Javascript Brainteaser - Reverse Number Determining - javascript

Lets say I have a list of numbers in the following form(Ignore the | they are there for formating help).
00|00|xx
00|xx|00
xx|00|00
etc.
Rules: XX can be any number between 1 and 50. No XX values can be identical.
Now I select a random set of numbers(no duplicates) from a list qualifying the above format, and randomly add and subtract them. For example
000011 - 002400 - 230000 = -232389
How can I determine the original numbers and if they were added or subtracted solely from -232389? I'm stumped.
Thanks!
EDIT:
I was looking for a function so I ended up having to make one. Its just a proof of concept function so variables names are ugly http://jsfiddle.net/jPW8A/.
There are bugs in the following implementation, and it fails to work in a dozen of scenarios. Check the selected answer below.
function reverse_add_subtract(num){
var nums = [];
while(num != 0){
var str = num.toString(),
L = Math.abs(num).toString().length,
MA = str.match(/^(-?[0-9]?[0-9])([0-9][0-9])([0-9][0-9])*$/);
if(MA){
var num1 = MA[1],
num2 = MA[2];
}else{
var num1 = num,
num2 = 0;
}
if(L%2)L++;
if( num2 > 50){
if(num < 0) num1--;
else num1++;
}
nums.push(num1);
var add = parseInt(num1 + Array(--L).join(0),10);
num = (num-add);
}
return nums;
}
reverse_add_subtract(-122436);

First note that each xx group is constrained from [1, 50). This implies that each associated pair in the number that is in the range [50, 99) is really 100 - xx and this means that it "borrowed from" the group to the left. (It also means that there is only one set of normalized numbers and one solution, if any.)
So given the input 23|23|89 (the initial xx spots from -232389), normalize it -- that is, starting from the right, if the value is >= 50, get 100 - value and carry the 100 rightward (must balance). Example: (23 * 100) + 89 = 2300 * 89 = 2400 - 11 = 2389. And example that shows that it doesn't matter if it's negative as the only things that change is the signs: (-23 * 100) - 89 = -2300 - 89 = -2400 + 11 = -2389
(Notes: Remember, 1 is added to the 23 group to make it 24: the sign of the groups is not actually considered in this step, the math is just to show an example that it's okay to do! It may be possible to use this step to determine the sign and avoid extra math below, but this solution just tries to find the candidate numbers at this step. If there are any repeats of the number groups after this step then there is no solution; otherwise a solution exists.)
The candidate numbers after the normalization are then 23|24|11 (let's say this is aa|bb|cc, for below). All the xx values are now known and it is just a matter of finding the combination such that e * (aa * 10000) + f * (bb * 100) + g * (cc * 1) = -232389. The values aa, bb, cc are known from above and e, f, and g will be either 1 or -1, respectively.
Solution Warning: A method of finding the addition or subtraction given the determined numbers (determined above) is provided below the horizontal separator. Take a break and reflect on the above sections before deciding if the extra "hints" are required.
This can then be solved by utilizing the fact that all the xx groups are not dependent after the normalization. (At each step, try to make the input number for the next step approach zero.)
Example:
-232389 + (23 * 10000) = -2389 (e is -1 because that undoes the + we just did)
-2389 + (24 * 100) = 11 (likewise, f is -1)
11 - (11 * 1) = 0 (0 = win! g is 1 and solution is (-1 * 23 * 10000) + (-1 * 24 * 100) + (1 * 11 * 1) = -232389)
Happy homeworking.

First, your math is wrong. Your leading zeros are converting the first two numbers to octal. If that is the intent, the rest of this post doesn't exactly apply but may be able to be adapted.
11-2400-230000 = -232389
Now the last number is easy, it's always the first two digits, 23 in this case. Remove that:
-232389 + 230000 = -2389
Your 2nd number is the next 100 below this, -2400 in this case. And your final number is simply:
-2389 + 2400 = 11

Aww! Someone posted an answer saying "brute force it" that I was about to respond to with:
function find(num){for(var i=1;i<50;i++){for(var o1=0;o1<2;o1++){for(var j=1;j<50;j++){for(var o2=0;o2<2;o2++){for(var k=1;k<50;k++){var eq;if(eval(eq=(i+(o1?'+':'-')+j+'00'+(o2?'+':'-')+k+'0000'))==num){ return eq; }}}}}}}
they deleted it... :(
It was going to go in the comment, but here's a cleaner format:
function find(num){
for(var i=1;i<50;i++){
for(var o1=0;o1<2;o1++){
for(var j=1;j<50;j++){
for(var o2=0;o2<2;o2++){
for(var k=1;k<50;k++){
var eq;
if(eval(eq=(i+(o1?'+':'-')+j+'00'+(o2?'+':'-')+k+'0000'))==num){ return eq; }
}
}
}
}
}
}

Related

In JavaScript, is there a way to make 0.84729347293923 into an integer without using any string or regex manipulation?

Given any number between 0 and 1, such as 0.84729347293923, is there a simple way to make it into 84729347293923 without string or regex manipulation? I can think of using a loop, which probably is no worse than using a string because it is O(n) with n being the number of digits. But is there a better way?
function getRandom() {
let r = Math.random();
while (Math.floor(r) !== r) r *= 10;
return r;
}
for (let i = 0; i < 10; i++)
console.log(getRandom());
Integers mod 1 = 0, non integers mod 1 != 0.
while ((r*=10) % 1);
Ok, just want to refactor my code (i realized that was bad so this is what i discovered to correctly get the value as you requested).
NOTE: As the question says that "given any number between 0 and 1", this solution only works for values between 0 and 1:
window.onload = ()=>{
function getLen(num){
let currentNumb = num;
let integratedArray = [];
let realLen = 0;
/*While the number is not an integer, we will multiply the copy of the original
*value by ten, and when the loop detects that the number is already an integer
*the while simply breaks, in this process we are storing each transformations
*of the number in an array called integratedArray*/
while(!(Number.isInteger(currentNumb))){
currentNumb *= 10;
integratedArray.push(currentNumb);
}
/*We iterate over the array and compare each value of the array with an operation
*in which the resultant value should be exactly the same as the actual item of the
*array, in the case that both are equal we assign the var realLen to i, and
*in case that the values were not the same, we simply breaks the loop, if the
*values are not the same, this indicates that we found the "trash numbers", so
*we simply skip them.*/
for(let i = 0; i < integratedArray.length; i++){
if(Math.floor(integratedArray[i]) === Math.floor(num * Math.pow(10, i + 1))){
realLen = i;
}else{
break;
}
}
return realLen;
}
//Get the float value of a number between 0 and 1 as an integer.
function getShiftedNumber(num){
//First we need the length to get the float part of the number as an integer
const len = getLen(num);
/*Once we have the length of the number we simply multiply the number by
*(10) ^ numberLength, this eliminates the comma (,), or point (.), and
*automatically transforms the number to an integer in this case a large integer*/
return num * (Math.pow(10, len));
}
console.log(getShiftedNumber(0.84729347293923));
}
So the explanation is the next:
Because we want to convert this number without using any string, regex or any another thing, first we need to get the length of the number, this is a bit hard to do without using string conversions... so i did the function getLen for this purpose.
In the function getLen, we have 3 variables:
currentNumb: This var is a copy of the original value (the original number), this value help us to found the length of the number and we can do some transforms to this value whitout changing the original reference of the number.
We need to multiply this value any times is needed to transform the number to an integer and then multiplyng this value by ten to ten.
with the help of a while (this method makes the number a false integer).
NOTE: I saw "False integer" because when i was making the tests i realized that in the number is being adding more digits than normal... (Very very strange), so this stupid but important thing makes neccesary the filter of these "trash numbers", so later we proccess them.
integratedArray: This array stores the values of the result of the first while operations, so the last number stored in this array is an integer, but this number is one of the "fake integers", so with this array we need to iterate later to compare what of those stored values are different to the original value multiplied by (10 * i + 1), so here is the hint:
In this case the first 12 values of this array are exactly the same with the operation of Math.floor(num * Math.pow(10, i + 1))), but in the 13th value of the array these values are not the same so... yes!, there are those "trash numbers" that we were searching for.
realLen: This is the variable where we will store the real length of the number converting the float part of this number in an integer.
Some binary search approach:
Its useless if avarage length < 8;
It contains floating point issues.
But hey it is O(log n) with tons of wasted side computations - i guess if one counts them its event worse than just plain multiplication.
I prefer #chiliNUT answer. One line stamp.
function floatToIntBinarySearch(number){
const max_safe_int_length = 16;
const powers = [
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
100000000000,
1000000000000,
10000000000000,
100000000000000,
1000000000000000,
10000000000000000
]
let currentLength = 16
let step = 16
let _number = number * powers[currentLength]
while(_number % 1 != 0 || (_number % 10 | 0) == 0){
step /= 2
if( (_number % 10 | 0) == 0 && !(_number % 1 != 0)){
currentLength = currentLength - step;
} else {
currentLength = step + currentLength;
}
if(currentLength < 1 || currentLength > max_safe_int_length * 2) throw Error("length is weird: " + currentLength)
_number = number * powers[currentLength]
console.log(currentLength, _number)
if(Number.isNaN(_number)) throw Error("isNaN: " + ((number + "").length - 2) + " maybe greater than 16?")
}
return number * powers[currentLength]
}
let randomPower = 10 ** (Math.random() * 10 | 0)
let test = (Math.random() * randomPower | 0) / randomPower
console.log(test)
console.log(floatToIntBinarySearch(test))

algorithm to determine if a number is made of sum of multiply of two other number

let say it's given 2k+2+3p=n as the test, how to find out the test is true for a number is valid for a number when k>=0, p>=0, n>=0:
example1 : n=24 should result true since k=5 & p=4 => 2(5)+2+3(4)=24
example2 : n=11 should result true since k=0 & p=3 => 2(0)+2+3(3)=11
example3 : n=15 should result true since k=5 & p=1 => 2(5)+2+3(1)=15
i wonder if there is a mathematic solution to this. i solved it like bellow:
//let say 2k+2+3p=n
var accepted = false;
var betterNumber= n-2;
//assume p=0
var kReminder= (betterNumber)%2==0;
//assume k=0
var pReminder= (betterNumber)%3==0;
if (kReminder || pReminder){
accepted=true;
}else{
var biggerChunk= Math.Max(2,3); //max of 2k or 3p, here i try to find the bigger chunk of the
var smallerChunk= Math.Min(2,3);
if ((betterNumber%bigger)%smallerChunk==0){
accepted=true;
}else
{
accepted=false;
}
}
still there are edge cases that i didn't see. so i wonder if it has a better solution or not.
Update
the test above is just an example. the solution should be efficient enough for big numbers or any combination of number like 1000000k+37383993+37326328393p=747437446239902
By inspection, 2 is the smallest valid even number and 5 is the smallest valid odd number:
2 is valid (k=0, p=0)
5 is valid (k=0, p=1)
All even numbers >= 2 and all odd numbers >= 5 are valid.
Even numbers: k=n/2-1, p=0
odd numbers: k=(n-3)/2-1, p=1
What we're doing here is incrementing k to add 2s to the smallest valid even and odd numbers to get all larger even and odd numbers.
All values of n >= 2 are valid except for 3.
Dave already gave a constructive and efficient answer but I'd like to share some math behind it.
For some time I'll ignore the + 2 part as it is of less significance and concentrate on a generic form of this question: given two positive integers a and b check whether number X can be represented as k*a + m*b where k and m are non-negative integers. The Extended Euclidean algorithm essentially guarantees that:
If number X is not divisible by GCD(a,b), it can't be represented as k*a + m*b with integer k and m
If number X is divisible by GCD(a,b) and is greater or equal than a*b, it can be represented as k*a + m*b with non-negative integer k and m. This follows from the fact that d = GCD(a,b) can be represented in such a form (let's call it d = k0*a + m0*b). If X = Y*d then X = (Y*k0)*a + (Y*m0)*b. If one of those two coefficients is negative you can trade one for the other adding and subtracting a*b as many times as required as in X = (Y*k0 + b)*a + (Y*m0 - a)*b. And since X >= a*b you can always get both coefficients to be non-negative in such a way. (Note: this is obviously not the most efficient way to find a suitable pair of those coefficients but since you only ask for whether such coefficients exist it should be sufficient.)
So the only gray area is numbers X divisible by GCD(a,b) that lie between in the (0, a*b) range. I'm not aware of any general rule about this area but you can check it explicitly.
So you can just do pre-calculations described in #3 and then you can answer this question pretty much immediately with simple comparison + possibly checking against pre-calculated array of booleans for the (0, a*b) range.
If you actual question is about k*a + m*b + c form where a, b and c are fixed, it is easily converted to the k*a + m*b question by just subtracting c from X.
Update (Big values of a and b)
If your a and b are big so you can't cache the (0, a*b) range beforehand, the only idea I have is to do the check for values in that range on demand by a reasonably efficient algorithm. The code goes like this:
function egcd(a0, b0) {
let a = a0;
let b = b0;
let ca = [1, 0];
let cb = [0, 1];
while ((a !== b) && (b !== 0)) {
let r = a % b;
let q = (a - r) / b;
let cr = [ca[0] - q * cb[0], ca[1] - q * cb[1]];
a = b;
ca = cb;
b = r;
cb = cr;
}
return {
gcd: a,
coef: ca
};
}
function check(a, b, x) {
let eg = egcd(a, b);
let gcd = eg.gcd;
let c0 = eg.coef;
if (x % gcd !== 0)
return false;
if (x >= a * b)
return true;
let c1a = c0[0] * x / gcd;
let c1b = c0[1] * x / gcd;
if (c1a < 0) {
let fixMul = -Math.floor(c1a / (b / gcd));
let c1bFixed = c1b - fixMul * (a / gcd);
return c1bFixed >= 0;
}
else { //c1b < 0
let fixMul = -Math.floor(c1b / (a / gcd));
let c1aFixed = c1a - fixMul * (b / gcd);
return c1aFixed >= 0;
}
}
The idea behind this code is based on the logic described in the step #2 above:
Calculate GCD and Bézout coefficients using the Extended Euclidean algorithm (if a and b are fixed, this can be cached, but even if not this is fairly fast anyway).
Check for conditions #1 (definitely no) and #2 (definitely yes) from the above
For value in the (0, a*b) range fix some coefficients by just multiplying Bézout coefficients by X/gcd. F
Find which of the two is negative and find the minimum multiplier to fix it by trading one coefficient for another.
Apply this multiplier to the other (initially positive) coefficient and check if it remains positive.
This algorithm works because all the possible solutions for X = k*a + m*b can be obtained from some base solution (k0, m0) using as (k0 + n*b/gcd, m0 + n*a/gcd) for some integer n. So to find out if there is a solution with both k >= 0 and m >= 0, all you need is to find the solution with minimum positive k and check m for it.
Complexity of this algorithm is dominated by the Extended Euclidean algorithm which is logarithmic. If it can be cached, everything else is just constant time.
Theorem: it is possible to represent number 2 and any number >= 4 using this formula.
Answer: the easiest test is to check if the number equals 2 or is greater or equals 4.
Proof: n=2k+2+3p where k>=0, p>=0, n>=0 is the same as n=2m+3p where m>0, p>=0 and m=k+1. Using p=0 one can represent any even number, e.g. with m=10 one can represent n=20. The odd number to the left of this even number can be represented using m'=m-2, p=1, e.g. 19=2*8+3. The odd number to the right can be represented with m'=m-1, p=1, e.g. 21=2*9+3. This rule holds for m greater or equal 3, that is starting from n=5. It is easy to see that for p=0 two additional values are also possible, n=2, n=4.

How to find the closest value of N no. into the sequence?

I have a list of integer sequence:
[10,15,30,45,60,75,90......n*15]
Let's say you have a value i.e. 33
What calculation i should do to find the closest value of 33 into the above sequence?
(JavaScript)
Can we find it without loop?
Thanks.
As others have already pointed out, if you're working with multiples of 15 (assuming the sequence starting with 10 was a mistake), then you can simply do the following:
var interval = 15;
var value = 33;
var closest = Math.round(value / interval) * interval;
console.log(closest);
You didn't specify any language, so here is some pseudocode. Also I assume that the sequence is actually 15*n and there has to be 0 instead of 10 as the first element. Assume the sequence is form 0 to 15*N and the test value is test. IMHO, the simplest algorithm is following:
if(test <= 0)
return 0
else if (test >= 15*N)
return 15*N
else {
lower = Math.floor(test/15)
upper = lower + 1
lowerDif = test - 15*lower
upperDif = 15*upper - test
if (lowerDif < upperDif)
return 15*lower
else
return 15*upper
}
The idea is that you need to check if test is inside [0; 15*N] range. If no - return the boundary, else check two values at indices Math.floor(test/15) and Math.floor(test/15) + 1. It is true that
Math.floor(test/15) <= test < Math.floor(test/15) + 1
So whichever is closer is the answer.

Can someone explain this base conversion code

var ShortURL = new function() {
var _alphabet = '23456789bcdfghjkmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ-_',
_base = _alphabet.length;
this.encode = function(num) {
var str = '';
while (num > 0) {
str = _alphabet.charAt(num % _base) + str;
num = Math.floor(num / _base);
}
return str;
};
this.decode = function(str) {
var num = 0;
for (var i = 0; i < str.length; i++) {
num = num * _base + _alphabet.indexOf(str.charAt(i));
}
return num;
};
};
I understand encode works by converting from decimal to custom base (custom alphabet/numbers in this case)
I am not quite sure how decode works.
Why do we multiply base by a current number and then add the position number of the alphabet? I know that to convert 010 base 2 to decimal, we would do
(2 * 0^2) + (2 * 1^1) + (2 * 0 ^ 0) = 2
Not sure how it is represented in that decode algorithm
EDIT:
My own decode version
this.decode2 = function (str) {
var result = 0;
var position = str.length - 1;
var value;
for (var i = 0; i < str.length; i++) {
value = _alphabet.indexOf(str[i]);
result += value * Math.pow(_base, position--);
}
return result;
}
This is how I wrote my own decode version (Just like I want convert this on paper. I would like someone to explain more in detail how the first version of decode works. Still don't get why we multiply num * base and start num with 0.
OK, so what does 376 mean as a base-10 output of your encode() function? It means:
1 * 100 +
5 * 10 +
4 * 1
Why? Because in encode(), you divide by the base on every iteration. That means that, implicitly, the characters pushed onto the string on the earlier iterations gain in significance by a factor of the base each time through the loop.
The decode() function, therefore, multiplies by the base each time it sees a new character. That way, the first digit is multiplied by the base once for every digit position past the first that it represents, and so on for the rest of the digits.
Note that in the explanation above, the 1, 5, and 4 come from the positions of the characters 3, 7, and 6 in the "alphabet" list. That's how your encoding/decoding mechanism works. If you feed your decode() function a numeric string encoded by something trying to produce normal base-10 numbers, then of course you'll get a weird result; that's probably obvious.
edit To further elaborate on the decode() function: forget (for now) about the special base and encoding alphabet. The process is basically the same regardless of the base involved. So, let's look at a function that interprets a base-10 string of numeric digits as a number:
function decode10(str) {
var num = 0, zero = '0'.charCodeAt(0);
for (var i = 0; i < str.length; ++i) {
num = (num * 10) + (str[i] - zero);
}
return num;
}
The accumulator variable num is initialized to 0 first, because before examining any characters of the input numeric string the only value that makes sense to start with is 0.
The function then iterates through each character of the input string from left to right. On each iteration, the accumulator is multiplied by the base, and the digit value at the current string position is added.
If the input string is "214", then, the iteration will proceed as follows:
num is set to 0
First iteration: str[i] is 2, so (num * 10) + 2 is 2
Second iteration: str[i] is 1, so (num * 10) + 1 is 21
Third iteration: str[i] is 4, so (num * 10) + 4 is 214
The successive multiplications by 10 achieve what the call to Math.pow() does in your code. Note that 2 is multiplied by 10 twice, which effectively multiplies it by 100.
The decode() routine in your original code does the same thing, only instead of a simple character code computation to get the numeric value of a digit, it performs a lookup in the alphabet string.
Both the original and your own version of the decode function achieve the same thing, but the original version does it more efficiently.
In the following assignment:
num = num * _base + _alphabet.indexOf(str.charAt(i));
... there are two parts:
_alphabet.indexOf(str.charAt(i))
The indexOf returns the value of a digit in base _base. You have this part in your own algorithm, so that should be clear.
num * _base
This multiplies the so-far accumulated result. The rest of my answer is about that part:
In the first iteration this has no effect, as num is still 0 at that point. But at the end of the first iteration, num contains the value as if the str only had its left most character. It is the base-51 digit value of the left most digit.
From the next iteration onwards, the result is multiplied by the base, which makes room for the next value to be added to it. It functions like a digit shift.
Take this example input to decode:
bd35
The individual characters represent value 8, 10, 1 and 3. As there are 51 characters in the alphabet, we're in base 51. So bd35 this represents value:
8*51³ + 10*51² + 1*51 + 3
Here is a table with the value of num after each iteration:
8
8*51 + 10
8*51² + 10*51 + 1
8*51³ + 10*51² + 1*51 + 3
Just to make the visualisation cleaner, let's put the power of 51 in a column header, and remove that from the rows:
3 2 1 0
----------------------------
8
8 10
8 10 1
8 10 1 3
Note how the 8 shifts to the left at each iteration and gets multiplied with the base (51). The same happens with 10, as soon as it is shifted in from the right, and the same with the 1, and 3, although that is the last one and doesn't shift any more.
The multiplication num * _base represents thus a shift of base-digits to the left, making room for a new digit to shift in from the right (through simple addition).
At the last iteration all digits have shifted in their correct position, i.e. they have been multiplied by the base just enough times.
Putting your own algorithm in the same scheme, you'd have this table:
3 2 1 0
----------------------------
8
8 10
8 10 1
8 10 1 3
Here, there is no shifting: the digits are immediately put in the right position, i.e. they are multiplied with the correct power of 51 immediately.
You ask
I would like to understand how the decode function works from logical perspective. Why are we using num * base and starting with num = 0.
and write that
I am not quite sure how decode works. Why do we multiply base by a
current number and then add the position number of the alphabet? I
know that to convert 010 base 2 to decimal, we would do
(2 * 0^2) + (2 * 1^1) + (2 * 0 ^ 0) = 2
The decode function uses an approach to base conversion known as Horner's rule, used because it is computationally efficient:
start with a variable set to 0, num = 0
multiply the variable num by the base
take the value of the most significant digit (the leftmost digit) and add it to num,
repeat step 2 and 3 for as long as there are digits left to convert,
the variable num now contains the converted value (in base 10)
Using an example of a hexadecimal number A5D:
start with a variable set to 0, num = 0
multiply by the base (16), num is now still 0
take the value of the most significant digit (the A has a digit value of 10) and add it to num, num is now 10
repeat step 2, multiply the variable num by the base (16), num is now 160
repeat step 3, add the hexadecimal digit 5 to num, num is now 165
repeat step 2, multiply the variable num by the base (16), num is now 2640
repeat step 3, add the hexadecimal digit D to num (add 13)
there are no digits left to convert, the variable num now contains the converted value (in base 10), which is 2653
Compare the expression of the standard approach:
(10 × 162) + (5 × 161) + (13 × 160) = 2653
to the use of Horner's rule:
(((10 × 16) + 5) × 16) + 13 = 2653
which is exactly the same computation, but rearranged in a form making it easier to compute. This is how the decode function works.
Why are we using num * base and starting with num = 0.
The conversion algorithm needs a start value, therefore num is set to 0. For each repetition (each loop iteration), num is multiplied by base. This only has any effect on the second iteration, but is written like this to make it easier to write the conversion as a for loop.

Random number between negative and positive value [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Generating random numbers in Javascript in a specific range?
How can i get a random value between, for example, from -99 to 99, excluding 0?
var num = Math.floor(Math.random()*99) + 1; // this will get a number between 1 and 99;
num *= Math.round(Math.random()) ? 1 : -1; // this will add minus sign in 50% of cases
Altogether
var ranNum = Math.ceil(Math.random() * 99) * (Math.round(Math.random()) ? 1 : -1)
This returns what you want
function getNonZeroRandomNumber(){
var random = Math.floor(Math.random()*199) - 99;
if(random==0) return getNonZeroRandomNumber();
return random;
}
Here's a functional fiddle
EDIT
To contribute for future readers with a little debate happened in the comments which the user #MarkDickinson made a indeed relevant contribution to my first code posted, I've decided to make another fiddle with a fast comparison between using Math.floor() and Math.round() functions to return the value the op wanted.
First Scenario: Using var random = Math.round(Math.random()*198) - 99; (My first suggestion)
function getNonZeroRandomNumberWithMathRound(){
var random = Math.round(Math.random()*198) - 99;
if(random==0) return getNonZeroRandomNumber();
return random;
}
Second scenario: Using var random=Math.floor(Math.random()*199) - 99; (Mark suggestion)
function getNonZeroRandomNumberWithMathFloor(){
var random = Math.floor(Math.random()*199) - 99;
if(random==0) return getNonZeroRandomNumber();
return random;
}
Methodology
Since it's a short debate I've chosen fiddle.net to do the comparison.
The test consists of running the above functions 100.000 times and then retrieving how much times the extreme numbers 99 and -99 would appear against a other number, let's say 33 and -33.
The test will then give a simple output consisting of the percentage of appearances from 99 and -99 and the percentage of appearances of 33 and -33.
It'll be used the Webkit implementation from Safari 6.0.2 to the give the output from this answer but anyone can test with your favourite browser late on fiddle.net
Result from first scenario:
Percentage of normal ocurrences:0.97%
Percentage of extreme ocurrences:0.52%
Percentage of extreme ocurrences relative to normal ocurrences:53.4% // Half the chances indeed
Result from second scenario:
Percentage of normal ocurrences:1.052%
Percentage of extreme ocurrences:0.974%
Percentage of extreme ocurrences relative to normal ocurrences:92% //Closer of a fair result with a minimal standard deviation
The result can be seen here: http://jsfiddle.net/brunovieira/LrXqh/
Here's a generalized solution that will let you set the boundaries, and opt in/out of including the 0.
var pos = 99,
neg = 99,
includeZero = false,
result;
do result = Math.ceil(Math.random() * (pos + neg)) - neg;
while (includeZero === false && result === 0);
The pos and neg values are inclusive.
This way there's no requirement that the positive and negative ranges be balanced.
Or if you're worried about the rerun due to a single excluded value, you can just make the initial range less by one, and add 1 to any result greater than or equal to 0.
var pos = 5,
neg = 5,
result;
result = Math.floor(Math.random() * (pos + neg)) - neg;
result = result < 0 ? result : result + 1;
That last line could be shorter if you prefer:
result += (result >= 0)

Categories

Resources