Background
I have a prototype object that has dozens of functions that access info from a list like this:
var prototype_object = {
yellow: function(list) { return list[this.type+'_yellow']; },
green: function(list) { return list[this.type+'_green']; },
// ... 50 more functions here
}
The 'this.type' is supposed to come from the object that is assigned the prototype in a function:
function accessor(type) {
var widget = Object.create(prototype_object);
widget.type = type;
return widget;
}
I have a central list of information so now I can call:
var access_foo = accessor('foo'); // Create the accessor
access_foo.green(list); //Find 'foo_green' in the list
Problem
These accessor fxns are passed to different areas of the app and called after being assigned to new objects. Thus the 'this' in the prototype functions is being reassigned (as expected in javascript) and resulting in undefined types.
"SO BIND IT": We can bind to functions to set the 'this' which will create new functions. I can't afford to instantiate 60 new functions for 100s of dozens of object types in dozens of places.
"CALL IT": Call would require that I pass the original accessor as the 'this', but as I said, access_foo.green is passed somewhere else in the app and cannot reference back to access_foo on call.
"CHANGE THE PROTOTYPE_OBJECT PARAMS": Not an option the way the app is written.
In the end I need an object that knows its type and shares access to a large list of functions. Am I right in saying there's no way to create custom accessors that can be called out of context without having them all instantiate/bind to the full set of possible prototype functions?
You seem to have ruled out all the possible solutions. If you want a solution, you will have to adapt to use one of the options. If you're passing around accessor functions lots of places and you want them permanently bound to your object (so you don't have to also pass the object), then you will have to change how you're doing things.
The cleanest way would be to define the methods in the constructor and have the methods use a constructor local variable for the object reference and rely on the constructor closure instead of using this. Then, they would still work even though this was wrong. You will have to redo how you create your object in order to do that.
You could also redefine all your methods to pre-bind themselves. I will show code examples of both options.
Here's the closure method:
function myObj() {
var self = this;
self.prop1 = "foo";
// define all methods in here and use self instead of this
self.method1 = function() {
console.log(self.prop1);
}
}
var x = new myObj();
var m = x.method1;
m();
And, here's the pre-bind method while changing as little as possible of your existing code:
var prototype_object = {
yellow: function(list) { return list[this.type+'_yellow']; },
green: function(list) { return list[this.type+'_green']; },
// ... 50 more functions here
}
function accessor(type) {
var widget = Object.create(prototype_object);
widget.type = type;
// reassign prototype methods to the actual object and make them pre-bound
// to this particular instance
for (var method in prototype_object) {
if (typeof method === "function") {
// assign pre-bound method to the instance
widget[method] = widget[method].bind(widget);
}
}
return widget;
}
This one is a little more optimized version of the previous one that doesn't put the new methods on the prototype at all:
var prototype_object = {
yellow: function(list) { return list[this.type+'_yellow']; },
green: function(list) { return list[this.type+'_green']; },
// ... 50 more functions here
}
function accessor(type) {
var widget = {};
widget.type = type;
// reassign prototype methods to the actual object and make them pre-bound
// to this particular instance
for (var method in prototype_object) {
if (typeof method === "function" && prototype_object.hasOwnProperty(method)) {
// assign pre-bound method to the instance
widget[method] = prototype_object[method].bind(widget);
}
}
return widget;
}
As you can see in the example below, I'm trying to wrap every function defined in obj so it gets to be able to be called with anotherObj as this, and then add that wrapper as a property to anotherObj.
Note: isFunction
var isFunction = function(x) {
return typeof(x) == "function";
}
for (prop in obj) {
if (isFunction(obj[prop])) {
var fn = obj[prop];
anotherObj[prop] = function() {
fn.call(anotherObj);
};
}
}
For some reason weird to me, every property now stored in anotherObj, references only the last property of the iteration.
However, if I use an external function like below, the references are ok.
var contextFn = function(fn, context){
return function() {
fn.call(context);
};
};
...
for (prop in obj) {
...
anotherObj[prop] = contextFn(fn, anotherObj);
...
}
Why is this happening? Is there something obvious I'm missing?
The (not-so-)obvious thing you're missing is that in your first loop, the variable "fn" is not local to the statement block it's declared in. Thus, it's shared by all the functions you're creating.
Your solution is in fact the correct one. By using a separate function, you're making copies of the values to be used in creating the actual wrapper functions, so that each wrapper will have it's own private copy of "fn".
if (typeof obj == 'undefined') {
obj = {};
}
obj.thing = new function () {
if (typeof this.global == 'undefined') {
this.global = (function () {return this;})();
}
}
this.global is assigned to this inside of a function. So, why does this return a reference to the window object?
console.log(this) > DOMWindow
console.log(obj.thing.global) > DOMWindow
console.log(window) > DOMWindow
I would love to understand this better.
In ES 3 and ES 5 there is a this keyword associated with every execution context (ES 3) or Lexical Environment (ES 5). The value is set according to the rules for entering global or function code as described in ECMA-262 §10.4.
In your code you have:
this.global = (function () {return this;})();
Where the result of calling an anonymous function is assigned to this.global. Within that anonymous function, the value of this is set according to the algorithm in §10.4.3.
Since the function is called without setting the value of this, and the code is not in strict mode, the value of this is set to the global object (which, in a browser, is generally the window object) per step 2 of the algorithm.
If the code was in strict mode, then the value of this within the anonymous function would be undefined, which is the value that would be assigned to this.global.
this is a keyword which always returns the current context. Try this:
if (typeof obj == 'undefined') {
obj = {};
}
obj.thing = new function () {
if (typeof this.global == 'undefined') {
var self = this;
this.global = (function () {return self;})();
}
}
The problem is, that within your self-invoking anonymous function, the context is the global object aka window there. So it returns the window reference. Even if the new keyword creates a new object as context for your outer function. That outer context does not matter for the invocation of your self-invoking function.
To avoid that, you can modify the code slightly into:
obj.thing = new function () {
if (typeof this.global == 'undefined') {
this.global = (function (that) {return that;})(this);
}
}
this in javascript is really tricky. It does not mean what you think it means and can indeed have its value substituted in lots of little ways depending on how the function is invoked. Although it can help with optimization and gives you a certain degree of power and javascript-knowledge-points, you might want to avoid using it until you are comfortable with the idea.
It is better to think of 'this' as a special variable that contains extra information the invoker of the function passed in. If you want to lock down the value you can do it with the call/apply methods on functions or the browser Function.bind or _.bind in libraries like underscore.js.
var x = {
name: "George",
hiThere: function() { return "hi "+(this.name || "no value") ; }
}
x.hiThere(); // hi George
var thisWillBeGlobal = hiThere;
thisWillBeGlobal() // hi no value
var manuallyBoundToGeorge = function() {
return x.hiThere();
}
manuallyBoundToGeorge(); //hi George (always)
manuallyBoundToFred = function() {
return x.hiThere.call({name: 'Fred'});
}
manuallyBoundToFred(); //hi Fred (always)
var hiGeorge = Function.bind(x.hiThere, x);
hiGeorge(); //hi George (always) - same as manual bind above
notice that Function.bind is not avilable in older browsers and it is generally preferred to use something like underscroe's _.bind
You would of course still use this when working with libraries like jquery that pass information through it.
I have this class where I have a private property and a public method for access:
Person = function () {
this.Name = "asd";
var _public = new Object();
_public.Name = function (value) {
if (value == undefined) { //Get
return this.Name
} else {
this.Name = value; //Set
}
};
return _public;
};
I want to force the context in _public.Name for access a this.Name.
I know the technique of closure, but I want to see if I can force a context.
I found a technique to do it, extend object Function:
Function.prototype.setScope = function (scope) {
var f = this;
return function () {
f().apply(scope);
}
}
And my class becomes:
Person = function () {
this.Name = "asd";
var _public = new Object();
_public.Name = function (value) {
if (value == undefined) {
return this.Name
} else {
this.Name = value;
}
}.setScope(this);
return _public;
};
So I can force correctly the context, but I can not pass value and can not, however, return this.Name.
Not
f().apply(scope);
just
f.apply(scope);
(No () after f.) You want to use the apply function on the function f object, not call the function f and access apply on its return value.
To also pass on the arguments that your function in setScope receives, add this:
f.apply(scope, arguments);
arguments is an implicit argument to all functions, which is a pseudo-array of the actual arguments passed to the function at runtime. apply accepts any array-like thing as its second parameter to specify the arguments to use when calling the underlying function.
I'd also have it return the return value:
return f.apply(scope, arguments);
So setScope becomes:
Function.prototype.setScope = function (scope) {
var f = this;
return function () {
return f.apply(scope, arguments);
}
}
Live example
Note that the usual name for this function, and the name it has in the new ECMAScript5 standard, is bind (Section 15.3.4.5; ECMAScript5's bind also lets you curry arguments, which isn't done by this implementation). setScope is a particularly unfortunate name, because it doesn't set the scope, it sets the context.
Having said all that, there's no reason you need setScope in your Person constructor. You can just do this:
Person = function () {
var self = this;
this.Name = "asd";
var _public = new Object();
_public.Name = function (value) {
if (value == undefined) {
return self.Name;
} else {
self.Name = value;
}
};
return _public;
};
Live example
But using bind (aka setScope) can be useful in places where you don't want a new closure over the context in which you're doing it.
Off-topic: The way you're specifying Person will break certain things people might expect to work, such as:
var p = new Person();
alert(p instanceof Person); // Expect "true", but in your case will be "false"
...because you're replacing the object new created for you, but returning a different object out of your constructor (which overrides the default).
Rather than creating a new object and returning that in your constructor, allow the object constructed for you by new to be the object (and thus the Person relationship is maintained), but you can still get truly private variables and use accessors:
function Person() {
// Private variable
var name = "asd";
// Accessor function
this.Name = function(value) {
if (typeof value === "undefined") {
return name;
}
name = value;
};
}
Live example
As you can see, this is dramatically simpler, and it preserves the instanceof relationship. Note that we're not qualifying our references to name within Name at all, and so we're using the local variable in the constructor call in which our Name function, which closes over it, was created.
I've also taken the liberty there of giving the constructor function a name, because I'm not a fan of anonymous functions. I should have given the accessor a name as well:
function Person() {
// Private variable
var name = "asd";
// Accessor function
this.Name = Person_Name;
function Person_Name(value) {
if (typeof value === "undefined") {
return name;
}
name = value;
}
}
Off-topic 2: The overwhelming convention in JavaScript code is to use initial caps on function names only for constructor functions (like Person), and not on other kinds of functions (like Name). You're free to do whatever you like, of course, but I thought I'd mention the convention, as it makes it easier for other people to read your code.
Worth noting: All of these techniques result in every single Person object having its own copy of the accessor function. If there are going to be a lot of these objects, that could be a memory issue. If there are only going to be a few, that's fine.
First thing, I think the correct way to go about this is the "closure" method, as the syntax is easier and simpler to understand and makes more sense and most object oriented code written in Javascript is written that way. Another thing to note is that in your method, the "private" member can be accessed from outside by accessing Person.Name (instead of (new Person()).Name).
That being said, it seems that you want something like Prototype.JS's bind method, which allows you to bind a function reference as a method call to a specific object, and also passes all the arguments correctly (including allowing preloaded arguments).
Look at Prototype.JS source for the complete implementation, but a simple implementation of this semantic might look like this:
Function.prototype.bind = function(context) {
var callee = this;
var args = Array.prototype.slice.call(arguments,1);
return function() {
var newargs = args.concat(Array.prototype.slice.call(arguments,0));
return callee.apply(context, newargs);
};
};
It is difficult to understand what you are trying to achieve. But if I guess that you are trying to create a Person class with a name method to get/set the person's name, here is my suggestion:
function Person() {
this._name = undefined; // not required but is better than assigning a fake name
return this;
}
Person.prototype.name = function( _name ) {
if ( _name === undefined ) return this._name; // get
return this._name = _name; // set
}
Note that I have defined the name function with a lower case first letter. This is standard practice in JavaScript where only constructors are usually capitalized. To use this class you do:
person = new Person();
person.name( "Ermes Enea Colella" );
alert( person.name ); // displays "Ermes Enea Colella"
There is no need to bind any context with this method, so you may be looking for something else. If you can clarify your need, I'll be happy to edit my answer.
I hope this helps.
Javascript 1.9.3 / ECMAScript 5 introduces Object.create, which Douglas Crockford amongst others has been advocating for a long time. How do I replace new in the code below with Object.create?
var UserA = function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
}
UserA.prototype.sayHello = function() {
console.log('Hello '+ this.name);
}
var bob = new UserA('bob');
bob.sayHello();
(Assume MY_GLOBAL.nextId exists).
The best I can come up with is:
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB);
bob.init('Bob');
bob.sayHello();
There doesn't seem to be any advantage, so I think I'm not getting it. I'm probably being too neo-classical. How should I use Object.create to create user 'bob'?
With only one level of inheritance, your example may not let you see the real benefits of Object.create.
This methods allows you to easily implement differential inheritance, where objects can directly inherit from other objects.
On your userB example, I don't think that your init method should be public or even exist, if you call again this method on an existing object instance, the id and name properties will change.
Object.create lets you initialize object properties using its second argument, e.g.:
var userB = {
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB, {
'id' : {
value: MY_GLOBAL.nextId(),
enumerable:true // writable:false, configurable(deletable):false by default
},
'name': {
value: 'Bob',
enumerable: true
}
});
As you can see, the properties can be initialized on the second argument of Object.create, with an object literal using a syntax similar to the used by the Object.defineProperties and Object.defineProperty methods.
It lets you set the property attributes (enumerable, writable, or configurable), which can be really useful.
There is really no advantage in using Object.create(...) over new object.
Those advocating this method generally state rather ambiguous advantages: "scalability", or "more natural to JavaScript" etc.
However, I have yet to see a concrete example that shows that Object.create has any advantages over using new. On the contrary there are known problems with it. Sam Elsamman describes what happens when there are nested objects and Object.create(...) is used:
var Animal = {
traits: {},
}
var lion = Object.create(Animal);
lion.traits.legs = 4;
var bird = Object.create(Animal);
bird.traits.legs = 2;
alert(lion.traits.legs) // shows 2!!!
This occurs because Object.create(...) advocates a practice where data is used to create new objects; here the Animal datum becomes part of the prototype of lion and bird, and causes problems as it is shared. When using new the prototypal inheritance is explicit:
function Animal() {
this.traits = {};
}
function Lion() { }
Lion.prototype = new Animal();
function Bird() { }
Bird.prototype = new Animal();
var lion = new Lion();
lion.traits.legs = 4;
var bird = new Bird();
bird.traits.legs = 2;
alert(lion.traits.legs) // now shows 4
Regarding, the optional property attributes that are passed into Object.create(...), these can be added using Object.defineProperties(...).
Object.create is not yet standard on several browsers, for example IE8, Opera v11.5, Konq 4.3 do not have it. You can use Douglas Crockford's version of Object.create for those browsers but this doesn't include the second 'initialisation object' parameter used in CMS's answer.
For cross browser code one way to get object initialisation in the meantime is to customise Crockford's Object.create. Here is one method:-
Object.build = function(o) {
var initArgs = Array.prototype.slice.call(arguments,1)
function F() {
if((typeof o.init === 'function') && initArgs.length) {
o.init.apply(this,initArgs)
}
}
F.prototype = o
return new F()
}
This maintains Crockford prototypal inheritance, and also checks for any init method in the object, then runs it with your parameter(s), like say new man('John','Smith'). Your code then becomes:-
MY_GLOBAL = {i: 1, nextId: function(){return this.i++}} // For example
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.build(userB, 'Bob'); // Different from your code
bob.sayHello();
So bob inherits the sayHello method and now has own properties id=1 and name='Bob'. These properties are both writable and enumerable of course. This is also a much simpler way to initialise than for ECMA Object.create especially if you aren't concerned about the writable, enumerable and configurable attributes.
For initialisation without an init method the following Crockford mod could be used:-
Object.gen = function(o) {
var makeArgs = arguments
function F() {
var prop, i=1, arg, val
for(prop in o) {
if(!o.hasOwnProperty(prop)) continue
val = o[prop]
arg = makeArgs[i++]
if(typeof arg === 'undefined') break
this[prop] = arg
}
}
F.prototype = o
return new F()
}
This fills the userB own properties, in the order they are defined, using the Object.gen parameters from left to right after the userB parameter. It uses the for(prop in o) loop so, by ECMA standards, the order of property enumeration cannot be guaranteed the same as the order of property definition. However, several code examples tested on (4) major browsers show they are the same, provided the hasOwnProperty filter is used, and sometimes even if not.
MY_GLOBAL = {i: 1, nextId: function(){return this.i++}}; // For example
var userB = {
name: null,
id: null,
sayHello: function() {
console.log('Hello '+ this.name);
}
}
var bob = Object.gen(userB, 'Bob', MY_GLOBAL.nextId());
Somewhat simpler I would say than Object.build since userB does not need an init method. Also userB is not specifically a constructor but looks like a normal singleton object. So with this method you can construct and initialise from normal plain objects.
TL;DR:
new Computer() will invoke the constructor function Computer(){} for one time, while Object.create(Computer.prototype) won't.
All the advantages are based on this point.
Sidenote about performance: Constructor invoking like new Computer() is heavily optimized by the engine, so it may be even faster than Object.create.
You could make the init method return this, and then chain the calls together, like this:
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
return this;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB).init('Bob');
Another possible usage of Object.create is to clone immutable objects in a cheap and effective way.
var anObj = {
a: "test",
b: "jest"
};
var bObj = Object.create(anObj);
bObj.b = "gone"; // replace an existing (by masking prototype)
bObj.c = "brand"; // add a new to demonstrate it is actually a new obj
// now bObj is {a: test, b: gone, c: brand}
Notes: The above snippet creates a clone of an source object (aka not a reference, as in cObj = aObj). It benefits over the copy-properties method (see 1), in that it does not copy object member properties. Rather it creates another -destination- object with it's prototype set on the source object. Moreover when properties are modified on the dest object, they are created "on the fly", masking the prototype's (src's) properties.This constitutes a fast an effective way of cloning immutable objects.
The caveat here is that this applies to source objects that should not be modified after creation (immutable). If the source object is modified after creation, all the clone's unmasked properties will be modified, too.
Fiddle here(http://jsfiddle.net/y5b5q/1/) (needs Object.create capable browser).
I think the main point in question - is to understand difference between new and Object.create approaches. Accordingly to this answer and to this video new keyword does next things:
Creates new object.
Links new object to constructor function (prototype).
Makes this variable point to the new object.
Executes constructor function using the new object and implicit perform return this;
Assigns constructor function name to new object's property constructor.
Object.create performs only 1st and 2nd steps!!!
In code example provided in question it isn't big deal, but in next example it is:
var onlineUsers = [];
function SiteMember(name) {
this.name = name;
onlineUsers.push(name);
}
SiteMember.prototype.getName = function() {
return this.name;
}
function Guest(name) {
SiteMember.call(this, name);
}
Guest.prototype = new SiteMember();
var g = new Guest('James');
console.log(onlineUsers);
As side effect result will be:
[ undefined, 'James' ]
because of Guest.prototype = new SiteMember();
But we don't need to execute parent constructor method, we need only make method getName to be available in Guest.
Hence we have to use Object.create.
If replace Guest.prototype = new SiteMember();
to Guest.prototype = Object.create(SiteMember.prototype); result be:
[ 'James' ]
Sometimes you cannot create an object with NEW but are still able to invoke the CREATE method.
For example: if you want to define a Custom Element it must derive from HTMLElement.
proto = new HTMLElement //fail :(
proto = Object.create( HTMLElement.prototype ) //OK :)
document.registerElement( "custom-element", { prototype: proto } )
The advantage is that Object.create is typically slower than new on most browsers
In this jsperf example, in a Chromium, browser new is 30 times as fast as Object.create(obj) although both are pretty fast. This is all pretty strange because new does more things (like invoking a constructor) where Object.create should be just creating a new Object with the passed in object as a prototype (secret link in Crockford-speak)
Perhaps the browsers have not caught up in making Object.create more efficient (perhaps they are basing it on new under the covers ... even in native code)
Summary:
Object.create() is a Javascript function which takes 2 arguments and returns a new object.
The first argument is an object which will be the prototype of the newly created object
The second argument is an object which will be the properties of the newly created object
Example:
const proto = {
talk : () => console.log('hi')
}
const props = {
age: {
writable: true,
configurable: true,
value: 26
}
}
let Person = Object.create(proto, props)
console.log(Person.age);
Person.talk();
Practical applications:
The main advantage of creating an object in this manner is that the prototype can be explicitly defined. When using an object literal, or the new keyword you have no control over this (however, you can overwrite them of course).
If we want to have a prototype The new keyword invokes a constructor function. With Object.create() there is no need for invoking or even declaring a constructor function.
It can Basically be a helpful tool when you want create objects in a very dynamic manner. We can make an object factory function which creates objects with different prototypes depending on the arguments received.
You have to make a custom Object.create() function. One that addresses Crockfords concerns and also calls your init function.
This will work:
var userBPrototype = {
init: function(nameParam) {
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
function UserB(name) {
function F() {};
F.prototype = userBPrototype;
var f = new F;
f.init(name);
return f;
}
var bob = UserB('bob');
bob.sayHello();
Here UserB is like Object.create, but adjusted for our needs.
If you want, you can also call:
var bob = new UserB('bob');
While Douglas Crockford used to be a zealous advocate of Object.create() and he is basically the reason why this construct actually is in javascript, he no longer has this opinion.
He stopped using Object.create, because he stopped using this keyword altogether as it causes too much trouble. For example, if you are not careful it can easily point to the global object, which can have really bad consequences. And he claims that without using this Object.create does not make sense anymore.
You can check this video from 2014 where he talks at Nordic.js:
https://www.youtube.com/watch?v=PSGEjv3Tqo0
new and Object.create serve different purposes. new is intended to create a new instance of an object type. Object.create is intended to simply create a new object and set its prototype. Why is this useful? To implement inheritance without accessing the __proto__ property. An object instance's prototype referred to as [[Prototype]] is an internal property of the virtual machine and is not intended to be directly accessed. The only reason it is actually possible to directly access [[Prototype]] as the __proto__ property is because it has always been a de-facto standard of every major virtual machine's implementation of ECMAScript, and at this point removing it would break a lot of existing code.
In response to the answer above by 7ochem, objects should absolutely never have their prototype set to the result of a new statement, not only because there's no point calling the same prototype constructor multiple times but also because two instances of the same class can end up with different behavior if one's prototype is modified after being created. Both examples are simply bad code as a result of misunderstanding and breaking the intended behavior of the prototype inheritance chain.
Instead of accessing __proto__, an instance's prototype should be written to when an it is created with Object.create or afterward with Object.setPrototypeOf, and read with Object.getPrototypeOf or Object.isPrototypeOf.
Also, as the Mozilla documentation of Object.setPrototypeOf points out, it is a bad idea to modify the prototype of an object after it is created for performance reasons, in addition to the fact that modifying an object's prototype after it is created can cause undefined behavior if a given piece of code that accesses it can be executed before OR after the prototype is modified, unless that code is very careful to check the current prototype or not access any property that differs between the two.
Given
const X = function (v) { this.v = v };
X.prototype.whatAmI = 'X';
X.prototype.getWhatIAm = () => this.whatAmI;
X.prototype.getV = () => this.v;
the following VM pseudo-code is equivalent to the statement const x0 = new X(1);:
const x0 = {};
x0.[[Prototype]] = X.prototype;
X.prototype.constructor.call(x0, 1);
Note although the constructor can return any value, the new statement always ignores its return value and returns a reference to the newly created object.
And the following pseudo-code is equivalent to the statement const x1 = Object.create(X.prototype);:
const x0 = {};
x0.[[Prototype]] = X.prototype;
As you can see, the only difference between the two is that Object.create does not execute the constructor, which can actually return any value but simply returns the new object reference this if not otherwise specified.
Now, if we wanted to create a subclass Y with the following definition:
const Y = function(u) { this.u = u; }
Y.prototype.whatAmI = 'Y';
Y.prototype.getU = () => this.u;
Then we can make it inherit from X like this by writing to __proto__:
Y.prototype.__proto__ = X.prototype;
While the same thing could be accomplished without ever writing to __proto__ with:
Y.prototype = Object.create(X.prototype);
Y.prototype.constructor = Y;
In the latter case, it is necessary to set the constructor property of the prototype so that the correct constructor is called by the new Y statement, otherwise new Y will call the function X. If the programmer does want new Y to call X, it would be more properly done in Y's constructor with X.call(this, u)
new Operator
This is used to create object from a constructor function
The new keywords also executes the constructor function
function Car() {
console.log(this) // this points to myCar
this.name = "Honda";
}
var myCar = new Car()
console.log(myCar) // Car {name: "Honda", constructor: Object}
console.log(myCar.name) // Honda
console.log(myCar instanceof Car) // true
console.log(myCar.constructor) // function Car() {}
console.log(myCar.constructor === Car) // true
console.log(typeof myCar) // object
Object.create
You can also use Object.create to create a new object
But, it does not execute the constructor function
Object.create is used to create an object from another object
const Car = {
name: "Honda"
}
var myCar = Object.create(Car)
console.log(myCar) // Object {}
console.log(myCar.name) // Honda
console.log(myCar instanceof Car) // ERROR
console.log(myCar.constructor) // Anonymous function object
console.log(myCar.constructor === Car) // false
console.log(typeof myCar) // object
I prefer a closure approach.
I still use new.
I don't use Object.create.
I don't use this.
I still use new as I like the declarative nature of it.
Consider this for simple inheritance.
window.Quad = (function() {
function Quad() {
const wheels = 4;
const drivingWheels = 2;
let motorSize = 0;
function setMotorSize(_) {
motorSize = _;
}
function getMotorSize() {
return motorSize;
}
function getWheelCount() {
return wheels;
}
function getDrivingWheelCount() {
return drivingWheels;
}
return Object.freeze({
getWheelCount,
getDrivingWheelCount,
getMotorSize,
setMotorSize
});
}
return Object.freeze(Quad);
})();
window.Car4wd = (function() {
function Car4wd() {
const quad = new Quad();
const spareWheels = 1;
const extraDrivingWheels = 2;
function getSpareWheelCount() {
return spareWheels;
}
function getDrivingWheelCount() {
return quad.getDrivingWheelCount() + extraDrivingWheels;
}
return Object.freeze(Object.assign({}, quad, {
getSpareWheelCount,
getDrivingWheelCount
}));
}
return Object.freeze(Car4wd);
})();
let myQuad = new Quad();
let myCar = new Car4wd();
console.log(myQuad.getWheelCount()); // 4
console.log(myQuad.getDrivingWheelCount()); // 2
console.log(myCar.getWheelCount()); // 4
console.log(myCar.getDrivingWheelCount()); // 4 - The overridden method is called
console.log(myCar.getSpareWheelCount()); // 1
Feedback encouraged.