How to get an object's methods? - javascript

Is there a method or propertie to get all methods from an object? For example:
function foo() {}
foo.prototype.a = function() {}
foo.prototype.b = function() {}
foo.get_methods(); // returns ['a', 'b'];
UPDATE: Are there any method like that in Jquery?
Thank you.

function getMethods(obj)
{
var res = [];
for(var m in obj) {
if(typeof obj[m] == "function") {
res.push(m)
}
}
return res;
}

Remember that technically javascript objects don't have methods. They have properties, some of which may be function objects. That means that you can enumerate the methods in an object just like you can enumerate the properties. This (or something close to this) should work:
var bar
for (bar in foo)
{
console.log("Foo has property " + bar);
}
There are complications to this because some properties of objects aren't enumerable so you won't be able to find every function on the object.

You can use console.dir(object) to write that objects properties to the console.

In modern browsers you can use Object.getOwnPropertyNames to get all properties (both enumerable and non-enumerable) on an object. For instance:
function Person ( age, name ) {
this.age = age;
this.name = name;
}
Person.prototype.greet = function () {
return "My name is " + this.name;
};
Person.prototype.age = function () {
this.age = this.age + 1;
};
// ["constructor", "greet", "age"]
Object.getOwnPropertyNames( Person.prototype );
Note that this only retrieves own-properties, so it will not return properties found elsewhere on the prototype chain. That, however, doesn't appear to be your request so I will assume this approach is sufficient.
If you would only like to see enumerable properties, you can instead use Object.keys. This would return the same collection, minus the non-enumerable constructor property.

for me, the only reliable way to get the methods of the final extending class, was to do like this:
function getMethodsOf(obj){
const methods = {}
Object.getOwnPropertyNames( Object.getPrototypeOf(obj) ).forEach(methodName => {
methods[methodName] = obj[methodName]
})
return methods
}

The methods can be inspected in the prototype chain of the object using the browser's developer tools (F12):
console.log(yourJSObject);
or more directly
console.dir(yourJSObject.__proto__);

In ES6:
let myObj = {myFn : function() {}, tamato: true};
let allKeys = Object.keys(myObj);
let fnKeys = allKeys.filter(key => typeof myObj[key] == 'function');
console.log(fnKeys);
// output: ["myFn"]

var funcs = []
for(var name in myObject) {
if(typeof myObject[name] === 'function') {
funcs.push(name)
}
}
I'm on a phone with no semi colons :) but that is the general idea.

var methods = [];
for (var key in foo.prototype) {
if (typeof foo.prototype[key] === "function") {
methods.push(key);
}
}
You can simply loop over the prototype of a constructor and extract all methods.

the best way is:
let methods = Object.getOwnPropertyNames(yourobject);
console.log(methods)
use 'let' only in es6, use 'var' instead

In Chrome is keys(foo.prototype). Returns ["a", "b"].
See: https://developer.chrome.com/devtools/docs/commandline-api#keysobject
Later edit: If you need to copy it quick (for bigger objects), do copy(keys(foo.prototype)) and you will have it in the clipboard.

Get the Method Names:
var getMethodNames = function (obj) {
return (Object.getOwnPropertyNames(obj).filter(function (key) {
return obj[key] && (typeof obj[key] === "function");
}));
};
Or, Get the Methods:
var getMethods = function (obj) {
return (Object.getOwnPropertyNames(obj).filter(function (key) {
return obj[key] && (typeof obj[key] === "function");
})).map(function (key) {
return obj[key];
});
};

Related

Is there any way to intercept methods triggered with [] in js? [duplicate]

I can't seem to find the way to overload the [] operator in javascript. Anyone out there know?
I was thinking on the lines of ...
MyClass.operator.lookup(index)
{
return myArray[index];
}
or am I not looking at the right things.
You can do this with ES6 Proxy (available in all modern browsers)
var handler = {
get: function(target, name) {
return "Hello, " + name;
}
};
var proxy = new Proxy({}, handler);
console.log(proxy.world); // output: Hello, world
console.log(proxy[123]); // output: Hello, 123
Check details on MDN.
You can't overload operators in JavaScript.
It was proposed for ECMAScript 4 but rejected.
I don't think you'll see it anytime soon.
The simple answer is that JavaScript allows access to children of an Object via the square brackets.
So you could define your class:
MyClass = function(){
// Set some defaults that belong to the class via dot syntax or array syntax.
this.some_property = 'my value is a string';
this['another_property'] = 'i am also a string';
this[0] = 1;
};
You will then be able to access the members on any instances of your class with either syntax.
foo = new MyClass();
foo.some_property; // Returns 'my value is a string'
foo['some_property']; // Returns 'my value is a string'
foo.another_property; // Returns 'i am also a string'
foo['another_property']; // Also returns 'i am also a string'
foo.0; // Syntax Error
foo[0]; // Returns 1
foo['0']; // Returns 1
Use a proxy. It was mentioned elsewhere in the answers but I think that this is a better example:
var handler = {
get: function(target, name) {
if (name in target) {
return target[name];
}
if (name == 'length') {
return Infinity;
}
return name * name;
}
};
var p = new Proxy({}, handler);
p[4]; //returns 16, which is the square of 4.
We can proxy get | set methods directly. Inspired by this.
class Foo {
constructor(v) {
this.data = v
return new Proxy(this, {
get: (obj, key) => {
if (typeof(key) === 'string' && (Number.isInteger(Number(key)))) // key is an index
return obj.data[key]
else
return obj[key]
},
set: (obj, key, value) => {
if (typeof(key) === 'string' && (Number.isInteger(Number(key)))) // key is an index
return obj.data[key] = value
else
return obj[key] = value
}
})
}
}
var foo = new Foo([])
foo.data = [0, 0, 0]
foo[0] = 1
console.log(foo[0]) // 1
console.log(foo.data) // [1, 0, 0]
As brackets operator is actually property access operator, you can hook on it with getters and setters. For IE you will have to use Object.defineProperty() instead. Example:
var obj = {
get attr() { alert("Getter called!"); return 1; },
set attr(value) { alert("Setter called!"); return value; }
};
obj.attr = 123;
The same for IE8+:
Object.defineProperty("attr", {
get: function() { alert("Getter called!"); return 1; },
set: function(value) { alert("Setter called!"); return value; }
});
For IE5-7 there's onpropertychange event only, which works for DOM elements, but not for other objects.
The drawback of the method is you can only hook on requests to predefined set of properties, not on arbitrary property without any predefined name.
one sneaky way to do this is by extending the language itself.
step 1
define a custom indexing convention, let's call it, "[]".
var MyClass = function MyClass(n) {
this.myArray = Array.from(Array(n).keys()).map(a => 0);
};
Object.defineProperty(MyClass.prototype, "[]", {
value: function(index) {
return this.myArray[index];
}
});
...
var foo = new MyClass(1024);
console.log(foo["[]"](0));
step 2
define a new eval implementation. (don't do this this way, but it's a proof of concept).
var MyClass = function MyClass(length, defaultValue) {
this.myArray = Array.from(Array(length).keys()).map(a => defaultValue);
};
Object.defineProperty(MyClass.prototype, "[]", {
value: function(index) {
return this.myArray[index];
}
});
var foo = new MyClass(1024, 1337);
console.log(foo["[]"](0));
var mini_eval = function(program) {
var esprima = require("esprima");
var tokens = esprima.tokenize(program);
if (tokens.length == 4) {
var types = tokens.map(a => a.type);
var values = tokens.map(a => a.value);
if (types.join(';').match(/Identifier;Punctuator;[^;]+;Punctuator/)) {
if (values[1] == '[' && values[3] == ']') {
var target = eval(values[0]);
var i = eval(values[2]);
// higher priority than []
if (target.hasOwnProperty('[]')) {
return target['[]'](i);
} else {
return target[i];
}
return eval(values[0])();
} else {
return undefined;
}
} else {
return undefined;
}
} else {
return undefined;
}
};
mini_eval("foo[33]");
the above won't work for more complex indexes but it can be with stronger parsing.
alternative:
instead of resorting to creating your own superset language, you can instead compile your notation to the existing language, then eval it. This reduces the parsing overhead to native after the first time you use it.
var compile = function(program) {
var esprima = require("esprima");
var tokens = esprima.tokenize(program);
if (tokens.length == 4) {
var types = tokens.map(a => a.type);
var values = tokens.map(a => a.value);
if (types.join(';').match(/Identifier;Punctuator;[^;]+;Punctuator/)) {
if (values[1] == '[' && values[3] == ']') {
var target = values[0];
var i = values[2];
// higher priority than []
return `
(${target}['[]'])
? ${target}['[]'](${i})
: ${target}[${i}]`
} else {
return 'undefined';
}
} else {
return 'undefined';
}
} else {
return 'undefined';
}
};
var result = compile("foo[0]");
console.log(result);
console.log(eval(result));
You need to use Proxy as explained, but it can ultimately be integrated into a class constructor
return new Proxy(this, {
set: function( target, name, value ) {
...}};
with 'this'. Then the set and get (also deleteProperty) functions will fire. Although you get a Proxy object which seems different it for the most part works to ask the compare ( target.constructor === MyClass ) it's class type etc. [even though it's a function where target.constructor.name is the class name in text (just noting an example of things that work slightly different.)]
So you're hoping to do something like
var whatever = MyClassInstance[4];
?
If so, simple answer is that Javascript does not currently support operator overloading.
Have a look at Symbol.iterator. You can implement a user-defined ##iterator method to make any object iterable.
The well-known Symbol.iterator symbol specifies the default iterator for an object. Used by for...of.
Example:
class MyClass {
constructor () {
this._array = [data]
}
*[Symbol.iterator] () {
for (let i=0, n=this._array.length; i<n; i++) {
yield this._array[i]
}
}
}
const c = new MyClass()
for (const element of [...c]) {
// do something with element
}

List All Prototype Properties of a Javascript Object

Is there any other way to look up for the prototype properties of an javascript object. Lets say I have like this.
function proton() {
this.property1 = undefined;
this.property2 = undefined;
};
proton.prototype = {
sample1 : function() {
return 'something';
},
sample2 : function() {
return 'something';
}
};
var my_object = new proton();
console.log(Object.keys(my_object));
returns ["property1", "property2"]
console.log(Object.getOwnPropertyNames(my_object));
returns ["property1", "property2"]
But what i want to print is the prototype properties of the object my_object.
['sample1', 'sample2']
In order for me to see the prototype properties of that object i need to console.log(object) and from developer tools i can look up for the properties of that object.
But since I am using third party libraries like phaser.js, react.js, create.js
so i don't know the list of the prototype properties of a created object from this libraries.
Is there any prototype function of Object to list down all the prototpye properties of a javascript object?
Not a prototype method, but you can use Object.getPrototypeOf to traverse the prototype chain and then get the own property names of each of those objects.
function logAllProperties(obj) {
if (obj == null) return; // recursive approach
console.log(Object.getOwnPropertyNames(obj));
logAllProperties(Object.getPrototypeOf(obj));
}
logAllProperties(my_object);
Using this, you can also write a function that returns you an array of all the property names:
function props(obj) {
var p = [];
for (; obj != null; obj = Object.getPrototypeOf(obj)) {
var op = Object.getOwnPropertyNames(obj);
for (var i=0; i<op.length; i++)
if (p.indexOf(op[i]) == -1)
p.push(op[i]);
}
return p;
}
console.log(props(my_object)); // ["property1", "property2", "sample1", "sample2", "constructor", "toString", "toLocaleString", "valueOf", "hasOwnProperty", "isPrototypeOf", "propertyIsEnumerable"
function prototypeProperties(obj) {
var result = [];
for (var prop in obj) {
if (!obj.hasOwnProperty(prop)) {
result.push(prop);
}
}
return result;
}
EDIT: This will grab all the properties that were defined on any ancestor. If you want a more granular control of what is defined where, Bergi's suggestion is good.
The quick and dirty one-liner solution would be:
console.log(Object.getOwnPropertyNames(Object.getPrototypeOf({ prop1: 'val1' })))
If you want something more precise, go with the accepted answer!

How to set class name for JavaScript object

I have some test class
TestKlass = (function() {
function TestKlass(value) {
this.value = value != null ? value : 'hello world';
console.log(this.value);
}
return TestKlass;
})();
x = new TestKlass;
x instanceof TestKlass; (gives true)
I have new empty object
y = {}
y instanceof Object
Can I find any ways to set any properties for y, something like this
y.__proto__ = x.__proto__
y.constructor.prototype = x.constructor.prototype
for to have this result
y instanceof TestKlass => true
====================================================
UPD:
So. My main aim - it's to create CLONE function. Now my solution works for me. Please look at this code:
JavaScript JS object clone
Object._clone = function(obj) {
var clone, property, value;
if (!obj || typeof obj !== 'object') {
return obj;
}
clone = typeof obj.pop === 'function' ? [] : {};
clone.__proto__ = obj.__proto__;
for (property in obj) {
if (obj.hasOwnProperty(property)) {
value = obj.property;
if (value && typeof value === 'object') {
clone[property] = Object._clone(value);
} else {
clone[property] = obj[property];
}
}
}
return clone;
};
CoffeeScript JS object clone
# Object clone
Object._clone = (obj) ->
return obj if not obj or typeof(obj) isnt 'object'
clone = if typeof(obj.pop) is 'function' then [] else {}
# deprecated, but need for instanceof method
clone.__proto__ = obj.__proto__
for property of obj
if obj.hasOwnProperty property
# clone properties
value = obj.property
if value and typeof(value) is 'object'
clone[property] = Object._clone(value)
else
clone[property] = obj[property]
clone
Now you can try to do that
A = new TestKlass
B = Object._clone(A)
B instanceof TestKlass => true
It's work fine with Moz FF 13. But I think it's not cross-browser. and proto is deprecated.
I think there is no universal solution. But maybe It's will be helpful for somebody.
Perhaps you should read the following answer first. What you are trying to achieve is really simple. However before I explain let's look at your solutions:
Solution 1
y.__proto__ = x.__proto__;
I wouldn't recommend doing this as the __proto__ property is now deprecated. The above code won't work in Rhino.
Solution 2
y.constructor.prototype = x.constructor.prototype;
This is a very bad solution. The reason is that y.constructor is actually y.__proto__.constructor and since y is an object y.__proto__ is the same as Object.prototype. This means that y.constructor is the same as Object and you're essentially changing the prototype property of Object. This could potentially break other code on your page. I strongly discourage this practice.
Solution 3 (my solution)
What you want to do is simply change the internal [[proto]] property of an object. Since there's no cross platform way to do so we need to employ a hack. A simple solution would be to create a new object with the desired __proto__ property and set getters and setters on it to change the original object. It would be as follows:
function setPrototypeOf(object, prototype) {
var constructor = function () {
for (var key in object) {
if (object.hasOwnProperty(key)) {
(function (key) {
Object.defineProperty(this, key, {
get: function () {
return object[key];
},
set: function (value) {
object[key] = value;
},
enumerable: true
});
}).call(this, key);
}
}
};
constructor.prototype = prototype;
return new constructor;
}
After this all you need to do is:
y = setPrototypeOf(y, TestKlass.prototype);
Here is a working fiddle.
Edit:
The problem with your clone function is that it only clones objects and arrays. You forgot to account for functions which are also passed by reference. Thus when you clone an object which has methods which close over the internal state of the object, the object and its clone will share the same internal state. See the following fiddle:
function Value(value) {
this.get = function () {
alert(value);
};
this.set = function (newValue) {
value = newValue;
};
}
var a = new Value(5);
var b = Object._clone(a);
b.set(10); // setting b to 10 also sets a to 10
a.get(); // alerts 10, should alert 5
There's absolutely no way in JavaScript to clone the internal state of an object so cloning objects and arrays in JavaScript will only work for objects which do not expose closures as methods.
To know more about the problems with cloning objects in JavaScript read this answer. Click on the following link to read John Resig's answer.
obj instanceof SomeConstructor checks whether SomeConstructor is found anywhere in the prototype chain of obj.
If you want inheritance, you need to set the .prototype of FirstConstructor to a newly created SomeConstructor object.
SomeConstructor = function() {}
FirstConstructor = function() {}
FirstConstroctor.prototype = new SomeConstructor();
var y = new FirstConstroctor();
y instanceof FirstConstructor; // true
y instanceof SomeConstructor ; // true, it bubbles from FirstConstructor.__proto__ to SomeConstructor

How to stringify inherited objects to JSON?

json2.js seems to ignore members of the parent object when using JSON.stringify(). Example:
require('./json2.js');
function WorldObject(type) {
this.position = 4;
}
function Actor(val) {
this.someVal = 50;
}
Actor.prototype = new WorldObject();
var a = new Actor(2);
console.log(a.position);
console.log(JSON.stringify(a));
The output is:
4
{"someVal":50}
I would expect this output:
4
{"position":0, "someVal":50}
Well that's just the way it is, JSON.stringify does not preserve any of the not-owned properties of the object. You can have a look at an interesting discussion about other drawbacks and possible workarounds here.
Also note that the author has not only documented the problems, but also written a library called HydrateJS that might help you.
The problem is a little bit deeper than it seems at the first sight. Even if a would really stringify to {"position":0, "someVal":50}, then parsing it later would create an object that has the desired properties, but is neither an instance of Actor, nor has it a prototype link to the WorldObject (after all, the parse method doesn't have this info, so it can't possibly restore it that way).
To preserve the prototype chain, clever tricks are necessary (like those used in HydrateJS). If this is not what you are aiming for, maybe you just need to "flatten" the object before stringifying it. To do that, you could e.g. iterate all the properties of the object, regardless of whether they are own or not and re-assign them (this will ensure they get defined on the object itself instead of just inherited from the prototype).
function flatten(obj) {
var result = Object.create(obj);
for(var key in result) {
result[key] = result[key];
}
return result;
}
The way the function is written it doesn't mutate the original object. So using
console.log(JSON.stringify(flatten(a)));
you'll get the output you want and a will stay the same.
Another option would be to define a toJSON method in the object prototype you want to serialize:
function Test(){}
Test.prototype = {
someProperty: "some value",
toJSON: function() {
var tmp = {};
for(var key in this) {
if(typeof this[key] !== 'function')
tmp[key] = this[key];
}
return tmp;
}
};
var t = new Test;
JSON.stringify(t); // returns "{"someProperty" : "some value"}"
This works since JSON.stringify searches for a toJSON method in the object it receives, before trying the native serialization.
Check this fiddle: http://jsfiddle.net/AEGYG/
You can flat-stringify the object using this function:
function flatStringify(x) {
for(var i in x) {
if(!x.hasOwnProperty(i)) {
// weird as it might seem, this actually does the trick! - adds parent property to self
x[i] = x[i];
}
}
return JSON.stringify(x);
}
Here is a recursive version of the snippet #TomasVana included in his answer, in case there is inheritance in multiple levels of your object tree:
var flatten = function(obj) {
if (obj === null) {
return null;
}
if (Array.isArray(obj)) {
var newObj = [];
for (var i = 0; i < obj.length; i++) {
if (typeof obj[i] === 'object') {
newObj.push(flatten(obj[i]));
}
else {
newObj.push(obj[i]);
}
}
return newObj;
}
var result = Object.create(obj);
for(var key in result) {
if (typeof result[key] === 'object') {
result[key] = flatten(result[key]);
}
else {
result[key] = result[key];
}
}
return result;
}
And it keeps arrays as arrays. Call it the same way:
console.log(JSON.stringify(flatten(visualDataViews)));
While the flatten approach in general works, the snippets in other answers posted so far don't work for properties that are not modifiable, for example if the prototype has been frozen. To handle this case, you would need to create a new object and assign the properties to this new object. Since you're just stringifying the resulting object, object identity and other JavaScript internals probably don't matter, so it's perfectly fine to return a new object. This approach is also arguably more readable than reassigning an object's properties to itself, since it doesn't look like a no-op:
function flatten(obj) {
var ret = {};
for (var i in obj) {
ret[i] = obj[i];
}
return ret;
}
JSON.stringify takes three options
JSON.stringify(value[, replacer[, space]])
So, make use of the replacer, which is a function, that is called recursively for every key-value-pair.
Next Problem, to get really everything, you need to follow the prototpes and you must use getOwnPropertyNames to get all property names (more than you can catch with keysor for…in):
var getAllPropertyNames = () => {
const seen = new WeakSet();
return (obj) => {
let props = [];
do {
if (seen.has(obj)) return [];
seen.add(obj);
Object.getOwnPropertyNames(obj).forEach((prop) => {
if (props.indexOf(prop) === -1) props.push(prop);
});
} while ((obj = Object.getPrototypeOf(obj)));
return props;
};
};
var flatten = () => {
const seen = new WeakSet();
const getPropertyNames = getAllPropertyNames();
return (key, value) => {
if (value !== null && typeof value === "object") {
if (seen.has(value)) return;
seen.add(value);
let result = {};
getPropertyNames(value).forEach((k) => (result[k] = value[k]));
return result;
}
return value;
};
};
Then flatten the object to JSON:
JSON.stringify(myValue, flatten());
Notes:
I had a case where value was null, but typeof value was "object"
Circular references must bee detected, so it needs seen

Parse JSON String into a Particular Object Prototype in JavaScript

I know how to parse a JSON String and turn it into a JavaScript Object.
You can use JSON.parse() in modern browsers (and IE9+).
That's great, but how can I take that JavaScript Object and turn it into a particular JavaScript Object (i.e. with a certain prototype)?
For example, suppose you have:
function Foo()
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
var fooJSON = JSON.parse({"a":4, "b": 3});
//Something to convert fooJSON into a Foo Object
//....... (this is what I am missing)
alert(fooJSON.test() ); //Prints 12
Again, I am not wondering how to convert a JSON string into a generic JavaScript Object. I want to know how to convert a JSON string into a "Foo" Object. That is, my Object should now have a function 'test' and properties 'a' and 'b'.
UPDATE
After doing some research, I thought of this...
Object.cast = function cast(rawObj, constructor)
{
var obj = new constructor();
for(var i in rawObj)
obj[i] = rawObj[i];
return obj;
}
var fooJSON = Object.cast({"a":4, "b": 3}, Foo);
Will that work?
UPDATE May, 2017: The "modern" way of doing this, is via Object.assign, but this function is not available in IE 11 or older Android browsers.
The current answers contain a lot of hand-rolled or library code. This is not necessary.
Use JSON.parse('{"a":1}') to create a plain object.
Use one of the standardized functions to set the prototype:
Object.assign(new Foo, { a: 1 })
Object.setPrototypeOf({ a: 1 }, Foo.prototype)
See an example below (this example uses the native JSON object). My changes are commented in CAPITALS:
function Foo(obj) // CONSTRUCTOR CAN BE OVERLOADED WITH AN OBJECT
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
// IF AN OBJECT WAS PASSED THEN INITIALISE PROPERTIES FROM THAT OBJECT
for (var prop in obj) this[prop] = obj[prop];
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
// INITIALISE A NEW FOO AND PASS THE PARSED JSON OBJECT TO IT
var fooJSON = new Foo(JSON.parse('{"a":4,"b":3}'));
alert(fooJSON.test() ); //Prints 12
Do you want to add JSON serialization/deserialization functionality, right? Then look at this:
You want to achieve this:
toJson() is a normal method.
fromJson() is a static method.
Implementation:
var Book = function (title, author, isbn, price, stock){
this.title = title;
this.author = author;
this.isbn = isbn;
this.price = price;
this.stock = stock;
this.toJson = function (){
return ("{" +
"\"title\":\"" + this.title + "\"," +
"\"author\":\"" + this.author + "\"," +
"\"isbn\":\"" + this.isbn + "\"," +
"\"price\":" + this.price + "," +
"\"stock\":" + this.stock +
"}");
};
};
Book.fromJson = function (json){
var obj = JSON.parse (json);
return new Book (obj.title, obj.author, obj.isbn, obj.price, obj.stock);
};
Usage:
var book = new Book ("t", "a", "i", 10, 10);
var json = book.toJson ();
alert (json); //prints: {"title":"t","author":"a","isbn":"i","price":10,"stock":10}
var book = Book.fromJson (json);
alert (book.title); //prints: t
Note: If you want you can change all property definitions like this.title, this.author, etc by var title, var author, etc. and add getters to them to accomplish the UML definition.
A blog post that I found useful:
Understanding JavaScript Prototypes
You can mess with the __proto__ property of the Object.
var fooJSON = jQuery.parseJSON({"a":4, "b": 3});
fooJSON.__proto__ = Foo.prototype;
This allows fooJSON to inherit the Foo prototype.
I don't think this works in IE, though... at least from what I've read.
Am I missing something in the question or why else nobody mentioned reviver parameter of JSON.parse since 2011?
Here is simplistic code for solution that works:
https://jsfiddle.net/Ldr2utrr/
function Foo()
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
var fooJSON = JSON.parse(`{"a":4, "b": 3}`, function(key,value){
if(key!=="") return value; //logic of course should be more complex for handling nested objects etc.
let res = new Foo();
res.a = value.a;
res.b = value.b;
return res;
});
// Here you already get Foo object back
alert(fooJSON.test() ); //Prints 12
PS: Your question is confusing: >>That's great, but how can I take that JavaScript Object and turn it into a particular JavaScript Object (i.e. with a certain prototype)?
contradicts to the title, where you ask about JSON parsing, but the quoted paragraph asks about JS runtime object prototype replacement.
The currently accepted answer wasn't working for me. You need to use Object.assign() properly:
class Person {
constructor(name, age){
this.name = name;
this.age = age;
}
greet(){
return `hello my name is ${ this.name } and i am ${ this.age } years old`;
}
}
You create objects of this class normally:
let matt = new Person('matt', 12);
console.log(matt.greet()); // prints "hello my name is matt and i am 12 years old"
If you have a json string you need to parse into the Person class, do it like so:
let str = '{"name": "john", "age": 15}';
let john = JSON.parse(str); // parses string into normal Object type
console.log(john.greet()); // error!!
john = Object.assign(Person.prototype, john); // now john is a Person type
console.log(john.greet()); // now this works
An alternate approach could be using Object.create. As first argument, you pass the prototype, and for the second one you pass a map of property names to descriptors:
function SomeConstructor() {
};
SomeConstructor.prototype = {
doStuff: function() {
console.log("Some stuff");
}
};
var jsonText = '{ "text": "hello wrold" }';
var deserialized = JSON.parse(jsonText);
// This will build a property to descriptor map
// required for #2 argument of Object.create
var descriptors = Object.keys(deserialized)
.reduce(function(result, property) {
result[property] = Object.getOwnPropertyDescriptor(deserialized, property);
}, {});
var obj = Object.create(SomeConstructor.prototype, descriptors);
I like adding an optional argument to the constructor and calling Object.assign(this, obj), then handling any properties that are objects or arrays of objects themselves:
constructor(obj) {
if (obj != null) {
Object.assign(this, obj);
if (this.ingredients != null) {
this.ingredients = this.ingredients.map(x => new Ingredient(x));
}
}
}
For the sake of completeness, here's a simple one-liner I ended up with (I had no need checking for non-Foo-properties):
var Foo = function(){ this.bar = 1; };
// angular version
var foo = angular.extend(new Foo(), angular.fromJson('{ "bar" : 2 }'));
// jquery version
var foo = jQuery.extend(new Foo(), jQuery.parseJSON('{ "bar" : 3 }'));
I created a package called json-dry. It supports (circular) references and also class instances.
You have to define 2 new methods in your class (toDry on the prototype and unDry as a static method), register the class (Dry.registerClass), and off you go.
While, this is not technically what you want, if you know before hand the type of object you want to handle you can use the call/apply methods of the prototype of your known object.
you can change this
alert(fooJSON.test() ); //Prints 12
to this
alert(Foo.prototype.test.call(fooJSON); //Prints 12
I've combined the solutions that I was able to find and compiled it into a generic one that can automatically parse a custom object and all it's fields recursively so you can use prototype methods after deserialization.
One assumption is that you defined a special filed that indicates it's type in every object you want to apply it's type automatically (this.__type in the example).
function Msg(data) {
//... your init code
this.data = data //can be another object or an array of objects of custom types.
//If those objects defines `this.__type', their types will be assigned automatically as well
this.__type = "Msg"; // <- store the object's type to assign it automatically
}
Msg.prototype = {
createErrorMsg: function(errorMsg){
return new Msg(0, null, errorMsg)
},
isSuccess: function(){
return this.errorMsg == null;
}
}
usage:
var responseMsg = //json string of Msg object received;
responseMsg = assignType(responseMsg);
if(responseMsg.isSuccess()){ // isSuccess() is now available
//furhter logic
//...
}
Type assignment function (it work recursively to assign types to any nested objects; it also iterates through arrays to find any suitable objects):
function assignType(object){
if(object && typeof(object) === 'object' && window[object.__type]) {
object = assignTypeRecursion(object.__type, object);
}
return object;
}
function assignTypeRecursion(type, object){
for (var key in object) {
if (object.hasOwnProperty(key)) {
var obj = object[key];
if(Array.isArray(obj)){
for(var i = 0; i < obj.length; ++i){
var arrItem = obj[i];
if(arrItem && typeof(arrItem) === 'object' && window[arrItem.__type]) {
obj[i] = assignTypeRecursion(arrItem.__type, arrItem);
}
}
} else if(obj && typeof(obj) === 'object' && window[obj.__type]) {
object[key] = assignTypeRecursion(obj.__type, obj);
}
}
}
return Object.assign(new window[type](), object);
}
A very simple way to get the desired effect is to add an type attribute while generating the json string, and use this string while parsing the string to generate the object:
serialize = function(pObject) {
return JSON.stringify(pObject, (key, value) => {
if (typeof(value) == "object") {
value._type = value.constructor.name;
}
return value;
});
}
deSerialize = function(pJsonString) {
return JSON.parse(pJsonString, (key, value) => {
if (typeof(value) == "object" && value._type) {
value = Object.assign(eval('new ' + value._type + '()'), value);
delete value._type;
}
return value;
});
}
Here a little example of use:
class TextBuffer {
constructor() {
this.text = "";
}
getText = function() {
return this.text;
}
setText = function(pText) {
this.text = pText;
}
}
let textBuffer = new TextBuffer();
textBuffer.setText("Hallo");
console.log(textBuffer.getText()); // "Hallo"
let newTextBuffer = deSerialize(serialize(textBuffer));
console.log(newTextBuffer.getText()); // "Hallo"
Here is a solution using typescript and decorators.
Objects keep their methods after deserialization
Empty objects and their children are default-initialized
How to use it:
#SerializableClass
class SomeClass {
serializedPrimitive: string;
#SerializableProp(OtherSerializedClass)
complexSerialized = new OtherSerializedClass();
}
#SerializableClass
class OtherSerializedClass {
anotherPrimitive: number;
someFunction(): void {
}
}
const obj = new SomeClass();
const json = Serializable.serializeObject(obj);
let deserialized = new SomeClass();
Serializable.deserializeObject(deserialized, JSON.parse(json));
deserialized.complexSerialized.someFunction(); // this works!
How it works
Serialization:
Store the type name in the prototype (__typeName)
Use JSON.stringify with a replacer method that adds __typeName to the JSON.
Deserialization:
Store all serializable types in Serializable.__serializableObjects
Store a list of complex typed properties in every object (__serializedProps)
Initialize an object theObject via the type name and __serializableObjects.
Go through theObject.__serializedProps and traverse over it recursively (start at last step with every serialized property). Assign the results to the according property.
Use Object.assign to assign all remaining primitive properties.
The code:
// #Class decorator for serializable objects
export function SerializableClass(targetClass): void {
targetClass.prototype.__typeName = targetClass.name;
Serializable.__serializableObjects[targetClass.name] = targetClass;
}
// #Property decorator for serializable properties
export function SerializableProp(objectType: any) {
return (target: {} | any, name?: PropertyKey): any => {
if (!target.constructor.prototype?.__serializedProps)
target.constructor.prototype.__serializedProps = {};
target.constructor.prototype.__serializedProps[name] = objectType.name;
};
}
export default class Serializable {
public static __serializableObjects: any = {};
private constructor() {
// don't inherit from me!
}
static serializeObject(typedObject: object) {
return JSON.stringify(typedObject, (key, value) => {
if (value) {
const proto = Object.getPrototypeOf(value);
if (proto?.__typeName)
value.__typeName = proto.__typeName;
}
return value;
}
);
}
static deserializeObject(typedObject: object, jsonObject: object): object {
const typeName = typedObject.__typeName;
return Object.assign(typedObject, this.assignTypeRecursion(typeName, jsonObject));
}
private static assignTypeRecursion(typeName, object): object {
const theObject = new Serializable.__serializableObjects[typeName]();
Object.assign(theObject, object);
const props = Object.getPrototypeOf(theObject).__serializedProps;
for (const property in props) {
const type = props[property];
try {
if (type == Array.name) {
const obj = object[property];
if (Array.isArray(obj)) {
for (let i = 0; i < obj.length; ++i) {
const arrItem = obj[i];
obj[i] = Serializable.assignTypeRecursion(arrItem.__typeName, arrItem);
}
} else
object[property] = [];
} else
object[property] = Serializable.assignTypeRecursion(type, object[property]);
} catch (e) {
console.error(`${e.message}: ${type}`);
}
}
return theObject;
}
}
Comments
Since I am a total js/ts newby (< 10 days), I am more than happy to receive any input/comments/suggestions. Here are some of my thoughts so far:
It could be cleaner: Unfortunately I did not find a way to get rid of the redundant parameter of #SerializableProp.
It could be more memory friendly: After you call serializeObject() every object stores __typeName which could massively blow up memory footprint. Fortunately __serializedProps is only stored once per class.
It could be more CPU friendly: It's the most inefficient code I've ever written. But well, it's just for web apps, so who cares ;-) Maybe one should at least get rid of the recursion.
Almost no error handling: well that's a task for another day
class A {
constructor (a) {
this.a = a
}
method1 () {
console.log('hi')
}
}
var b = new A(1)
b.method1() // hi
var c = JSON.stringify(b)
var d = JSON.parse(c)
console.log(d.a) // 1
try {
d.method1() // not a function
} catch {
console.log('not a function')
}
var e = Object.setPrototypeOf(d, A.prototype)
e.method1() // hi
Olivers answers is very clear, but if you are looking for a solution in angular js, I have written a nice module called Angular-jsClass which does this ease, having objects defined in litaral notation is always bad when you are aiming to a big project but saying that developers face problem which exactly BMiner said, how to serialize a json to prototype or constructor notation objects
var jone = new Student();
jone.populate(jsonString); // populate Student class with Json string
console.log(jone.getName()); // Student Object is ready to use
https://github.com/imalhasaranga/Angular-JSClass

Categories

Resources