Javascript closure - javascript

I read the () at the end of the closure will execute it immediately. So, what is the difference between these two. I saw the first usage in some code.
thanks.
for (var a=selectsomeobj(),i=0,len=a.length;i<len;++i){
(function(val){
anotherFn(val);
})(a[i]);
}
for (var a=selectsomeobj(),i=0,len=a.length;i<len;++i){
anotherFn(a[i]);
}

In this example there are no differences. In both cases, anotherFn gets executed immediately.
However, an immediate function is often used when a function is created in a loop.
Consider this example (more or less pseudo code):
for(var i from 1..10) {
elements[i].onclick = function() {
alert(values[i]);
}
}
As JavaScript has only function scope, no block scope, all the event handlers share the same i, which will have the value 10 after the loop finished. So every handler will try to alert values[10].
By using an immediate function, a new scope is introduced which "captures" the current value of the loop variable:
for(var i from 1..10) {
(function(index) {
elements[i].onclick = function() {
alert(values[index]);
}
}(i));
}
As this is sometimes hard to read, creating a standalone function which returns another function is often better:
function getHandler(value) {
return function(){alert(value);};
}
for(var i from 1..10) {
elements[i].onclick = getHandler(values[i]);
}

In both instances in your example the values do identical operations. There are other examples out there where if you're not careful to use the first method (with the self-executing anonymous function), the value of i will increment and not be passed correctly to your function.
Here's a guide, scroll down to the creating closures in loops: a common mistake section to see the problem:
https://developer.mozilla.org/en/JavaScript/Guide/Closures

the first defines a self-invoking function (which in turn executes a function), the second just executes the function. In both cases the argument passed to the is a[i].

Related

javascript closure for_loop [duplicate]

This question already has answers here:
JavaScript closure inside loops – simple practical example
(44 answers)
Closed 6 years ago.
I have read a number of explanations about closures and closures inside loops. I have a hard time understanding the concept. I have this code: Is there a way to reduce the code as much as possible so the concept of closure can be made clearer. I am having a hard time understanding the part in which the i is inside two parenthesis. Thanks
function addLinks () {
for (var i=0, link; i<5; i++) {
link = document.createElement("a");
link.innerHTML = "Link " + i;
link.onclick = function (num) {
return function () {
alert(num);
};
}(i);
document.body.appendChild(link);
}
}
window.onload = addLinks;
WARNING: Long(ish) Answer
This is copied directly from an article I wrote in an internal company wiki:
Question: How to properly use closures in loops?
Quick answer: Use a function factory.
for (var i=0; i<10; i++) {
document.getElementById(i).onclick = (function(x){
return function(){
alert(x);
}
})(i);
}
or the more easily readable version:
function generateMyHandler (x) {
return function(){
alert(x);
}
}
for (var i=0; i<10; i++) {
document.getElementById(i).onclick = generateMyHandler(i);
}
This often confuse people who are new to javascript or functional programming. It is a result of misunderstanding what closures are.
A closure does not merely pass the value of a variable or even a reference to the variable. A closure captures the variable itself! The following bit of code illustrates this:
var message = 'Hello!';
document.getElementById('foo').onclick = function(){alert(message)};
message = 'Goodbye!';
Clicking the element 'foo' will generate an alert box with the message: "Goodbye!". Because of this, using a simple closure in a loop will end up with all closures sharing the same variable and that variable will contain the last value assigned to it in the loop. For example:
for (var i=0; i<10; i++) {
document.getElementById('something'+i).onclick = function(){alert(i)};
}
All elements when clicked will generate an alert box with the number 10. In fact, if we now do i="hello"; all elements will now generate a "hello" alert! The variable i is shared across ten functions PLUS the current function/scope/context. Think of it as a sort of private global variable that only the functions involved can see.
What we want is an instance of that variable or at least a simple reference to the variable instead of the variable itself. Fortunately javascript already has a mechanism for passing a reference (for objects) or value (for strings and numbers): function arguments!
When a function is called in javascript the arguments to that function is passed by reference if it is an object or by value if it is a string or number. This is enough to break variable sharing in closures.
So:
for (var i=0; i<10; i++) {
document.getElementById(i).onclick =
(function(x){ /* we use this function expression simply as a factory
to return the function we really want to use: */
/* we want to return a function reference
so we write a function expression*/
return function(){
alert(x); /* x here refers to the argument of the factory function
captured by the 'inner' closure */
}
/* The brace operators (..) evaluates an expression, in this case this
function expression which yields a function reference. */
})(i) /* The function reference generated is then immediately called()
where the variable i is passed */
}
I've been programming in JavaScript for a long time, and "closure in a loop" is a very broad topic. I assume you are talking about the practice of using (function(param) { return function(){ ... }; })(param); inside of a for loop in order to preserve the "current value" of the loop when that inner function later executes...
The code:
for(var i=0; i<4; i++) {
setTimeout(
// argument #1 to setTimeout is a function.
// this "outer function" is immediately executed, with `i` as its parameter
(function(x) {
// the "outer function" returns an "inner function" which now has x=i at the
// time the "outer function" was called
return function() {
console.log("i=="+i+", x=="+x);
};
})(i) // execute the "closure" immediately, x=i, returns a "callback" function
// finishing up arguments to setTimeout
, i*100);
}
Output:
i==4, x==0
i==4, x==1
i==4, x==2
i==4, x==3
As you can see by the output, all of the inner callback functions all point to the same i, however, since each had its own 'closure', the value of x is actually stored as whatever i was at the time of the outer function's execution.
Commonly when you see this pattern, you would use the same variable name as the parameter and the argument to the outer function: (function(i){ })(i) for instance. Any code inside that function (even if executed later, like a callback function) is going to refer to i at the time you called the "outer function".
Well, the "problem" with closures in such a case is, that any access to i would reference the same variable. That is because of ECMA-/Javascripts function scope or lexical scope.
So to avoid that every call to alert(i); would display a 5 (because after the loop finished i === 5), you need to create a new function which invokes itself at runtime.
To achieve this, you need to create a new function, plus you need the extra paranthesis at the end, to invoke the outer function immediately, so link.onclick has now the returned function as reference.
A closure is a construct in which you reference a variable outside the scope in which it's defined. You usually talk about closures in the context of a function.
var helloFunction;
var finished = false;
while (!finished) {
var message = 'Hello, World!';
helloFunction = function() {
alert(message);
}
finished = true;
}
helloFunction();
Here, I define the variable message, and define a function that references message. When I define the function to use message, I am creating a closure. This means helloFunction holds a reference to message, so that I can continue to use message, even outside of the scope (the loop body) where message is defined.
Addendum
The (i) in parenthesis is a function call. What's happening is:
You define some function(num) {}. This is called an anonymous function, because it's defined inline and doesn't have a name.
function(num) takes an integer argument, and returns a reference to another function, which is defined as alert(num)
The outer anonymous function is immediately called, with the argument i. So num=i. The result of this call is a function which will do alert(i).
The end result is more or less equivalent to: link.onclick = function() { alert(i); };
To answer the last part of your questions. The two parenthesis invoke the function as any other functions. Why you do it here is that you want to keep what the variable "i" is just at that time. So what it does is, invoke the function, the i is sent as a argument "num". Since it's invoke it will remember the value nume in variable links own scoop.
If you did't to this all link click would result in an alert saying "5"
John Resig, founder of jQuery, has a really nice online presentation explaining this. http://ejohn.org/apps/learn/
..fredrik

Javascript hover event and local variable [duplicate]

Closures in a loop are causing me problems. I think I have to make another function that returns a function to solve the problem, but I can't get it to work with my jQuery code.
Here is the basic problem in a simplified form:
function foo(val) {
alert(val);
}
for (var i = 0; i < 3; i++) {
$('#button'+i).click(function(){
foo(i);
});
}
Naturally clicking on any of the three buttons will give an alert saying 3. The functionality I want is that clicking on button 1 will give an alert saying 1, button 2 will say 2 etc.
How can I make it do that?
See the bind method.
$('#button'+i).bind('click', {button: i}, function(event) {
foo(event.data.button);
});
From the docs:
The optional eventData parameter is
not commonly used. When provided, this
argument allows us to pass additional
information to the handler. One handy
use of this parameter is to work
around issues caused by closures
Try this code:
function foo(val) {
alert(val);
}
var funMaker = function(k) {
return function() {
foo(k);
};
};
for (var i = 0; i < 3; i++) {
$('#button'+i).click(funMaker(i));
}
Some important points here:
JavaScript is function scoped. If you want a new ('deeper') scope, you need to create a function to hold it.
This solution is Javascript specific, it works with or without jQuery.
The solution works because each value of i is copied in a new scope as k, and the function returned from funMaker closes around k (which doesn't change in the loop), not around i (which does).
Your code doesn't work because the function that you pass to click doesn't 'own' the i, it closes over the i of its creator, and that i changes in the loop.
The example could have been written with funMaker inlined, but I usually use such helper functions to make things clearer.
The argument of funMaker is k, but that makes no difference, it could have been i without any problems, since it exists in the scope of the function funMaker.
One of the clearest explanation of the 'Environment' evaluation model is found in 'Structure and Interpretation of Computer Programs', by Sussman & Abelson (http://mitpress.mit.edu/sicp/ full text available online, not an easy read) - see section 3.2. Since JavaScript is really Scheme with C syntax, that explanation is OK.
EDIT: Fixed some punctuation.
#Andy solution is the nicest. But you can also use Javascript scoping to help you save the value in your closure.
You do so by creating a new scope in your loop body by executing an anonymous function.
for (var i = 0; i < 3; i++) {
(function(){
var index = i;
$('#button'+index).click(function(){
foo(index);
});
})();
}
Since the loop body is a new scope at each iteration, the index variable is duplicated with the correct value at each iteration.
Use the .each function from jquery - I guess you a looping through similar elements - so add the click using something like:
$(element).children(class).each(function(i){
$(this).click(function(){
foo(i);
});
});
Not tested but I always use this kind structure where possible.
Or just manufacture a new function, as you describe. It would look like this:
function foo(val) {
return function() {
alert(val);
}
}
for (var i = 0; i < 3; i++) {
$('#button'+i).click(foo(i));
}
I'm pretty sure Mehrdad's solution doesn't work. When you see people copying to a temporary variable, it's usually to save the value of "this" which may be different within an inner child scope.

why javascript use call by reference , sometimes :D [duplicate]

This code is supposed to pop up an alert with the number of the image when you click it:
for(var i=0; i<10; i++) {
$("#img" + i).click(
function () { alert(i); }
);
}
You can see it not working at http://jsfiddle.net/upFaJ/. I know that this is because all of the click-handler closures are referring to the same object i, so every single handler pops up "10" when it's triggered.
However, when I do this, it works fine:
for(var i=0; i<10; i++) {
(function (i2) {
$("#img" + i2).click(
function () { alert(i2); }
);
})(i);
}
You can see it working at http://jsfiddle.net/v4sSD/.
Why does it work? There's still only one i object in memory, right? Objects are always passed by reference, not copied, so the self-executing function call should make no difference. The output of the two code snippets should be identical. So why is the i object being copied 10 times? Why does it work?
I think it's interesting that this version doesn't work:
for(var i=0; i<10; i++) {
(function () {
$("#img" + i).click(
function () { alert(i); }
);
})();
}
It seems that the passing of the object as a function parameter makes all the difference.
EDIT: OK, so the previous example can be explained by primitives (i) being passed by value to the function call. But what about this example, which uses real objects?
for(var i=0; i<5; i++) {
var toggler = $("<img/>", { "src": "http://www.famfamfam.com/lab/icons/silk/icons/cross.png" });
toggler.click(function () { toggler.attr("src", "http://www.famfamfam.com/lab/icons/silk/icons/tick.png"); });
$("#container").append(toggler);
}
Not working: http://jsfiddle.net/Zpwku/
for(var i=0; i<5; i++) {
var toggler = $("<img/>", { "src": "http://www.famfamfam.com/lab/icons/silk/icons/cross.png" });
(function (t) {
t.click(function () { t.attr("src", "http://www.famfamfam.com/lab/icons/silk/icons/tick.png"); });
$("#container").append(t);
})(toggler);
}
Working: http://jsfiddle.net/YLSn6/
Most of the answers are correct in that passing an object as a function parameter breaks a closure and thus allow us to assign things to functions from within a loop. But I'd like to point out why this is the case, and it's not just a special case for closures.
You see, the way javascript passes parameters to functions is a bit different form other languages. Firstly, it seems to have two ways of doing it depending on weather it's a primitive value or an object. For primitive values it seems to pass by value and for objects it seems to pass by reference.
How javascript passes function arguments
Actually, the real explanation of what javascript does explains both situations, as well as why it breaks closures, using just a single mechanism.
What javascript does is actually it passes parameters by copy of reference. That is to say, it creates another reference to the parameter and passes that new reference into the function.
Pass by value?
Assume that all variables in javascript are references. In other languages, when we say a variable is a reference, we expect it to behave like this:
var i = 1;
function increment (n) { n = n+1 };
increment(i); // we would expect i to be 2 if i is a reference
But in javascript, it's not the case:
console.log(i); // i is still 1
That's a classic pass by value isn't it?
Pass by reference?
But wait, for objects it's a different story:
var o = {a:1,b:2}
function foo (x) {
x.c = 3;
}
foo(o);
If parameters were passed by value we'd expect the o object to be unchanged but:
console.log(o); // outputs {a:1,b:2,c:3}
That's classic pass by reference there. So we have two behaviors depending on weather we're passing a primitive type or an object.
Wait, what?
But wait a second, check this out:
var o = {a:1,b:2,c:3}
function bar (x) {
x = {a:2,b:4,c:6}
}
bar(o);
Now see what happens:
console.log(o); // outputs {a:1,b:2,c:3}
What! That's not passing by reference! The values are unchanged!
Which is why I call it pass by copy of reference. If we think about it this way, everything makes sense. We don't need to think of primitives as having special behavior when passed into a function because objects behave the same way. If we try to modify the object the variable points to then it works like pass by reference but if we try to modify the reference itself then it works like pass by value.
This also explains why closures are broken by passing a variable as a function parameter. Because the function call will create another reference that is not bound by the closure like the original variable.
Epilogue: I lied
One more thing before we end this. I said before that this unifies the behavior of primitive types and objects. Actually no, primitive types are still different:
var i = 1;
function bat (n) { n.hello = 'world' };
bat(i);
console.log(i.hello); // undefined, i is unchanged
I give up. There's no making sense of this. It's just the way it is.
It's because you are calling a function, passing it a value.
for (var i = 0; i < 10; i++) {
alert(i);
}
You expect this to alert different values, right? Because you are passing the current value of i to alert.
function attachClick(val) {
$("#img" + val).click(
function () { alert(val); }
);
}
With this function, you'd expect it to alert whatever val was passed into it, right? That also works when calling it in a loop:
for (var i = 0; i < 10; i++) {
attachClick(i);
}
This:
for (var i = 0; i < 10; i++) {
(function (val) {
$("#img" + val).click(
function () { alert(val); }
);
})(i);
}
is just an inline declaration of the above. You are declaring an anonymous function with the same characteristics as attachClick above and you call it immediately. The act of passing a value through a function parameter breaks any references to the i variable.
upvoted deceze's answer, but thought I'd try a simpler explanation. The reason the closure works is that variables in javascript are function scoped. The closure creates a new scope, and by passing the value of i in as a parameter, you are defining a local variable i in the new scope. without the closure, all of the click handlers you define are in the same scope, using the same i. the reason that your last code snippet doesn't work is because there is no local i, so all click handlers are looking to the nearest parent context with i defined.
I think the other thing that might be confusing you is this comment
Objects are always passed by reference, not copied, so the self-executing function call should make no difference.
this is true for objects, but not primitive values (numbers, for example). This is why a new local i can be defined. To demonstrate, if you did something weird like wrapping the value of i in an array, the closure would not work, because arrays are passed by reference.
// doesn't work
for(var i=[0]; i[0]<10; i[0]++) {
(function (i2) {
$("#img" + i2[0]).click(
function () { alert(i2[0]); }
);
})(i);
}
In the first example, there is only one value of i and it's the one used in the for loop. This, all event handlers will show the value of i when the for loop ends, not the desired value.
In the second example, the value of i at the time the event handler is installed is copied to the i2 function argument and there is a separate copy of that for each invocation of the function and thus for each event handler.
So, this:
(function (i2) {
$("#img" + i2).click(
function () { alert(i2); }
);
})(i);
Creates a new variable i2 that has it's own value for each separate invocation of the function. Because of closures in javascript, each separate copy of i2 is preserved for each separate event handler - thus solving your problem.
In the third example, no new copy of i is made (they all refer to the same i from the for loop) so it works the same as the first example.
Code 1 and Code 3 didn't work because i is a variable and values are changed in each loop. At the end of loop 10 will be assigned to i.
For more clear, take a look at this example,
for(var i=0; i<10; i++) {
}
alert(i)
http://jsfiddle.net/muthkum/t4Ur5/
You can see I put a alert after the loop and it will show show alert box with value 10.
This is what happening to Code 1 and Code 3.
Run the next example:
for(var i=0; i<10; i++) {
$("#img" + i).click(
function () { alert(i); }
);
}
i++;
You'll see that now, 11 is being alerted.
Therefore, you need to avoid the reference to i, by sending it as a function parameter, by it's value. You have already found the solution.
One thing that the other answers didn't mention is why this example that I gave in the question doesn't work:
for(var i=0; i<5; i++) {
var toggler = $("<img/>", { "src": "http://www.famfamfam.com/lab/icons/silk/icons/cross.png" });
toggler.click(function () { toggler.attr("src", "http://www.famfamfam.com/lab/icons/silk/icons/tick.png"); });
$("#container").append(toggler);
}
Coming back to the question months later with a better understanding of JavaScript, the reason it doesn't work can be understood as follows:
The var toggler declaration is hoisted to the top of the function call. All references to toggler are to the same actual identifier.
The closure referenced in the anonymous function is the same (not a shallow copy) of the one containing toggler, which is being updated for each iteration of the loop.
#2 is quite surprising. This alerts "5" for example:
var o;
setTimeout(function () { o = {value: 5}; }, 100);
setTimeout(function () { alert(o.value) }, 1000);

Strange things in JavaScript "for"

I'm using jQuery and I have a strange thing that I don't understand. I have some code:
for (i = 1; i <= some_number; i++) {
$("#some_button" + i).click(function() {
alert(i);
});
}
"#some_button" as the name says - they are some buttons. When clicked they should pop-up a box with it's number, correct? But they don't. If there is 4 buttons, they always pop-up "5" (buttons count + 1). Why is that so?
It has to do with JavaScript scoping. You can get around it easily by introducing another scope by adding a function and having that function call itself and pass in i:
for (var i = 1; i <= some_number; i++) {
(function(j) {
$("#some_button" + j).click(function() {
alert(j);
});
})(i);
}
This creates a closure - when the inner function has access to a scope that no longer exists when the function is called. See this article on the MDC for more information.
EDIT: RE: Self-calling functions: A self-calling function is a function that calls itself anonymously. You don't instantiate it nor do you assign it to a variable. It takes the following form (note the opening parens):
(function(args) {
// function body that might modify args
})(args_to_pass_in);
Relating this to the question, the body of the anonymous function would be:
$("#some_button" + j).click(function() {
alert(j);
});
Combining these together, we get the answer in the first code block. The anonymous self-calling function is expecting an argument called j. It looks for any element with an id of some_button with the integer value of j at the end (e.g. some_button1, some_button10). Any time one of these elements is clicked, it alerts the value of j. The second-to-last line of the solution passes in the value i, which is the loop counter where the anonymous self-calling function is called. Done another way, it might look like this:
var innerFunction = function(j) {
$("#some_button" + j).click(function() {
alert(j);
});
};
for (var i = 1; i <= some_number; i++) {
innerFunction(i);
}
You are having a very common closure problem in the for loop.
Variables enclosed in a closure share the same single environment, so by the time the click callback is called, the loop will have run its course and the i variable will be left pointing to the last entry.
You can solve this with even more closures, using a function factory:
function makeOnClickCallback(i) {
return function() {
alert(i);
};
}
var i;
for (i = 0; i < some_number; i++) {
$("#some_button" + i).click(makeOnClickCallback(i));
}
This can be quite a tricky topic, if you are not familiar with how closures work. You may to check out the following Mozilla article for a brief introduction:
Working with Closures
Because in the moment you click them, i == 5.
This is because of how closures work in JavaScript. Each of the 5 functions you are creating is basically sharing the same i variable. The value of i inside your function is not being evaluated when you are creating the function, but when the click event occurs, by which time the value of i is 5.
There are various techniques for getting around this (when this behavior isn't what you want). One (if you have a simple function, like you do here) is to use the Function constructor instead of a function literal:
$("#some_button" + i).click(new Function("alert("+i+")");
(function (some_number) {
for (i = 1; i <= some_number; i++) {
$("#some_button" + i).click(function() {
alert(i);
});
}
})(some_number);
Wrap the function outside because for speed and the fact i will keep resetting.
This is very clever code. So clever it's a question on SO. :) I'd sidestep the question altogether by dumbing the code down, just to have a chance at understanding it (or having a colleague understand it) six months from now. Closures have their place, but in this case I'd avoid them in favour of more understandable code.
Probably, I'd attach the same function to all the buttons, which would get the button from the event, strip "some_button" from the ID, and alert the result. Not nearly as pretty, but I guarantee everyone in the office could follow it at a glance.

Closures: Line by Line explanation of "Javascript: Good Parts" example?

I'm reading "Javascript: The Good Parts" and am totally baffled by what's really going on here. A more detailed and/or simplified explanation would be greatly appreciated.
// BAD EXAMPLE
// Make a function that assigns event handler functions to an array of nodes the wrong way.
// When you click on a node, an alert box is supposed to display the ordinal of the node.
// But it always displays the number of nodes instead.
var add_the_handlers = function (nodes) {
var i;
for (i = 0; i < nodes.length; i += 1) {
nodes[i].onclick = function (e) {
alert(i);
}
}
};
// END BAD EXAMPLE
The add_the_handlers function was intended to give each handler a unique number (i). It fails because the handler functions are bound to the variable i, not the value of the variable i at the time the function was made:
// BETTER EXAMPLE
// Make a function that assigns event handler functions to an array of nodes the right way.
// When you click on a node, an alert box will display the ordinal of the node.
var add_the_handlers = function (nodes) {
var i;
for (i = 0; i < nodes.length; i += 1) {
nodes[i].onclick = function (i) {
return function (e) {
alert(i);
};
}(i);
}
};
Now, instead of assigning a function to onclick, we define a function and immediately invoke it, passing in i. That function will return an event handler function that is bound to the value of i that was passed in, not to the i defined in add_the_handlers. That returned function is assigned to onclick.
I think this is a very common source of confusion for newcomers to JavaScript. First I would suggest checking out the following Mozilla Dev article for brief introduction on the topic of closures and lexical scoping:
Mozilla Dev Center: Working with Closures
Let's start with the bad one:
var add_the_handlers = function (nodes) {
// Variable i is declared in the local scope of the add_the_handlers()
// function.
var i;
// Nothing special here. A normal for loop.
for (i = 0; i < nodes.length; i += 1) {
// Now we are going to assign an anonymous function to the onclick property.
nodes[i].onclick = function (e) {
// The problem here is that this anonymous function has become a closure. It
// will be sharing the same local variable environment as the add_the_handlers()
// function. Therefore when the callback is called, the i variable will contain
// the last value it had when add_the_handlers() last returned.
alert(i);
}
}
// The for loop ends, and i === nodes.length. The add_the_handlers() maintains
// the value of i even after it returns. This is why when the callback
// function is invoked, it will always alert the value of nodes.length.
};
We can tackle this problem with more closures, as Crockford suggested in the "good example". A closure is a special kind of object that combines two things: a function, and the environment in which that function was created. In JavaScript, the environment of the closure consists of any local variables that were in-scope at the time that the closure was created:
// Now we are creating an anonymous closure that creates its own local
// environment. I renamed the parameter variable x to make it more clear.
nodes[i].onclick = function (x) {
// Variable x will be initialized when this function is called.
// Return the event callback function.
return function (e) {
// We use the local variable from the closure environment, and not the
// one held in the scope of the outer function add_the_handlers().
alert(x);
};
}(i); // We invoke the function immediately to initialize its internal
// environment that will be captured in the closure, and to receive
// the callback function which we need to assign to the onclick.
Rather than having the callbacks all sharing a single environment, the closure function creates a new environment for each one. We could also have used a function factory to create a closure, as in the following example:
function makeOnClickCallback (x) {
return function (e) {
alert(x);
};
}
for (i = 0; i < nodes.length; i += 1) {
nodes[i].onclick = makeOnClickCallback(i);
}
It's all about closures. In the first example, "i" will be equal to "nodes.length" for every click event handler, because it uses "i" from the loop which creates the event handlers. By the time the event handler is called, the loop will have ended, so "i" will be equal to "nodes.length".
In the second example, "i" is a parameter (so a local variable). The event handlers will use the value of the local variable "i" (the parameter).
In both examples any node that's passed has an onclick event handler bound to it (just like <img src="..." onclick="myhandler()"/>, which is bad practice after all).
The difference is that in the bad example every closure (the event handler functions, that is) is referencing the exact same i variable due to their common parent scope.
The good example makes use of an anonymous function that gets executed right away. This anonymous function references the exact same i variable as in the bad example BUT since it is executed and provided with i as its first parameter, i's value is assigned to a local variable called ... eh? ... i, exactely - thus overwriting the one defined in the parent's scope.
Let's rewrite the good example to make it all clear:
var add_the_handlers = function (nodes) {
var i;
for (i = 0; i < nodes.length; i += 1) {
nodes[i].onclick = function (newvar) {
return function (e) {
alert(nevar);
};
}(i);
}
};
Here we replaced i in the returned event handler function with newvar and it still works, because newvar is just what you'd expect - a new variable inherited from the anonymous function's scope.
Good luck figuring it out.
It has to do with closure.
When you do the thing in the bad example,
when you click each node, you will get the latest i value (i.e. you have 3 nodes, no matter what node you click you will get 2). since your alert(i) is bound to a reference of variable i and not the value of i at the moment it was bound in the event handler.
Doing it the better example way, you bound it to what i as at the moment that it was iterated on, so clicking on node 1 will give you 0, node 2 will give you 1 and node 3 will give you 2.
basically, you are evaluating what i is immediately when it is called at the line }(i) and it got passed to parameter e which now hold the value of what i is at that moment in time.
Btw... I think there is a typo there in the better example part... it should be alert(e) instead of alert(i).

Categories

Resources