead of making it a property of that object. That way your code within the object can modify it but it can only be accessed through your getter
var alive = false;
function isAlive(){ return alive;}

You can use:
function isAlive(){
return arguments.callee.alive;
}
isAlive.alive=true;
This appears to be ok still in strict mode.
Another way to accomplish this is
function isAlive(){
return isAlive.alive;
}
isAlive.alive=true;
But the problem is that someone can use the name as a string, or rename the function etc... and you can loose the status.

Related

Difference between Factory function and Constructor [duplicate]

Can someone clarify the difference between a constructor function and a factory function in Javascript.
When to use one instead of the other?
The basic difference is that a constructor function is used with the new keyword (which causes JavaScript to automatically create a new object, set this within the function to that object, and return the object):
var objFromConstructor = new ConstructorFunction();
A factory function is called like a "regular" function:
var objFromFactory = factoryFunction();
But for it to be considered a "factory" it would need to return a new instance of some object: you wouldn't call it a "factory" function if it just returned a boolean or something. This does not happen automatically like with new, but it does allow more flexibility for some cases.
In a really simple example the functions referenced above might look something like this:
function ConstructorFunction() {
this.someProp1 = "1";
this.someProp2 = "2";
}
ConstructorFunction.prototype.someMethod = function() { /* whatever */ };
function factoryFunction() {
var obj = {
someProp1 : "1",
someProp2 : "2",
someMethod: function() { /* whatever */ }
};
// other code to manipulate obj in some way here
return obj;
}
Of course you can make factory functions much more complicated than that simple example.
One advantage to factory functions is when the object to be returned could be of several different types depending on some parameter.
Benefits of using constructors
Most books teach you to use constructors and new
this refers to the new object
Some people like the way var myFoo = new Foo(); reads.
Drawbacks
Details of instantiation get leaked into the calling API (via the new requirement), so all callers are tightly coupled to the constructor implementation. If you ever need the additional flexibility of the factory, you'll have to refactor all callers (admittedly the exceptional case, rather than the rule).
Forgetting new is such a common bug, you should strongly consider adding a boilerplate check to ensure that the constructor is called correctly ( if (!(this instanceof Foo)) { return new Foo() } ). EDIT: Since ES6 (ES2015) you can't forget new with a class constructor, or the constructor will throw an error.
If you do the instanceof check, it leaves ambiguity as to whether or not new is required. In my opinion, it shouldn't be. You've effectively short circuited the new requirement, which means you could erase drawback #1. But then you've just got a factory function in all but name, with additional boilerplate, a capital letter, and less flexible this context.
Constructors break the Open / Closed Principle
But my main concern is that it violates the open/closed principle. You start out exporting a constructor, users start using the constructor, then down the road you realize you need the flexibility of a factory, instead (for instance, to switch the implementation to use object pools, or to instantiate across execution contexts, or to have more inheritance flexibility using prototypal OO).
You're stuck, though. You can't make the change without breaking all the code that calls your constructor with new. You can't switch to using object pools for performance gains, for instance.
Also, using constructors gives you a deceptive instanceof that doesn't work across execution contexts, and doesn't work if your constructor prototype gets swapped out. It will also fail if you start out returning this from your constructor, and then switch to exporting an arbitrary object, which you'd have to do to enable factory-like behavior in your constructor.
Benefits of using factories
Less code - no boilerplate required.
You can return any arbitrary object, and use any arbitrary prototype - giving you more flexibility to create various types of objects which implement the same API. For example, a media player that can create instances of both HTML5 and flash players, or an event library which can emit DOM events or web socket events. Factories can also instantiate objects across execution contexts, take advantage of object pools, and allow for more flexible prototypal inheritance models.
You'd never have a need to convert from a factory to a constructor, so refactoring will never be an issue.
No ambiguity about using new. Don't. (It will make this behave badly, see next point).
this behaves as it normally would - so you can use it to access the parent object (for example, inside player.create(), this refers to player, just like any other method invocation would. call and apply also reassign this, as expected. If you store prototypes on the parent object, that can be a great way to dynamically swap out functionality, and enable very flexible polymorphism for your object instantiation.
No ambiguity about whether or not to capitalize. Don't. Lint tools will complain, and then you'll be tempted to try to use new, and then you'll undo the benefit described above.
Some people like the way var myFoo = foo(); or var myFoo = foo.create(); reads.
Drawbacks
new doesn't behave as expected (see above). Solution: don't use it.
this doesn't refer to the new object (instead, if the constructor is invoked with dot notation or square bracket notation, e.g. foo.bar() - this refers to foo - just like every other JavaScript method -- see benefits).
A constructor returns an instance of the class you call it on. A factory function can return anything. You would use a factory function when you need to return arbitrary values or when a class has a large setup process.
A Constructor function example
function User(name) {
this.name = name;
this.isAdmin = false;
}
let user = new User("Jack");
new creates an object prototyped on User.prototype and calls User with the created object as its this value.
new treats an argument expression for its operand as optional:
let user = new User;
would cause new to call User with no arguments.
new returns the object it created, unless the constructor returns an object value, which is returned instead. This is an edge case which for the most part can be ignored.
Pros and Cons
Objects created by constructor functions inherit properties from the constructor's prototype property, and return true using the instanceOf operator on the constructor function.
The above behaviors can fail if you dynamically change the value of the constructor's prototype property after having already used the constructor. Doing so is rare, and it can't be changed if the constructor were created using the class keyword.
Constructor functions can be extended using the extends keyword.
Constructor functions can't return null as an error value. Since it's not an object data type, it is ignored by new.
A Factory function example
function User(name, age) {
return {
name,
age,
}
};
let user = User("Tom", 23);
Here the factory function is called without new. The function is entirely responsible for the direct or indirect use if its arguments and the type of object it returns. In this example it returns a simple [Object object] with some properties set from arguments.
Pros and Cons
Easily hides the implementation complexities of object creation from the caller. This is particularly useful for native code functions in a browser.
The factory function need not always return objects of the same type, and could even return null as an error indicator.
In simple cases, factory functions can be simple in structure and meaning.
Objects returned do not generally inherit from the factory function's prototype property, and return false from instanceOf factoryFunction.
The factory function can't be safely extended using the extends keyword because extended objects would inherit from the factory functions prototype property instead of from the prototype property of the constructor used by the factory function.
Factories are "always" better. When using object orientated languages then
decide on the contract (the methods and what they will do)
Create interfaces that expose those methods (in javascript you don't have interfaces so you need to come up with some way of checking the implementation)
Create a factory that returns an implementation of each interface required.
The implementations (the actual objects created with new) are not exposed to the factory user/consumer. This means that the factory developer can expand and create new implementations as long as he/she doesn't break the contract...and it allows for the factory consumer to just benefit from the new API without having to change their code...if they used new and a "new" implementation comes along then they have to go and change every line which uses "new" to use the "new" implementation...with the factory their code doesn't change...
Factories - better than all anything else - the spring framework is completely built around this idea.
Factories are a layer of abstraction, and like all abstractions they have a.cost in complexity. When encountering a factory based API figuring out what the factory is for a given API can be challenging for the API consumer. With constructors discoverability is trivial.
When deciding between ctors and factories you need to decide if the complexity is justified by the benefit.
Worth noting that Javascript constructors can be arbitrary factories by returning something other than this or undefined. So in js you can get the best of both worlds - discoverable API and object pooling/caching.
I think the factory function is superior to the constructor function. Using new with the constructor function, we are binding our code to one specific way of creating an object, while with a factory, we are free so we can create more different instances without binding ourselves. Let's say we have this class:
const file = new CreateFile(name)
If we want to refactor CreateFile class, creating subclasses for the file format our server supports, we can write an elegan factory function:
function CreateFile(name) {
if (name.match(/\.pdf$/)) {
return new FilePdf(name);
} else if (name.match(/\.txt$/)) {
return new FileTxt(name);
} else if (name.match(/\.md$/)) {
return new FileMd(name);
} else {
throw new Error("Not supprted file type");
}
}
with factory functions, we can implement private variables, hide the information from the users which is called encapsulation.
function createPerson(name) {
const privateInfo = {};
// we create person object
const person = {
setName(name) {
if (!name) {
throw new Error("A person must have a name");
}
privateInfo.name = name;
},
getName() {
return privateInfo.name;
},
};
person.setName(name);
return person;
}
For the differences, Eric Elliott clarified very well,
But for the second question:
When to use one instead of the other?
If you are coming from the object-oriented background, Constructor function looks more natural to you.
this way you shouldn't forget to use new keyword.

Usecase for JavaScript prototype [duplicate]

I'd like to understand when it is appropriate to use prototype methods in js. Should they always be used? Or are there cases where using them is not preferred and/or incurs a performance penalty?
In searching around this site on common methods for namespacing in js, it seems that most use a non-prototype based implementation: simply using an object or a function object to encapsulate a namespace.
Coming from a class-based language, it's hard not to try and draw parallels and think that prototypes are like "classes" and the namespace implementations I mentioned are like static methods.
Prototypes are an optimisation.
A great example of using them well is the jQuery library. Every time you obtain a jQuery object by using $('.someClass'), that object has dozens of "methods". The library could achieve that by returning an object:
return {
show: function() { ... },
hide: function() { ... },
css: function() { ... },
animate: function() { ... },
// etc...
};
But that would mean that every jQuery object in memory would have dozens of named slots containing the same methods, over and over.
Instead, those methods are defined on a prototype and all jQuery objects "inherit" that prototype so as to gain all those methods at very little runtime cost.
One vitally important part of how jQuery gets it right is that this is hidden from the programmer. It's treated purely an optimisation, not as something that you have to worry about when using the library.
The problem with JavaScript is that naked constructor functions require the caller to remember to prefix them with new or otherwise they typically don't work. There is no good reason for this. jQuery gets it right by hiding that nonsense behind an ordinary function, $, so you don't have to care how the objects are implemented.
So that you can conveniently create an object with a specified prototype, ECMAScript 5 includes a standard function Object.create. A greatly simplified version of it would look like this:
Object.create = function(prototype) {
var Type = function () {};
Type.prototype = prototype;
return new Type();
};
It just takes care of the pain of writing a constructor function and then calling it with new.
When would you avoid prototypes?
A useful comparison is with popular OO languages such as Java and C#. These support two kinds of inheritance:
interface inheritance, where you implement an interface such that the class provides its own unique implementation for every member of the interface.
implementation inheritance, where you extend a class that provides default implementations of some methods.
In JavaScript, prototypical inheritance is a kind of implementation inheritance. So in those situations where (in C# or Java) you would have derived from a base class to gain default behaviour, which you then make small modifications to via overrides, then in JavaScript, prototypical inheritance makes sense.
However, if you're in a situation where you would have used interfaces in C# or Java, then you don't need any particular language feature in JavaScript. There is no need to explicitly declare something that represents the interface, and no need to mark objects as "implementing" that interface:
var duck = {
quack: function() { ... }
};
duck.quack(); // we're satisfied it's a duck!
In other words, if each "type" of object has its own definitions of the "methods", then there is no value in inheriting from a prototype. After that, it depends on how many instances you allocate of each type. But in many modular designs, there is only one instance of a given type.
And in fact, it has been suggested by many people that implementation inheritance is evil. That is, if there are some common operations for a type, then maybe it's clearer if they are not put into a base/super class, but are instead just exposed as ordinary functions in some module, to which you pass the object(s) you want them to operate on.
You should use prototypes if you wish to declare a "non-static" method of the object.
var myObject = function () {
};
myObject.prototype.getA = function (){
alert("A");
};
myObject.getB = function (){
alert("B");
};
myObject.getB(); // This works fine
myObject.getA(); // Error!
var myPrototypeCopy = new myObject();
myPrototypeCopy.getA(); // This works, too.
One reason to use the built-in prototype object is if you'll be duplicating an object multiple times that will share common functionality. By attaching methods to the prototype, you can save on duplicating methods being created per each new instance. But when you attach a method to the prototype, all instances will have access to those methods.
Say you have a base Car() class/object.
function Car() {
// do some car stuff
}
then you create multiple Car() instances.
var volvo = new Car(),
saab = new Car();
Now, you know each car will need to drive, turn on, etc. Instead of attaching a method directly to the Car() class (which takes up memory per each instance created), you can attach the methods to the prototype instead (creating the methods only once), therefore giving access to those methods to both the new volvo and saab.
// just mapping for less typing
Car.fn = Car.prototype;
Car.fn.drive = function () {
console.log("they see me rollin'");
};
Car.fn.honk = function () {
console.log("HONK!!!");
}
volvo.honk();
// => HONK!!!
saab.drive();
// => they see me rollin'
Put functions on a prototype object when you're going to create lots of copies of a particular kind of object and they all need to share common behaviors. By doing so, you'll save some memory by having just one copy of each function, but that's only the simplest benefit.
Changing methods on prototype objects, or adding methods, instantly changes the nature of all the instances of the corresponding type(s).
Now exactly why you'd do all these things is mostly a function of your own application design, and the kinds of things you need to do in client-side code. (A whole different story would be code inside a server; much easier to imagine doing more large-scale "OO" code there.)
If i explain in class based term then Person is class, walk() is Prototype method. So walk() will have its existence only after you instantiate new object with this.
So if you want to create the copies of object like Person u can create many users Prototype is good solution as it saves memory by sharing/inheriting same copy of function for each of the object in memory.
Whereas static is not that great help in such scenario.
function Person(){
this.name = "anonymous";
}
// its instance method and can access objects data data
Person.prototype.walk = function(){
alert("person has started walking.");
}
// its like static method
Person.ProcessPerson = function(Person p){
alert("Persons name is = " + p.name);
}
var userOne = new Person();
var userTwo = new Person();
//Call instance methods
userOne.walk();
//Call static methods
Person.ProcessPerson(userTwo);
So with this its more like instance method.
The object's approach is like Static methods.
https://developer.mozilla.org/en/Introduction_to_Object-Oriented_JavaScript
Just including a video link here for reference, when not to use prototypes: https://youtu.be/JCXZhe6KsxQ?t=2m30s
Here is Ben Lesh's talk from NGConf, why rxjs removed patching prototype (chainable functions) in favor of pipeable functions.

Javascript Modular Prototype Pattern

The problem with functional inheritance is that if you want to create many instances then it will be slow because the functions have to be declared every time.
The problem with prototypal inheritance is that there is no way to truly have private variables.
Is it possible to mix these two together and get the best of both worlds? Here is my attempt using both prototypes and the singleton pattern combined:
var Animal = (function () {
var secret = "My Secret";
var _Animal = function (type) {
this.type = type;
}
_Animal.prototype = {
some_property: 123,
getSecret: function () {
return secret;
}
};
return _Animal;
}());
var cat = new Animal("cat");
cat.some_property; // 123
cat.type; // "cat"
cat.getSecret(); // "My Secret"
Is there any drawbacks of using this pattern? Security? Efficiency? Is there a similar pattern out there that already exists?
Your pattern is totally fine.
There are a few things that you'd want to keep in mind, here.
Primarily, the functions and variables which are created in the outermost closure will behave like private static methods/members in other languages (except in how they're actually called, syntactically).
If you use the prototype paradigm, creating private-static methods/members is impossible, of course.
You could further create public-static members/methods by appending them to your inner constructor, before returning it to the outer scope:
var Class = (function () {
var private_static = function () {},
public_static = function () {},
Class = function () {
var private_method = function () { private_static(); };
this.method = function () { private_method(); };
};
Class.static = public_static;
return Class;
}());
Class.static(); // calls `public_static`
var instance = new Class();
instance.method();
// calls instance's `private_method()`, which in turn calls the shared `private_static();`
Keep in mind that if you're intending to use "static" functions this way, that they have absolutely no access to the internal state of an instance, and as such, if you do use them, you'll need to pass them anything they require, and you'll have to collect the return statement (or modify object properties/array elements from inside).
Also, from inside of any instance, given the code above, public_static and Class.static(); are both totally valid ways of calling the public function, because it's not actually a static, but simply a function within a closure, which also happens to have been added as a property of another object which is also within the instance's scope-chain.
As an added bonus:
Even if malicious code DID start attacking your public static methods (Class.static) in hopes of hijacking your internals, any changes to the Class.static property would not affect the enclosed public_static function, so by calling the internal version, your instances would still be hack-safe as far as keeping people out of the private stuff...
If another module was depending on an instance, and that instance's public methods had been tampered with, and the other module just trusted everything it was given... ...well, shame on that module's creator -- but at least your stuff is secure.
Hooray for replicating the functionality of other languages, using little more than closure.
Is it possible to mix functional and prototypical inheritance together and get the best of both worlds?
Yes. And you should do it. Instead of initializing that as {}, you'd use Object.create to inherit from some proto object where all the non-priviliged methods are placed. However, inheriting from such a "class" won't be simple, and you soon end up with code that looks more like the pseudo-classical approach - even if using a factory.
My attempt using both prototypes and the singleton pattern combined. Is there a similar pattern out there that already exists?
OK, but that's something different from the above? Actually, this is known as the "Revealing Prototype Pattern", a combination of the Module Pattern and the Prototype Pattern.
Any drawbacks of using this pattern?
No, it's fine. Only for your example it is a bit unnecessary, and since your secret is kind of a static variable it doesn't make much sense to me accessing it from an instance method. Shorter:
function Animal(type) {
this.type = type;
}
Animal.prototype.some_property = 123;
Animal.getSecret = function() {
return "My Secret";
};

JavaScript Code Architecture - Use Constructor Functions Or Not

Please help me decide whether I should use a function's prototype object and the "new" keyword or completely stay away from constructor functions.
Situation:
Function called widget() that will be called 10-15 times to initialize each widget on the page. widget() contains quite a few internal methods.
Each time widget() is called, the function needs to return an object that acts as an API to operate on the widget.
Question
1) Do I put all the internal methods inside Widget() under its prototype property? It does not make sense but the main reason for this is to not re-instantiate the internal functions every time widget() is called.
But if I do put the internal functions in prototype, each instantiated w object (w = new Widget();) has access to internal private methods.
2) If I stay away from constructor functions and new keyword and structure my code as down below, how do I fix the performance concern of the internal functions getting re-instantiated every time widget() is called.
function widget()
{
var returnObj = {};
/* Add internal functions but this will be re-instantiated every time */
return returnObj;
}
You have a bit of a tradeoff here. As you seem to already understand, methods you put on the .prototype are publicly available, but that is the most efficient places to put methods as they are automatically added to all new copies of that object in a very efficient manner. When using .prototype for methods, there is only one copy of your methods and a reference to that single copy is automatically added to all new instantiations of that object.
But, javascript doesn't have private methods built-in and the only work-around for that involves not using the .prototype for them or for any methods that need to call the private methods.
This article by Doug Crockford is a pretty good description of how you can create privacy for either data or methods in any object.
In either case, I don't see any reason to avoid using the new keyword to create new objects. You can make either .prototype or private methods work with new.
But, if you want to achieve truly private methods, then you can't use .prototype for either the private methods or any methods that need to access them so you have to decide which is more important to you. There is no single correct answer because your need for privacy is situation-specific.
In my coding, I generally don't enforce privacy and I do use .prototype and new. I designate "non-public" methods on the prototype by starting their name with an underscore. This is a notational convention, not an access enforcement scheme.
In answer to your second question about avoiding the new operator and reinstantiating methods, I'd just ask why you're doing this? What are you gaining? I'm not aware of any downsides to using new. As best I understand your decision about whether to use .prototype vs. manually create/assign methods in your constructor should be about the need for private methods.
FYI, 15 objects is hardly going to create a significant difference in performance either way here. I would evaluate your need for true privacy and make your decision based on that. If you HAVE to enforce privacy, then go with the Crockford method for implementing private methods. If you don't HAVE to have true privacy, then use .prototype. I don't see a reason here to avoid using new in either case.
You can use a metaconstructor* pattern to get around this.
function defineCtor(metaCtor) {
var proto = new metaCtor();
var ctor = proto.hasOwnProperty('constructor') ?
proto.constructor : new Function();
return (ctor.prototype = proto).constructor = ctor;
}
Now you have a function that constructs constructors (or more accurately constructs prototypes and returns constructors).
var Widget = defineCtor(function() {
function doInternalStuff() {
// ...cant see me
}
// this function ends up on the prototype
this.getFoo = function() { return doInternalStuff(); };
});
// ...
var myWidget = new Widget();
Explanation
defineCtor takes a single anonymous function as a property. It invokes the function with new, creating an object. It assigns the object as the prototype property of a new constructor function (either an empty function, or the generated prototype object's own constructor property), and returns that function.
This provides a closure for your internal functions, addressing your question 1, and sets up the constructor/prototype pair for you, addressing question 2.
Comparison
Compare the defineCtor technique to the following two examples.
This example uses the prototype, and has problem 1: the internal stuff is not encapsulated.
function Widget(options) {
this.options = options;
}
Widget.prototype = {
getFoo: function() {
return doInternalStuff();
}
};
// How to encapsulate this?
function doInternalStuff() { /* ... */ }
This example sets up everything in a constructor, and has problem 2: each time it constructs an object, it instantiates new function objects for each property.
function Widget(options) {
this.options = options;
function doInternalStuff() { /* ... */ }
this.getFoo = function() {
return doInternalStuff();
};
}
This example uses the technique described above to provide encapsulation while still leveraging the prototype:
var Widget = defineCtor(function() {
// ^
// This function runs once, constructing the prototype.
// In here, `this` refers to the prototype.
// The real constructor.
this.constructor = function(options) {
// In function properties, `this` is an object instance
// with the outer `this` in its prototype chain.
this.options = options;
};
function doInternalStuff() { /* ... */ }
this.getFoo = function() { return doInternalStuff(); };
});
// ...
var myWidget = new Widget();
This approach has a few benefits, some more immediately obvious than others.
It provides encapsulation. You could do this by wrapping the first "comparison" example in an immediately invoked function, but this approach may be cleaner and more easily "enforced" in a team setting.
It's extensible. You can give your "metaconstructor" functions their own prototypes, with function properties like "extends", "mixin", etc. Then, inside the body of metaCtor, you can write things like this.extends(BaseWidget). The defineCtor API never needs to change for any of this to happen.
It "tricks" Google Closure Compiler, Eclipse, jsdoc, etc. into thinking you are defining the actual constructor function rather than a "meta function." This can be useful in certain situations (the code is "self-documented" in a way these tools understand).
* As far as I know, the word "metaconstructor" is completely made up.

Javascript when to use prototypes

I'd like to understand when it is appropriate to use prototype methods in js. Should they always be used? Or are there cases where using them is not preferred and/or incurs a performance penalty?
In searching around this site on common methods for namespacing in js, it seems that most use a non-prototype based implementation: simply using an object or a function object to encapsulate a namespace.
Coming from a class-based language, it's hard not to try and draw parallels and think that prototypes are like "classes" and the namespace implementations I mentioned are like static methods.
Prototypes are an optimisation.
A great example of using them well is the jQuery library. Every time you obtain a jQuery object by using $('.someClass'), that object has dozens of "methods". The library could achieve that by returning an object:
return {
show: function() { ... },
hide: function() { ... },
css: function() { ... },
animate: function() { ... },
// etc...
};
But that would mean that every jQuery object in memory would have dozens of named slots containing the same methods, over and over.
Instead, those methods are defined on a prototype and all jQuery objects "inherit" that prototype so as to gain all those methods at very little runtime cost.
One vitally important part of how jQuery gets it right is that this is hidden from the programmer. It's treated purely an optimisation, not as something that you have to worry about when using the library.
The problem with JavaScript is that naked constructor functions require the caller to remember to prefix them with new or otherwise they typically don't work. There is no good reason for this. jQuery gets it right by hiding that nonsense behind an ordinary function, $, so you don't have to care how the objects are implemented.
So that you can conveniently create an object with a specified prototype, ECMAScript 5 includes a standard function Object.create. A greatly simplified version of it would look like this:
Object.create = function(prototype) {
var Type = function () {};
Type.prototype = prototype;
return new Type();
};
It just takes care of the pain of writing a constructor function and then calling it with new.
When would you avoid prototypes?
A useful comparison is with popular OO languages such as Java and C#. These support two kinds of inheritance:
interface inheritance, where you implement an interface such that the class provides its own unique implementation for every member of the interface.
implementation inheritance, where you extend a class that provides default implementations of some methods.
In JavaScript, prototypical inheritance is a kind of implementation inheritance. So in those situations where (in C# or Java) you would have derived from a base class to gain default behaviour, which you then make small modifications to via overrides, then in JavaScript, prototypical inheritance makes sense.
However, if you're in a situation where you would have used interfaces in C# or Java, then you don't need any particular language feature in JavaScript. There is no need to explicitly declare something that represents the interface, and no need to mark objects as "implementing" that interface:
var duck = {
quack: function() { ... }
};
duck.quack(); // we're satisfied it's a duck!
In other words, if each "type" of object has its own definitions of the "methods", then there is no value in inheriting from a prototype. After that, it depends on how many instances you allocate of each type. But in many modular designs, there is only one instance of a given type.
And in fact, it has been suggested by many people that implementation inheritance is evil. That is, if there are some common operations for a type, then maybe it's clearer if they are not put into a base/super class, but are instead just exposed as ordinary functions in some module, to which you pass the object(s) you want them to operate on.
You should use prototypes if you wish to declare a "non-static" method of the object.
var myObject = function () {
};
myObject.prototype.getA = function (){
alert("A");
};
myObject.getB = function (){
alert("B");
};
myObject.getB(); // This works fine
myObject.getA(); // Error!
var myPrototypeCopy = new myObject();
myPrototypeCopy.getA(); // This works, too.
One reason to use the built-in prototype object is if you'll be duplicating an object multiple times that will share common functionality. By attaching methods to the prototype, you can save on duplicating methods being created per each new instance. But when you attach a method to the prototype, all instances will have access to those methods.
Say you have a base Car() class/object.
function Car() {
// do some car stuff
}
then you create multiple Car() instances.
var volvo = new Car(),
saab = new Car();
Now, you know each car will need to drive, turn on, etc. Instead of attaching a method directly to the Car() class (which takes up memory per each instance created), you can attach the methods to the prototype instead (creating the methods only once), therefore giving access to those methods to both the new volvo and saab.
// just mapping for less typing
Car.fn = Car.prototype;
Car.fn.drive = function () {
console.log("they see me rollin'");
};
Car.fn.honk = function () {
console.log("HONK!!!");
}
volvo.honk();
// => HONK!!!
saab.drive();
// => they see me rollin'
Put functions on a prototype object when you're going to create lots of copies of a particular kind of object and they all need to share common behaviors. By doing so, you'll save some memory by having just one copy of each function, but that's only the simplest benefit.
Changing methods on prototype objects, or adding methods, instantly changes the nature of all the instances of the corresponding type(s).
Now exactly why you'd do all these things is mostly a function of your own application design, and the kinds of things you need to do in client-side code. (A whole different story would be code inside a server; much easier to imagine doing more large-scale "OO" code there.)
If i explain in class based term then Person is class, walk() is Prototype method. So walk() will have its existence only after you instantiate new object with this.
So if you want to create the copies of object like Person u can create many users Prototype is good solution as it saves memory by sharing/inheriting same copy of function for each of the object in memory.
Whereas static is not that great help in such scenario.
function Person(){
this.name = "anonymous";
}
// its instance method and can access objects data data
Person.prototype.walk = function(){
alert("person has started walking.");
}
// its like static method
Person.ProcessPerson = function(Person p){
alert("Persons name is = " + p.name);
}
var userOne = new Person();
var userTwo = new Person();
//Call instance methods
userOne.walk();
//Call static methods
Person.ProcessPerson(userTwo);
So with this its more like instance method.
The object's approach is like Static methods.
https://developer.mozilla.org/en/Introduction_to_Object-Oriented_JavaScript
Just including a video link here for reference, when not to use prototypes: https://youtu.be/JCXZhe6KsxQ?t=2m30s
Here is Ben Lesh's talk from NGConf, why rxjs removed patching prototype (chainable functions) in favor of pipeable functions.

Categories

Resources