Why is `'\t\n ' == false` in JavaScript? - javascript

In JavaScript...
'\t\n ' == false // true
I can assume that any string that consists solely of whitespace characters is considered equal to false in JavaScript.
According to this article, I figured that false would be converted to 0, but was unable to find mention of whitespace considered equal to false using Google.
Why is this? Is there some good reading on the subject besides digging into the ECMAScript spec?

This page provides a good summary of the rules.
Going by those rules, the '\t\n ' is converted in a number (Number('\t\n') ==> 0), and the false is converted into a number (Number(false) ==> 0), and hence the two are equal.
Alex's answer is also a good breakdown of the particular case of '\t\n ' == false.
An important distinction is that '\t\n ' is not falsy. For example:
if ('\t\n ') alert('not falsy'); // will produce the alert

whitespace == false; // true
Type coercion, love it or hate it.
Digging into the ES5 spec atm. There really isn't any other good way apart from reading what someone else dug out of the ES5 spec.
If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
new Number(false) == " "; // true
Booleans get converted to 0 or 1. The reason this is the case is that whitespace == 0
And if you really want to know about new Number(" ") then read this 9.3.1 in the ES5 spec.
The important line is :
The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

Here is how I think it works, based on my readings and Raynos' answer (as well as the other latecomers to the party).
// Original expression
lg('\t\n ' == false);
// Boolean false is converted to Number
lg('\t\n ' == new Number(false));
// Boolean has been converted to 0
lg('\t\n ' == 0);
// Because right hand operand is 0, convert left hand to Number
lg(new Number('\t\n ') == 0);
// Number of whitespace is 0, and 0 == 0
lg(0 == 0);
jsFiddle.
Please let me know if I have something wrong.

I think the process can be described in a recursive function. (Imagining we live in a world where JavaScript only has the strict equality operator.)
function equals(x, y) {
if (typeof y === "boolean") {
return equals(x, +y);
}
else if (typeof x === "string") {
return +x === y;
}
}
A StringNumericLiteral that is empty or contains only white space is converted to +0.

Related

Unary + operator in JavaScript applied to ' ' (string with space) [duplicate]

Today when I was doing some experiments with ==, I accidentally found out that "\n\t\r" == 0. How on earth does "\n\t\r" equal to 0, or false?
What I did is:
var txt = "\n"; //new line
txt == 0; //it gives me true
And that really annoy me. So I did more:
var txt = "\r"; //"return"
txt == 0; //true
var txt = "\t"; //"tab"
txt == 0; //true
It does not make sense, at all. How's that happen? And more crazy is this:
//Checking for variable declared or not
var txt ="\n\t\r";
if(txt!=false){
console.log("Variable is declared.");
}else{
console.log("Variable is not declared.");
}
What it gives me is Variable is not declared.
How is it equal to 0, or false???
This behaviour might be surprising but can be explained by having a look at the specification.
We have to look at the what happens when a comparison with the equals operator is performed. The exact algorithm is defined in section 11.9.3.
I built a simple tool to demonstrate which algorithm steps are executed: https://felix-kling.de/js-loose-comparison/
string == integer
The step we have to look at is #5:
5. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) == y.
That means the string "\n" ("\r", "\t") is converted to a number first and then compared against 0.
How is a string converted to a number? This is explained in section 9.3.1. In short, we have:
The MV (mathematical value) of StringNumericLiteral ::: StrWhiteSpace is 0.
where StrWhiteSpace is defined as
StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace_opt
StrWhiteSpaceChar :::
WhiteSpace
LineTerminator
This just means that the numerical value of strings containing white space characters and/or a line terminator is 0.
Which characters are considered as white space characters is defined in section 7.3.
string == boolean
The step we have to look at is #7:
7. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
How booleans are converted to numbers is pretty simple: true becomes 1 and false becomes 0.
Afterwards we are comparing a string against a number, which is explained above.
As others have mentioned, strict comparison (===) can be used to avoid this "problem". Actually you should only be using the normal comparison if you know what you are doing and want this behaviour.
Because JavaScript is a loosely typed language, it attempts to type cast your 1st side of the comparison to the other so that they would match each other.
Any string which does not contain a number, becomes 0 when compared to an integer, and becomes true (Except in certain situations), when compared to a Boolean.
Light reading material.
txt is not a Boolean, so it will never be false. It can be undefined though.
var txt ="\n\t\r";
if(txt !== undefined) { //or just: if (txt)
console.log("Variable is declared.");
} else {
console.log("Variable is not declared.");
}
//=> will log: 'Variable is declared.'
By the way, a declared variable may be undefined (e.g. var txt;).
If you do a stricter comparison (without type coercion, using ===), you'll see that
var txt = '\n'; txt === 0; //=> false
var txt = '\r'; txt === 0; //=> false
var txt = '\t'; txt === 0; //=> false
See also
The reason is that "\n\t\r" just as " " are treated as empty strings.
If you use == it will return true but if you use === it will return false.
If you want to test for existence you should use something like
if(typeof strName !== 'undefined') {
/*do something with strName*/
} else {
/*do something without it*/
}
Whenever you use the == operator and try to compare a string to a number, the string will first be converted to a number. Thus: alert("\n\r"==0) becomes: alert(Number("\n\r")==0)
The Number constructure is kind of interesting. It will first strip whitespace then decide if the number is a not a number or not. If NaN, then the result is "NaN". If the string is empty, then the result is 0.
alert(Number()) alerts 0
alert(Number("")) alerts 0
alert(Number(" \n \r \n \t")) alerts 0
alert(Number("blah")) alerts NaN
alert(Number("0xFF")) alerts 255
alert(Number("1E6")) alerts 1000000
To check if the result is NaN use isNaN()
Thus: alert(isNaN("blah")) alerts true
Thus: alert(isNaN("")) alerts false
Thus: alert(isNaN("\n")) alerts false
Thus: alert(isNaN(" ")) alerts false
however do note that NaN will never equal NaN:
var nan=Number("geh");alert(nan==nan); alerts false
Update:
if you want to check if both sides are NaN, then you'd convert both to boolean values first like so:
var nan=Number("geh");alert(!!nan==!!nan); alerts true
or better yet
var nan=Number("geh");
alert(isNaN(nan)&& isNaN(nan));

How to detect that the parseFloat() stopped on "other" character? [duplicate]

I'm hoping there's something in the same conceptual space as the old VB6 IsNumeric() function?
2nd October 2020: note that many bare-bones approaches are fraught with subtle bugs (eg. whitespace, implicit partial parsing, radix, coercion of arrays etc.) that many of the answers here fail to take into account. The following implementation might work for you, but note that it does not cater for number separators other than the decimal point ".":
function isNumeric(str) {
if (typeof str != "string") return false // we only process strings!
return !isNaN(str) && // use type coercion to parse the _entirety_ of the string (`parseFloat` alone does not do this)...
!isNaN(parseFloat(str)) // ...and ensure strings of whitespace fail
}
To check if a variable (including a string) is a number, check if it is not a number:
This works regardless of whether the variable content is a string or number.
isNaN(num) // returns true if the variable does NOT contain a valid number
Examples
isNaN(123) // false
isNaN('123') // false
isNaN('1e10000') // false (This translates to Infinity, which is a number)
isNaN('foo') // true
isNaN('10px') // true
isNaN('') // false
isNaN(' ') // false
isNaN(false) // false
Of course, you can negate this if you need to. For example, to implement the IsNumeric example you gave:
function isNumeric(num){
return !isNaN(num)
}
To convert a string containing a number into a number:
Only works if the string only contains numeric characters, else it returns NaN.
+num // returns the numeric value of the string, or NaN
// if the string isn't purely numeric characters
Examples
+'12' // 12
+'12.' // 12
+'12..' // NaN
+'.12' // 0.12
+'..12' // NaN
+'foo' // NaN
+'12px' // NaN
To convert a string loosely to a number
Useful for converting '12px' to 12, for example:
parseInt(num) // extracts a numeric value from the
// start of the string, or NaN.
Examples
parseInt('12') // 12
parseInt('aaa') // NaN
parseInt('12px') // 12
parseInt('foo2') // NaN These last three may
parseInt('12a5') // 12 be different from what
parseInt('0x10') // 16 you expected to see.
Floats
Bear in mind that, unlike +num, parseInt (as the name suggests) will convert a float into an integer by chopping off everything following the decimal point (if you want to use parseInt() because of this behaviour, you're probably better off using another method instead):
+'12.345' // 12.345
parseInt(12.345) // 12
parseInt('12.345') // 12
Empty strings
Empty strings may be a little counter-intuitive. +num converts empty strings or strings with spaces to zero, and isNaN() assumes the same:
+'' // 0
+' ' // 0
isNaN('') // false
isNaN(' ') // false
But parseInt() does not agree:
parseInt('') // NaN
parseInt(' ') // NaN
If you're just trying to check if a string is a whole number (no decimal places), regex is a good way to go. Other methods such as isNaN are too complicated for something so simple.
function isNumeric(value) {
return /^-?\d+$/.test(value);
}
console.log(isNumeric('abcd')); // false
console.log(isNumeric('123a')); // false
console.log(isNumeric('1')); // true
console.log(isNumeric('1234567890')); // true
console.log(isNumeric('-23')); // true
console.log(isNumeric(1234)); // true
console.log(isNumeric(1234n)); // true
console.log(isNumeric('123.4')); // false
console.log(isNumeric('')); // false
console.log(isNumeric(undefined)); // false
console.log(isNumeric(null)); // false
To only allow positive whole numbers use this:
function isNumeric(value) {
return /^\d+$/.test(value);
}
console.log(isNumeric('123')); // true
console.log(isNumeric('-23')); // false
The accepted answer for this question has quite a few flaws (as highlighted by couple of other users). This is one of the easiest & proven way to approach it in javascript:
function isNumeric(n) {
return !isNaN(parseFloat(n)) && isFinite(n);
}
Below are some good test cases:
console.log(isNumeric(12345678912345678912)); // true
console.log(isNumeric('2 ')); // true
console.log(isNumeric('-32.2 ')); // true
console.log(isNumeric(-32.2)); // true
console.log(isNumeric(undefined)); // false
// the accepted answer fails at these tests:
console.log(isNumeric('')); // false
console.log(isNumeric(null)); // false
console.log(isNumeric([])); // false
And you could go the RegExp-way:
var num = "987238";
if(num.match(/^-?\d+$/)){
//valid integer (positive or negative)
}else if(num.match(/^\d+\.\d+$/)){
//valid float
}else{
//not valid number
}
If you really want to make sure that a string contains only a number, any number (integer or floating point), and exactly a number, you cannot use parseInt()/ parseFloat(), Number(), or !isNaN() by themselves. Note that !isNaN() is actually returning true when Number() would return a number, and false when it would return NaN, so I will exclude it from the rest of the discussion.
The problem with parseFloat() is that it will return a number if the string contains any number, even if the string doesn't contain only and exactly a number:
parseFloat("2016-12-31") // returns 2016
parseFloat("1-1") // return 1
parseFloat("1.2.3") // returns 1.2
The problem with Number() is that it will return a number in cases where the passed value is not a number at all!
Number("") // returns 0
Number(" ") // returns 0
Number(" \u00A0 \t\n\r") // returns 0
The problem with rolling your own regex is that unless you create the exact regex for matching a floating point number as Javascript recognizes it you are going to miss cases or recognize cases where you shouldn't. And even if you can roll your own regex, why? There are simpler built-in ways to do it.
However, it turns out that Number() (and isNaN()) does the right thing for every case where parseFloat() returns a number when it shouldn't, and vice versa. So to find out if a string is really exactly and only a number, call both functions and see if they both return true:
function isNumber(str) {
if (typeof str != "string") return false // we only process strings!
// could also coerce to string: str = ""+str
return !isNaN(str) && !isNaN(parseFloat(str))
}
Try the isNan function:
The isNaN() function determines whether a value is an illegal number (Not-a-Number).
This function returns true if the value equates to NaN. Otherwise it returns false.
This function is different from the Number specific Number.isNaN() method.
The global isNaN() function, converts the tested value to a Number, then tests it.
Number.isNan() does not convert the values to a Number, and will not return true for any value that is not of the type Number...
2019: Including ES3, ES6 and TypeScript Examples
Maybe this has been rehashed too many times, however I fought with this one today too and wanted to post my answer, as I didn't see any other answer that does it as simply or thoroughly:
ES3
var isNumeric = function(num){
return (typeof(num) === 'number' || typeof(num) === "string" && num.trim() !== '') && !isNaN(num);
}
ES6
const isNumeric = (num) => (typeof(num) === 'number' || typeof(num) === "string" && num.trim() !== '') && !isNaN(num);
Typescript
const isNumeric = (num: any) => (typeof(num) === 'number' || typeof(num) === "string" && num.trim() !== '') && !isNaN(num as number);
This seems quite simple and covers all the bases I saw on the many other posts and thought up myself:
// Positive Cases
console.log(0, isNumeric(0) === true);
console.log(1, isNumeric(1) === true);
console.log(1234567890, isNumeric(1234567890) === true);
console.log('1234567890', isNumeric('1234567890') === true);
console.log('0', isNumeric('0') === true);
console.log('1', isNumeric('1') === true);
console.log('1.1', isNumeric('1.1') === true);
console.log('-1', isNumeric('-1') === true);
console.log('-1.2354', isNumeric('-1.2354') === true);
console.log('-1234567890', isNumeric('-1234567890') === true);
console.log(-1, isNumeric(-1) === true);
console.log(-32.1, isNumeric(-32.1) === true);
console.log('0x1', isNumeric('0x1') === true); // Valid number in hex
// Negative Cases
console.log(true, isNumeric(true) === false);
console.log(false, isNumeric(false) === false);
console.log('1..1', isNumeric('1..1') === false);
console.log('1,1', isNumeric('1,1') === false);
console.log('-32.1.12', isNumeric('-32.1.12') === false);
console.log('[blank]', isNumeric('') === false);
console.log('[spaces]', isNumeric(' ') === false);
console.log('null', isNumeric(null) === false);
console.log('undefined', isNumeric(undefined) === false);
console.log([], isNumeric([]) === false);
console.log('NaN', isNumeric(NaN) === false);
You can also try your own isNumeric function and just past in these use cases and scan for "true" for all of them.
Or, to see the values that each return:
Old question, but there are several points missing in the given answers.
Scientific notation.
!isNaN('1e+30') is true, however in most of the cases when people ask for numbers, they do not want to match things like 1e+30.
Large floating numbers may behave weird
Observe (using Node.js):
> var s = Array(16 + 1).join('9')
undefined
> s.length
16
> s
'9999999999999999'
> !isNaN(s)
true
> Number(s)
10000000000000000
> String(Number(s)) === s
false
>
On the other hand:
> var s = Array(16 + 1).join('1')
undefined
> String(Number(s)) === s
true
> var s = Array(15 + 1).join('9')
undefined
> String(Number(s)) === s
true
>
So, if one expects String(Number(s)) === s, then better limit your strings to 15 digits at most (after omitting leading zeros).
Infinity
> typeof Infinity
'number'
> !isNaN('Infinity')
true
> isFinite('Infinity')
false
>
Given all that, checking that the given string is a number satisfying all of the following:
non scientific notation
predictable conversion to Number and back to String
finite
is not such an easy task. Here is a simple version:
function isNonScientificNumberString(o) {
if (!o || typeof o !== 'string') {
// Should not be given anything but strings.
return false;
}
return o.length <= 15 && o.indexOf('e+') < 0 && o.indexOf('E+') < 0 && !isNaN(o) && isFinite(o);
}
However, even this one is far from complete. Leading zeros are not handled here, but they do screw the length test.
I have tested and Michael's solution is best. Vote for his answer above (search this page for "If you really want to make sure that a string" to find it). In essence, his answer is this:
function isNumeric(num){
num = "" + num; //coerce num to be a string
return !isNaN(num) && !isNaN(parseFloat(num));
}
It works for every test case, which I documented here:
https://jsfiddle.net/wggehvp9/5/
Many of the other solutions fail for these edge cases:
' ', null, "", true, and [].
In theory, you could use them, with proper error handling, for example:
return !isNaN(num);
or
return (+num === +num);
with special handling for
/\s/, null, "", true, false, [] (and others?)
TL;DR
It depends largely on what you want to parse as a number.
Comparison Between Built-in Functions
As none of the existing sources satisfied my soul, I tried to figure out what actually was happening with these functions.
Three immediate answers to this question felt like:
!isNaN(input) (which gives the same output as +input === +input)
!isNaN(parseFloat(input))
isFinite(input)
But are any of them correct in every scenario?
I tested these functions in several cases, and generated output as markdown. This is what it looks like:
input
!isNaN(input) or +input===+input
!isNaN(parseFloat(input))
isFinite(input)
Comment
123
✔️
✔️
✔️
-
'123'
✔️
✔️
✔️
-
12.3
✔️
✔️
✔️
-
'12.3'
✔️
✔️
✔️
-
'   12.3   '
✔️
✔️
✔️
Empty whitespace trimmed, as expected.
1_000_000
✔️
✔️
✔️
Numeric separator understood, also expected.
'1_000_000'
❌
✔️
❌
Surprise! JS just won't parse numeric separator inside a string. For details, check this issue. (Why then parsing as float worked though? Well, it didn't. 😉)
'0b11111111'
✔️
✔️
✔️
Binary form understood, as it should've.
'0o377'
✔️
✔️
✔️
Octal form understood too.
'0xFF'
✔️
✔️
✔️
Of course hex is understood. Did anybody think otherwise? 😒
''
✔️
❌
✔️
Should empty string be a number?
'    '
✔️
❌
✔️
Should a whitespace-only string be a number?
'abc'
❌
❌
❌
Everybody agrees, not a number.
'12.34Ab!##$'
❌
✔️
❌
Ah! Now it's quite understandable what parseFloat() does. Not impressive to me, but may come handy in certain cases.
'10e100'
✔️
✔️
✔️
10100 is a number indeed. But caution! It's way more larger than the maximum safe integer value 253 (about 9×1015). Read this for details.
'10e1000'
✔️
✔️
❌
Say with me, help! Though not as crazy as it may seem. In JavaScript, a value larger than ~10308 is rounded to infinity, that's why. Look here for details. And yes, isNaN() considers infinity as a number, and parseFloat() parses infinity as infinity.
null
✔️
❌
✔️
Now this is awkward. In JS, when a conversion is needed, null becomes zero, and we get a finite number. Then why parseFloat(null) should return a NaN here? Someone please explain this design concept to me.
undefined
❌
❌
❌
As expected.
Infinity
✔️
✔️
❌
As explained before, isNaN() considers infinity as a number, and parseFloat() parses infinity as infinity.
So...which of them is "correct"?
Should be clear by now, it depends largely on what we need. For example, we may want to consider a null input as 0. In that case isFinite() will work fine.
Again, perhaps we will take a little help from isNaN() when 1010000000000 is needed to be considered a valid number (although the question remains—why would it be, and how would we handle that)!
Of course, we can manually exclude any of the scenarios.
Like in my case, I needed exactly the outputs of isFinite(), except for the null case, the empty string case, and the whitespace-only string case. Also I had no headache about really huge numbers. So my code looked like this:
/**
* My necessity was met by the following code.
*/
if (input === null) {
// Null input
} else if (input.trim() === '') {
// Empty or whitespace-only string
} else if (isFinite(input)) {
// Input is a number
} else {
// Not a number
}
And also, this was my JavaScript to generate the table:
/**
* Note: JavaScript does not print numeric separator inside a number.
* In that single case, the markdown output was manually corrected.
* Also, the comments were manually added later, of course.
*/
let inputs = [
123, '123', 12.3, '12.3', ' 12.3 ',
1_000_000, '1_000_000',
'0b11111111', '0o377', '0xFF',
'', ' ',
'abc', '12.34Ab!##$',
'10e100', '10e1000',
null, undefined, Infinity];
let markdownOutput = `| \`input\` | \`!isNaN(input)\` or <br>\`+input === +input\` | \`!isNaN(parseFloat(input))\` | \`isFinite(input)\` | Comment |
| :---: | :---: | :---: | :---: | :--- |\n`;
for (let input of inputs) {
let outputs = [];
outputs.push(!isNaN(input));
outputs.push(!isNaN(parseFloat(input)));
outputs.push(isFinite(input));
if (typeof input === 'string') {
// Output with quotations
console.log(`'${input}'`);
markdownOutput += `| '${input}'`;
} else {
// Output without quotes
console.log(input);
markdownOutput += `| ${input}`;
}
for (let output of outputs) {
console.log('\t' + output);
if (output === true) {
markdownOutput += ` | <div style="color:limegreen">true</div>`;
// markdownOutput += ` | ✔️`; // for stackoverflow
} else {
markdownOutput += ` | <div style="color:orangered">false</div>`;
// markdownOutput += ` | ❌`; // for stackoverflow
}
}
markdownOutput += ` ||\n`;
}
// Replace two or more whitespaces with $nbsp;
markdownOutput = markdownOutput.replaceAll(` `, ` `);
// Print markdown to console
console.log(markdownOutput);
The JavaScript global isFinite() checks if a value is a valid (finite) number.
See MDN for the difference between Number.isFinite() and global isFinite().
let a = isFinite('abc') // false
let b = isFinite('123') // true
let c = isFinite('12a') // false
let d = isFinite(null) // true
console.log(a, b, c, d)
Someone may also benefit from a regex based answer. Here it is:
One liner isInteger:
const isInteger = num => /^-?[0-9]+$/.test(num+'');
One liner isNumeric: Accepts integers and decimals
const isNumeric = num => /^-?[0-9]+(?:\.[0-9]+)?$/.test(num+'');
You can use the result of Number when passing an argument to its constructor.
If the argument (a string) cannot be converted into a number, it returns NaN, so you can determinate if the string provided was a valid number or not.
Notes: Note when passing empty string or '\t\t' and '\n\t' as Number will return 0; Passing true will return 1 and false returns 0.
Number('34.00') // 34
Number('-34') // -34
Number('123e5') // 12300000
Number('123e-5') // 0.00123
Number('999999999999') // 999999999999
Number('9999999999999999') // 10000000000000000 (integer accuracy up to 15 digit)
Number('0xFF') // 255
Number('Infinity') // Infinity
Number('34px') // NaN
Number('xyz') // NaN
Number('true') // NaN
Number('false') // NaN
// cavets
Number(' ') // 0
Number('\t\t') // 0
Number('\n\t') // 0
Maybe there are one or two people coming across this question who need a much stricter check than usual (like I did). In that case, this might be useful:
if(str === String(Number(str))) {
// it's a "perfectly formatted" number
}
Beware! This will reject strings like .1, 40.000, 080, 00.1. It's very picky - the string must match the "most minimal perfect form" of the number for this test to pass.
It uses the String and Number constructor to cast the string to a number and back again and thus checks if the JavaScript engine's "perfect minimal form" (the one it got converted to with the initial Number constructor) matches the original string.
Why is jQuery's implementation not good enough?
function isNumeric(a) {
var b = a && a.toString();
return !$.isArray(a) && b - parseFloat(b) + 1 >= 0;
};
Michael suggested something like this (although I've stolen "user1691651 - John"'s altered version here):
function isNumeric(num){
num = "" + num; //coerce num to be a string
return !isNaN(num) && !isNaN(parseFloat(num));
}
The following is a solution with most likely bad performance, but solid results. It is a contraption made from the jQuery 1.12.4 implementation and Michael's answer, with an extra check for leading/trailing spaces (because Michael's version returns true for numerics with leading/trailing spaces):
function isNumeric(a) {
var str = a + "";
var b = a && a.toString();
return !$.isArray(a) && b - parseFloat(b) + 1 >= 0 &&
!/^\s+|\s+$/g.test(str) &&
!isNaN(str) && !isNaN(parseFloat(str));
};
The latter version has two new variables, though. One could get around one of those, by doing:
function isNumeric(a) {
if ($.isArray(a)) return false;
var b = a && a.toString();
a = a + "";
return b - parseFloat(b) + 1 >= 0 &&
!/^\s+|\s+$/g.test(a) &&
!isNaN(a) && !isNaN(parseFloat(a));
};
I haven't tested any of these very much, by other means than manually testing the few use-cases I'll be hitting with my current predicament, which is all very standard stuff. This is a "standing-on-the-shoulders-of-giants" situation.
2019: Practical and tight numerical validity check
Often, a 'valid number' means a Javascript number excluding NaN and Infinity, ie a 'finite number'.
To check the numerical validity of a value (from an external source for example), you can define in ESlint Airbnb style :
/**
* Returns true if 'candidate' is a finite number or a string referring (not just 'including') a finite number
* To keep in mind:
* Number(true) = 1
* Number('') = 0
* Number(" 10 ") = 10
* !isNaN(true) = true
* parseFloat('10 a') = 10
*
* #param {?} candidate
* #return {boolean}
*/
function isReferringFiniteNumber(candidate) {
if (typeof (candidate) === 'number') return Number.isFinite(candidate);
if (typeof (candidate) === 'string') {
return (candidate.trim() !== '') && Number.isFinite(Number(candidate));
}
return false;
}
and use it this way:
if (isReferringFiniteNumber(theirValue)) {
myCheckedValue = Number(theirValue);
} else {
console.warn('The provided value doesn\'t refer to a finite number');
}
It is not valid for TypeScript as:
declare function isNaN(number: number): boolean;
For TypeScript you can use:
/^\d+$/.test(key)
I like the simplicity of this.
Number.isNaN(Number(value))
The above is regular Javascript, but I'm using this in conjunction with a typescript typeguard for smart type checking. This is very useful for the typescript compiler to give you correct intellisense, and no type errors.
Typescript typeguards
Warning: See Jeremy's comment below. This has some issues with certain values and I don't have time to fix it now, but the idea of using a typescript typeguard is useful so I won't delete this section.
isNotNumber(value: string | number): value is string {
return Number.isNaN(Number(this.smartImageWidth));
}
isNumber(value: string | number): value is number {
return Number.isNaN(Number(this.smartImageWidth)) === false;
}
Let's say you have a property width which is number | string. You may want to do logic based on whether or not it's a string.
var width: number|string;
width = "100vw";
if (isNotNumber(width))
{
// the compiler knows that width here must be a string
if (width.endsWith('vw'))
{
// we have a 'width' such as 100vw
}
}
else
{
// the compiler is smart and knows width here must be number
var doubleWidth = width * 2;
}
The typeguard is smart enough to constrain the type of width within the if statement to be ONLY string. This permits the compiler to allow width.endsWith(...) which it wouldn't allow if the type was string | number.
You can call the typeguard whatever you want isNotNumber, isNumber, isString, isNotString but I think isString is kind of ambiguous and harder to read.
parseInt(), but be aware that this function is a bit different in the sense that it for example returns 100 for parseInt("100px").
When guarding against empty strings and null
// Base cases that are handled properly
Number.isNaN(Number('1')); // => false
Number.isNaN(Number('-1')); // => false
Number.isNaN(Number('1.1')); // => false
Number.isNaN(Number('-1.1')); // => false
Number.isNaN(Number('asdf')); // => true
Number.isNaN(Number(undefined)); // => true
// Special notation cases that are handled properly
Number.isNaN(Number('1e1')); // => false
Number.isNaN(Number('1e-1')); // => false
Number.isNaN(Number('-1e1')); // => false
Number.isNaN(Number('-1e-1')); // => false
Number.isNaN(Number('0b1')); // => false
Number.isNaN(Number('0o1')); // => false
Number.isNaN(Number('0xa')); // => false
// Edge cases that will FAIL if not guarded against
Number.isNaN(Number('')); // => false
Number.isNaN(Number(' ')); // => false
Number.isNaN(Number(null)); // => false
// Edge cases that are debatable
Number.isNaN(Number('-0b1')); // => true
Number.isNaN(Number('-0o1')); // => true
Number.isNaN(Number('-0xa')); // => true
Number.isNaN(Number('Infinity')); // => false
Number.isNaN(Number('INFINITY')); // => true
Number.isNaN(Number('-Infinity')); // => false
Number.isNaN(Number('-INFINITY')); // => true
When NOT guarding against empty strings and null
Using parseInt:
// Base cases that are handled properly
Number.isNaN(parseInt('1')); // => false
Number.isNaN(parseInt('-1')); // => false
Number.isNaN(parseInt('1.1')); // => false
Number.isNaN(parseInt('-1.1')); // => false
Number.isNaN(parseInt('asdf')); // => true
Number.isNaN(parseInt(undefined)); // => true
Number.isNaN(parseInt('')); // => true
Number.isNaN(parseInt(' ')); // => true
Number.isNaN(parseInt(null)); // => true
// Special notation cases that are handled properly
Number.isNaN(parseInt('1e1')); // => false
Number.isNaN(parseInt('1e-1')); // => false
Number.isNaN(parseInt('-1e1')); // => false
Number.isNaN(parseInt('-1e-1')); // => false
Number.isNaN(parseInt('0b1')); // => false
Number.isNaN(parseInt('0o1')); // => false
Number.isNaN(parseInt('0xa')); // => false
// Edge cases that are debatable
Number.isNaN(parseInt('-0b1')); // => false
Number.isNaN(parseInt('-0o1')); // => false
Number.isNaN(parseInt('-0xa')); // => false
Number.isNaN(parseInt('Infinity')); // => true
Number.isNaN(parseInt('INFINITY')); // => true
Number.isNaN(parseInt('-Infinity')); // => true
Number.isNaN(parseInt('-INFINITY')); // => true
Using parseFloat:
// Base cases that are handled properly
Number.isNaN(parseFloat('1')); // => false
Number.isNaN(parseFloat('-1')); // => false
Number.isNaN(parseFloat('1.1')); // => false
Number.isNaN(parseFloat('-1.1')); // => false
Number.isNaN(parseFloat('asdf')); // => true
Number.isNaN(parseFloat(undefined)); // => true
Number.isNaN(parseFloat('')); // => true
Number.isNaN(parseFloat(' ')); // => true
Number.isNaN(parseFloat(null)); // => true
// Special notation cases that are handled properly
Number.isNaN(parseFloat('1e1')); // => false
Number.isNaN(parseFloat('1e-1')); // => false
Number.isNaN(parseFloat('-1e1')); // => false
Number.isNaN(parseFloat('-1e-1')); // => false
Number.isNaN(parseFloat('0b1')); // => false
Number.isNaN(parseFloat('0o1')); // => false
Number.isNaN(parseFloat('0xa')); // => false
// Edge cases that are debatable
Number.isNaN(parseFloat('-0b1')); // => false
Number.isNaN(parseFloat('-0o1')); // => false
Number.isNaN(parseFloat('-0xa')); // => false
Number.isNaN(parseFloat('Infinity')); // => false
Number.isNaN(parseFloat('INFINITY')); // => true
Number.isNaN(parseFloat('-Infinity')); // => false
Number.isNaN(parseFloat('-INFINITY')); // => true
Notes:
Only string, empty, and uninitialized values are considered in keeping with addressing the original question. Additional edge cases exist if arrays and objects are the values being considered.
Characters in binary, octal, hexadecimal, and exponential notation are not case-sensitive (ie: '0xFF', '0XFF', '0xfF' etc. will all yield the same result in the test cases shown above).
Unlike with Infinity (case-sensitive) in some cases, constants from the Number and Math objects passed as test cases in string format to any of the methods above will be determined to not be numbers.
See here for an explanation of how arguments are converted to a Number and why the edge cases for null and empty strings exist.
Quote:
isNaN(num) // returns true if the variable does NOT contain a valid number
is not entirely true if you need to check for leading/trailing spaces - for example when a certain quantity of digits is required, and you need to get, say, '1111' and not ' 111' or '111 ' for perhaps a PIN input.
Better to use:
var num = /^\d+$/.test(num)
This is built on some of the previous answers and comments. The following covers all the edge cases and fairly concise as well:
const isNumRegEx = /^-?(\d*\.)?\d+$/;
function isNumeric(n, allowScientificNotation = false) {
return allowScientificNotation ?
!Number.isNaN(parseFloat(n)) && Number.isFinite(n) :
isNumRegEx.test(n);
}
If anyone ever gets this far down, I spent some time hacking on this trying to patch moment.js (https://github.com/moment/moment). Here's something that I took away from it:
function isNumeric(val) {
var _val = +val;
return (val !== val + 1) //infinity check
&& (_val === +val) //Cute coercion check
&& (typeof val !== 'object') //Array/object check
}
Handles the following cases:
True! :
isNumeric("1"))
isNumeric(1e10))
isNumeric(1E10))
isNumeric(+"6e4"))
isNumeric("1.2222"))
isNumeric("-1.2222"))
isNumeric("-1.222200000000000000"))
isNumeric("1.222200000000000000"))
isNumeric(1))
isNumeric(0))
isNumeric(-0))
isNumeric(1010010293029))
isNumeric(1.100393830000))
isNumeric(Math.LN2))
isNumeric(Math.PI))
isNumeric(5e10))
False! :
isNumeric(NaN))
isNumeric(Infinity))
isNumeric(-Infinity))
isNumeric())
isNumeric(undefined))
isNumeric('[1,2,3]'))
isNumeric({a:1,b:2}))
isNumeric(null))
isNumeric([1]))
isNumeric(new Date()))
Ironically, the one I am struggling with the most:
isNumeric(new Number(1)) => false
Any suggestions welcome. :]
I recently wrote an article about ways to ensure a variable is a valid number: https://github.com/jehugaleahsa/artifacts/blob/master/2018/typescript_num_hack.md The article explains how to ensure floating point or integer, if that's important (+x vs ~~x).
The article assumes the variable is a string or a number to begin with and trim is available/polyfilled. It wouldn't be hard to extend it to handle other types, as well. Here's the meat of it:
// Check for a valid float
if (x == null
|| ("" + x).trim() === ""
|| isNaN(+x)) {
return false; // not a float
}
// Check for a valid integer
if (x == null
|| ("" + x).trim() === ""
|| ~~x !== +x) {
return false; // not an integer
}
function isNumberCandidate(s) {
const str = (''+ s).trim();
if (str.length === 0) return false;
return !isNaN(+str);
}
console.log(isNumberCandidate('1')); // true
console.log(isNumberCandidate('a')); // false
console.log(isNumberCandidate('000')); // true
console.log(isNumberCandidate('1a')); // false
console.log(isNumberCandidate('1e')); // false
console.log(isNumberCandidate('1e-1')); // true
console.log(isNumberCandidate('123.3')); // true
console.log(isNumberCandidate('')); // false
console.log(isNumberCandidate(' ')); // false
console.log(isNumberCandidate(1)); // true
console.log(isNumberCandidate(0)); // true
console.log(isNumberCandidate(NaN)); // false
console.log(isNumberCandidate(undefined)); // false
console.log(isNumberCandidate(null)); // false
console.log(isNumberCandidate(-1)); // true
console.log(isNumberCandidate('-1')); // true
console.log(isNumberCandidate('-1.2')); // true
console.log(isNumberCandidate(0.0000001)); // true
console.log(isNumberCandidate('0.0000001')); // true
console.log(isNumberCandidate(Infinity)); // true
console.log(isNumberCandidate(-Infinity)); // true
console.log(isNumberCandidate('Infinity')); // true
if (isNumberCandidate(s)) {
// use +s as a number
+s ...
}
Well, I'm using this one I made...
It's been working so far:
function checkNumber(value) {
return value % 1 == 0;
}
If you spot any problem with it, tell me, please.
Checking the number in JS:
Best way for check if it's a number:
isFinite(20)
//True
Read a value out of a string. CSS *:
parseInt('2.5rem')
//2
parseFloat('2.5rem')
//2.5
For an integer:
isInteger(23 / 0)
//False
If value is NaN:
isNaN(20)
//False
This way it works for me.
function isNumeric(num){
let value1 = num.toString();
let value2 = parseFloat(num).toString();
return (value1 === value2);
}
console.log(
isNumeric(123), //true
isNumeric(-123), //true
isNumeric('123'), //true
isNumeric('-123'), //true
isNumeric(12.2), //true
isNumeric(-12.2), //true
isNumeric('12.2'), //true
isNumeric('-12.2'), //true
isNumeric('a123'), //false
isNumeric('123a'), //false
isNumeric(' 123'), //false
isNumeric('123 '), //false
isNumeric('a12.2'), //false
isNumeric('12.2a'), //false
isNumeric(' 12.2'), //false
isNumeric('12.2 '), //false
)
PFB the working solution:
function(check){
check = check + "";
var isNumber = check.trim().length>0? !isNaN(check):false;
return isNumber;
}
Save yourself the headache of trying to find a "built-in" solution.
There isn't a good answer, and the hugely upvoted answer in this thread is wrong.
npm install is-number
In JavaScript, it's not always as straightforward as it should be to reliably check if a value is a number. It's common for devs to use +, -, or Number() to cast a string value to a number (for example, when values are returned from user input, regex matches, parsers, etc). But there are many non-intuitive edge cases that yield unexpected results:
console.log(+[]); //=> 0
console.log(+''); //=> 0
console.log(+' '); //=> 0
console.log(typeof NaN); //=> 'number'

Execute query in portions and return values jQuery php [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I'm using JSLint to go through JavaScript, and it's returning many suggestions to replace == (two equals signs) with === (three equals signs) when doing things like comparing idSele_UNVEHtype.value.length == 0 inside of an if statement.
Is there a performance benefit to replacing == with ===?
Any performance improvement would be welcomed as many comparison operators exist.
If no type conversion takes place, would there be a performance gain over ==?
The strict equality operator (===) behaves identically to the abstract equality operator (==) except no type conversion is done, and the types must be the same to be considered equal.
Reference: Javascript Tutorial: Comparison Operators
The == operator will compare for equality after doing any necessary type conversions. The === operator will not do the conversion, so if two values are not the same type === will simply return false. Both are equally quick.
To quote Douglas Crockford's excellent JavaScript: The Good Parts,
JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good ones work the way you would expect. If the two operands are of the same type and have the same value, then === produces true and !== produces false. The evil twins do the right thing when the operands are of the same type, but if they are of different types, they attempt to coerce the values. the rules by which they do that are complicated and unmemorable. These are some of the interesting cases:
'' == '0' // false
0 == '' // true
0 == '0' // true
false == 'false' // false
false == '0' // true
false == undefined // false
false == null // false
null == undefined // true
' \t\r\n ' == 0 // true
The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use === and !==. All of the comparisons just shown produce false with the === operator.
Update:
A good point was brought up by #Casebash in the comments and in #Phillipe Laybaert's answer concerning objects. For objects, == and === act consistently with one another (except in a special case).
var a = [1,2,3];
var b = [1,2,3];
var c = { x: 1, y: 2 };
var d = { x: 1, y: 2 };
var e = "text";
var f = "te" + "xt";
a == b // false
a === b // false
c == d // false
c === d // false
e == f // true
e === f // true
The special case is when you compare a primitive with an object that evaluates to the same primitive, due to its toString or valueOf method. For example, consider the comparison of a string primitive with a string object created using the String constructor.
"abc" == new String("abc") // true
"abc" === new String("abc") // false
Here the == operator is checking the values of the two objects and returning true, but the === is seeing that they're not the same type and returning false. Which one is correct? That really depends on what you're trying to compare. My advice is to bypass the question entirely and just don't use the String constructor to create string objects from string literals.
Reference
http://www.ecma-international.org/ecma-262/5.1/#sec-11.9.3
Using the == operator (Equality)
true == 1; //true, because 'true' is converted to 1 and then compared
"2" == 2; //true, because "2" is converted to 2 and then compared
Using the === operator (Identity)
true === 1; //false
"2" === 2; //false
This is because the equality operator == does type coercion, meaning that the interpreter implicitly tries to convert the values before comparing.
On the other hand, the identity operator === does not do type coercion, and thus does not convert the values when comparing.
Here's an interesting visualisation of the equality comparison between == and ===.
Source: https://github.com/dorey/JavaScript-Equality-Table (demo, unified demo)
var1 === var2
When using === for JavaScript equality testing, everything is as is.
Nothing gets converted before being evaluated.
var1 == var2
When using == for JavaScript equality testing, some funky conversions take place.
Summary of equality in Javascript
Conclusion:
Always use ===, unless you fully understand the funky conversions that take place with ==.
In the answers here, I didn't read anything about what equal means. Some will say that === means equal and of the same type, but that's not really true. It actually means that both operands reference the same object, or in case of value types, have the same value.
So, let's take the following code:
var a = [1,2,3];
var b = [1,2,3];
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
The same here:
var a = { x: 1, y: 2 };
var b = { x: 1, y: 2 };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
Or even:
var a = { };
var b = { };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
This behavior is not always obvious. There's more to the story than being equal and being of the same type.
The rule is:
For value types (numbers):
a === b returns true if a and b have the same value and are of the same type
For reference types:
a === b returns true if a and b reference the exact same object
For strings:
a === b returns true if a and b are both strings and contain the exact same characters
Strings: the special case...
Strings are not value types, but in Javascript they behave like value types, so they will be "equal" when the characters in the string are the same and when they are of the same length (as explained in the third rule)
Now it becomes interesting:
var a = "12" + "3";
var b = "123";
alert(a === b); // returns true, because strings behave like value types
But how about this?:
var a = new String("123");
var b = "123";
alert(a === b); // returns false !! (but they are equal and of the same type)
I thought strings behave like value types? Well, it depends who you ask... In this case a and b are not the same type. a is of type Object, while b is of type string. Just remember that creating a string object using the String constructor creates something of type Object that behaves as a string most of the time.
Let me add this counsel:
If in doubt, read the specification!
ECMA-262 is the specification for a scripting language of which JavaScript is a dialect. Of course in practice it matters more how the most important browsers behave than an esoteric definition of how something is supposed to be handled. But it is helpful to understand why new String("a") !== "a".
Please let me explain how to read the specification to clarify this question. I see that in this very old topic nobody had an answer for the very strange effect. So, if you can read a specification, this will help you in your profession tremendously. It is an acquired skill. So, let's continue.
Searching the PDF file for === brings me to page 56 of the specification: 11.9.4. The Strict Equals Operator ( === ), and after wading through the specificationalese I find:
11.9.6 The Strict Equality Comparison Algorithm
The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as follows:
  1. If Type(x) is different from Type(y), return false.
  2. If Type(x) is Undefined, return true.
  3. If Type(x) is Null, return true.
  4. If Type(x) is not Number, go to step 11.
  5. If x is NaN, return false.
  6. If y is NaN, return false.
  7. If x is the same number value as y, return true.
  8. If x is +0 and y is −0, return true.
  9. If x is −0 and y is +0, return true.
  10. Return false.
  11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and same characters in corresponding positions); otherwise, return false.
  12. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
  13. Return true if x and y refer to the same object or if they refer to objects joined to each other (see 13.1.2). Otherwise, return false.
Interesting is step 11. Yes, strings are treated as value types. But this does not explain why new String("a") !== "a". Do we have a browser not conforming to ECMA-262?
Not so fast!
Let's check the types of the operands. Try it out for yourself by wrapping them in typeof(). I find that new String("a") is an object, and step 1 is used: return false if the types are different.
If you wonder why new String("a") does not return a string, how about some exercise reading a specification? Have fun!
Aidiakapi wrote this in a comment below:
From the specification
11.2.2 The new Operator:
If Type(constructor) is not Object, throw a TypeError exception.
With other words, if String wouldn't be of type Object it couldn't be used with the new operator.
new always returns an Object, even for String constructors, too. And alas! The value semantics for strings (see step 11) is lost.
And this finally means: new String("a") !== "a".
I tested this in Firefox with Firebug using code like this:
console.time("testEquality");
var n = 0;
while (true) {
n++;
if (n == 100000)
break;
}
console.timeEnd("testEquality");
and
console.time("testTypeEquality");
var n = 0;
while (true) {
n++;
if (n === 100000)
break;
}
console.timeEnd("testTypeEquality");
My results (tested five times each and averaged):
==: 115.2
===: 114.4
So I'd say that the miniscule difference (this is over 100000 iterations, remember) is negligible. Performance isn't a reason to do ===. Type safety (well, as safe as you're going to get in JavaScript), and code quality is.
In PHP and JavaScript, it is a strict equality operator. Which means, it will compare both type and values.
In JavaScript it means of the same value and type.
For example,
4 == "4" // will return true
but
4 === "4" // will return false
Why == is so unpredictable?
What do you get when you compare an empty string "" with the number zero 0?
true
Yep, that's right according to == an empty string and the number zero are the same time.
And it doesn't end there, here's another one:
'0' == false // true
Things get really weird with arrays.
[1] == true // true
[] == false // true
[[]] == false // true
[0] == false // true
Then weirder with strings
[1,2,3] == '1,2,3' // true - REALLY?!
'\r\n\t' == 0 // true - Come on!
It get's worse:
When is equal not equal?
let A = '' // empty string
let B = 0 // zero
let C = '0' // zero string
A == B // true - ok...
B == C // true - so far so good...
A == C // **FALSE** - Plot twist!
Let me say that again:
(A == B) && (B == C) // true
(A == C) // **FALSE**
And this is just the crazy stuff you get with primitives.
It's a whole new level of crazy when you use == with objects.
At this point your probably wondering...
Why does this happen?
Well it's because unlike "triple equals" (===) which just checks if two values are the same.
== does a whole bunch of other stuff.
It has special handling for functions, special handling for nulls, undefined, strings, you name it.
It get's pretty wacky.
In fact, if you tried to write a function that does what == does it would look something like this:
function isEqual(x, y) { // if `==` were a function
if(typeof y === typeof x) return y === x;
// treat null and undefined the same
var xIsNothing = (y === undefined) || (y === null);
var yIsNothing = (x === undefined) || (x === null);
if(xIsNothing || yIsNothing) return (xIsNothing && yIsNothing);
if(typeof y === "function" || typeof x === "function") {
// if either value is a string
// convert the function into a string and compare
if(typeof x === "string") {
return x === y.toString();
} else if(typeof y === "string") {
return x.toString() === y;
}
return false;
}
if(typeof x === "object") x = toPrimitive(x);
if(typeof y === "object") y = toPrimitive(y);
if(typeof y === typeof x) return y === x;
// convert x and y into numbers if they are not already use the "+" trick
if(typeof x !== "number") x = +x;
if(typeof y !== "number") y = +y;
// actually the real `==` is even more complicated than this, especially in ES6
return x === y;
}
function toPrimitive(obj) {
var value = obj.valueOf();
if(obj !== value) return value;
return obj.toString();
}
So what does this mean?
It means == is complicated.
Because it's complicated it's hard to know what's going to happen when you use it.
Which means you could end up with bugs.
So the moral of the story is...
Make your life less complicated.
Use === instead of ==.
The End.
The === operator is called a strict comparison operator, it does differ from the == operator.
Lets take 2 vars a and b.
For "a == b" to evaluate to true a and b need to be the same value.
In the case of "a === b" a and b must be the same value and also the same type for it to evaluate to true.
Take the following example
var a = 1;
var b = "1";
if (a == b) //evaluates to true as a and b are both 1
{
alert("a == b");
}
if (a === b) //evaluates to false as a is not the same type as b
{
alert("a === b");
}
In summary; using the == operator might evaluate to true in situations where you do not want it to so using the === operator would be safer.
In the 90% usage scenario it won't matter which one you use, but it is handy to know the difference when you get some unexpected behaviour one day.
=== checks same sides are equal in type as well as value.
Example:
'1' === 1 // will return "false" because `string` is not a `number`
Common example:
0 == '' // will be "true", but it's very common to want this check to be "false"
Another common example:
null == undefined // returns "true", but in most cases a distinction is necessary
Many times an untyped check would be handy because you do not care if the value is either undefined, null, 0 or ""
Javascript execution flow diagram for strict equality / Comparison '==='
Javascript execution flow diagram for non strict equality / comparison '=='
JavaScript === vs == .
0==false // true
0===false // false, because they are of a different type
1=="1" // true, auto type coercion
1==="1" // false, because they are of a different type
It means equality without type coercion
type coercion means JavaScript do not automatically convert any other data types to string data types
0==false // true,although they are different types
0===false // false,as they are different types
2=='2' //true,different types,one is string and another is integer but
javaScript convert 2 to string by using == operator
2==='2' //false because by using === operator ,javaScript do not convert
integer to string
2===2 //true because both have same value and same types
In a typical script there will be no performance difference. More important may be the fact that thousand "===" is 1 KB heavier than thousand "==" :) JavaScript profilers can tell you if there is a performance difference in your case.
But personally I would do what JSLint suggests. This recommendation is there not because of performance issues, but because type coercion means ('\t\r\n' == 0) is true.
The equal comparison operator == is confusing and should be avoided.
If you HAVE TO live with it, then remember the following 3 things:
It is not transitive: (a == b) and (b == c) does not lead to (a == c)
It's mutually exclusive to its negation: (a == b) and (a != b) always hold opposite Boolean values, with all a and b.
In case of doubt, learn by heart the following truth table:
EQUAL OPERATOR TRUTH TABLE IN JAVASCRIPT
Each row in the table is a set of 3 mutually "equal" values, meaning that any 2 values among them are equal using the equal == sign*
** STRANGE: note that any two values on the first column are not equal in that sense.**
'' == 0 == false // Any two values among these 3 ones are equal with the == operator
'0' == 0 == false // Also a set of 3 equal values, note that only 0 and false are repeated
'\t' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\r' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\t\r\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
null == undefined // These two "default" values are not-equal to any of the listed values above
NaN // NaN is not equal to any thing, even to itself.
There is unlikely to be any performance difference between the two operations in your usage. There is no type-conversion to be done because both parameters are already the same type. Both operations will have a type comparison followed by a value comparison.
Simply
== means comparison between operands with type coercion
and
=== means comparison between operands without type coercion.
Type coercion in JavaScript means automatically converting data types to other data types.
For example:
123 == "123" // Returns true, because JS coerces string "123" to number 123
// and then goes on to compare `123 == 123`.
123 === "123" // Returns false, because JS does not coerce values of different types here.
Yes! It does matter.
=== operator in javascript checks value as well as type where as == operator just checks the value (does type conversion if required).
You can easily test it. Paste following code in an HTML file and open it in browser
<script>
function onPageLoad()
{
var x = "5";
var y = 5;
alert(x === 5);
};
</script>
</head>
<body onload='onPageLoad();'>
You will get 'false' in alert. Now modify the onPageLoad() method to alert(x == 5); you will get true.
As a rule of thumb, I would generally use === instead of == (and !== instead of !=).
Reasons are explained in in the answers above and also Douglas Crockford is pretty clear about it (JavaScript: The Good Parts).
However there is one single exception:
== null is an efficient way to check for 'is null or undefined':
if( value == null ){
// value is either null or undefined
}
For example jQuery 1.9.1 uses this pattern 43 times, and the JSHint syntax checker even provides the eqnull relaxing option for this reason.
From the jQuery style guide:
Strict equality checks (===) should be used in favor of ==. The only
exception is when checking for undefined and null by way of null.
// Check for both undefined and null values, for some important reason.
undefOrNull == null;
EDIT 2021-03:
Nowadays most browsers
support the Nullish coalescing operator (??)
and the Logical nullish assignment (??=), which allows a more concise way to
assign a default value if a variable is null or undefined, for example:
if (a.speed == null) {
// Set default if null or undefined
a.speed = 42;
}
can be written as any of these forms
a.speed ??= 42;
a.speed ?? a.speed = 42;
a.speed = a.speed ?? 42;
It's a strict check test.
It's a good thing especially if you're checking between 0 and false and null.
For example, if you have:
$a = 0;
Then:
$a==0;
$a==NULL;
$a==false;
All returns true and you may not want this. Let's suppose you have a function that can return the 0th index of an array or false on failure. If you check with "==" false, you can get a confusing result.
So with the same thing as above, but a strict test:
$a = 0;
$a===0; // returns true
$a===NULL; // returns false
$a===false; // returns false
=== operator checks the values as well as the types of the variables for equality.
== operator just checks the value of the variables for equality.
JSLint sometimes gives you unrealistic reasons to modify stuff. === has exactly the same performance as == if the types are already the same.
It is faster only when the types are not the same, in which case it does not try to convert types but directly returns a false.
So, IMHO, JSLint maybe used to write new code, but useless over-optimizing should be avoided at all costs.
Meaning, there is no reason to change == to === in a check like if (a == 'test') when you know it for a fact that a can only be a String.
Modifying a lot of code that way wastes developers' and reviewers' time and achieves nothing.
A simple example is
2 == '2' -> true, values are SAME because of type conversion.
2 === '2' -> false, values are NOT SAME because of no type conversion.
The top 2 answers both mentioned == means equality and === means identity. Unfortunately, this statement is incorrect.
If both operands of == are objects, then they are compared to see if they are the same object. If both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.
var a = [1, 2, 3];
var b = [1, 2, 3];
console.log(a == b) // false
console.log(a === b) // false
In the code above, both == and === get false because a and b are not the same objects.
That's to say: if both operands of == are objects, == behaves same as ===, which also means identity. The essential difference of this two operators is about type conversion. == has conversion before it checks equality, but === does not.
The problem is that you might easily get into trouble since JavaScript have a lot of implicit conversions meaning...
var x = 0;
var isTrue = x == null;
var isFalse = x === null;
Which pretty soon becomes a problem. The best sample of why implicit conversion is "evil" can be taken from this code in MFC / C++ which actually will compile due to an implicit conversion from CString to HANDLE which is a pointer typedef type...
CString x;
delete x;
Which obviously during runtime does very undefined things...
Google for implicit conversions in C++ and STL to get some of the arguments against it...
From the core javascript reference
=== Returns true if the operands are strictly equal (see above)
with no type conversion.
Equality comparison:
Operator ==
Returns true, when both operands are equal. The operands are converted to the same type before being compared.
>>> 1 == 1
true
>>> 1 == 2
false
>>> 1 == '1'
true
Equality and type comparison:
Operator ===
Returns true if both operands are equal and of the same type. It's generally
better and safer if you compare this way, because there's no behind-the-scenes type conversions.
>>> 1 === '1'
false
>>> 1 === 1
true
Here is a handy comparison table that shows the conversions that happen and the differences between == and ===.
As the conclusion states:
"Use three equals unless you fully understand the conversions that take
place for two-equals."
http://dorey.github.io/JavaScript-Equality-Table/
null and undefined are nothingness, that is,
var a;
var b = null;
Here a and b do not have values. Whereas, 0, false and '' are all values. One thing common beween all these are that they are all falsy values, which means they all satisfy falsy conditions.
So, the 0, false and '' together form a sub-group. And on other hand, null & undefined form the second sub-group. Check the comparisons in the below image. null and undefined would equal. The other three would equal to each other. But, they all are treated as falsy conditions in JavaScript.
This is same as any object (like {}, arrays, etc.), non-empty string & Boolean true are all truthy conditions. But, they are all not equal.

Javascript == and === comparison [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I'm using JSLint to go through JavaScript, and it's returning many suggestions to replace == (two equals signs) with === (three equals signs) when doing things like comparing idSele_UNVEHtype.value.length == 0 inside of an if statement.
Is there a performance benefit to replacing == with ===?
Any performance improvement would be welcomed as many comparison operators exist.
If no type conversion takes place, would there be a performance gain over ==?
The strict equality operator (===) behaves identically to the abstract equality operator (==) except no type conversion is done, and the types must be the same to be considered equal.
Reference: JavaScript Tutorial: Comparison Operators
The == operator will compare for equality after doing any necessary type conversions. The === operator will not do the conversion, so if two values are not the same type === will simply return false. Both are equally quick.
To quote Douglas Crockford's excellent JavaScript: The Good Parts,
JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good ones work the way you would expect. If the two operands are of the same type and have the same value, then === produces true and !== produces false. The evil twins do the right thing when the operands are of the same type, but if they are of different types, they attempt to coerce the values. The rules by which they do that are complicated and unmemorable. These are some of the interesting cases:
'' == '0' // false
0 == '' // true
0 == '0' // true
false == 'false' // false
false == '0' // true
false == undefined // false
false == null // false
null == undefined // true
' \t\r\n ' == 0 // true
The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use === and !==. All of the comparisons just shown produce false with the === operator.
Update
A good point was brought up by #Casebash in the comments and in #Phillipe Laybaert's answer concerning objects. For objects, == and === act consistently with one another (except in a special case).
var a = [1,2,3];
var b = [1,2,3];
var c = { x: 1, y: 2 };
var d = { x: 1, y: 2 };
var e = "text";
var f = "te" + "xt";
a == b // false
a === b // false
c == d // false
c === d // false
e == f // true
e === f // true
The special case is when you compare a primitive with an object that evaluates to the same primitive, due to its toString or valueOf method. For example, consider the comparison of a string primitive with a string object created using the String constructor.
"abc" == new String("abc") // true
"abc" === new String("abc") // false
Here the == operator is checking the values of the two objects and returning true, but the === is seeing that they're not the same type and returning false. Which one is correct? That really depends on what you're trying to compare. My advice is to bypass the question entirely and just don't use the String constructor to create string objects from string literals.
Reference
https://262.ecma-international.org/5.1/#sec-11.9.3
Using the == operator (Equality)
true == 1; //true, because 'true' is converted to 1 and then compared
"2" == 2; //true, because "2" is converted to 2 and then compared
Using the === operator (Identity)
true === 1; //false
"2" === 2; //false
This is because the equality operator == does type coercion, meaning that the interpreter implicitly tries to convert the values before comparing.
On the other hand, the identity operator === does not do type coercion, and thus does not convert the values when comparing.
Here's an interesting visualisation of the equality comparison between == and ===.
Source: https://github.com/dorey/JavaScript-Equality-Table (demo, unified demo)
var1 === var2
When using === for JavaScript equality testing, everything is as is.
Nothing gets converted before being evaluated.
var1 == var2
When using == for JavaScript equality testing, some funky conversions take place.
Summary of equality in Javascript
Conclusion:
Always use ===, unless you fully understand the funky conversions that take place with ==.
In the answers here, I didn't read anything about what equal means. Some will say that === means equal and of the same type, but that's not really true. It actually means that both operands reference the same object, or in case of value types, have the same value.
So, let's take the following code:
var a = [1,2,3];
var b = [1,2,3];
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
The same here:
var a = { x: 1, y: 2 };
var b = { x: 1, y: 2 };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
Or even:
var a = { };
var b = { };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
This behavior is not always obvious. There's more to the story than being equal and being of the same type.
The rule is:
For value types (numbers):
a === b returns true if a and b have the same value and are of the same type
For reference types:
a === b returns true if a and b reference the exact same object
For strings:
a === b returns true if a and b are both strings and contain the exact same characters
Strings: the special case...
Strings are not value types, but in Javascript they behave like value types, so they will be "equal" when the characters in the string are the same and when they are of the same length (as explained in the third rule)
Now it becomes interesting:
var a = "12" + "3";
var b = "123";
alert(a === b); // returns true, because strings behave like value types
But how about this?:
var a = new String("123");
var b = "123";
alert(a === b); // returns false !! (but they are equal and of the same type)
I thought strings behave like value types? Well, it depends who you ask... In this case a and b are not the same type. a is of type Object, while b is of type string. Just remember that creating a string object using the String constructor creates something of type Object that behaves as a string most of the time.
Let me add this counsel:
If in doubt, read the specification!
ECMA-262 is the specification for a scripting language of which JavaScript is a dialect. Of course in practice it matters more how the most important browsers behave than an esoteric definition of how something is supposed to be handled. But it is helpful to understand why new String("a") !== "a".
Please let me explain how to read the specification to clarify this question. I see that in this very old topic nobody had an answer for the very strange effect. So, if you can read a specification, this will help you in your profession tremendously. It is an acquired skill. So, let's continue.
Searching the PDF file for === brings me to page 56 of the specification: 11.9.4. The Strict Equals Operator ( === ), and after wading through the specificationalese I find:
11.9.6 The Strict Equality Comparison Algorithm
The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as follows:
  1. If Type(x) is different from Type(y), return false.
  2. If Type(x) is Undefined, return true.
  3. If Type(x) is Null, return true.
  4. If Type(x) is not Number, go to step 11.
  5. If x is NaN, return false.
  6. If y is NaN, return false.
  7. If x is the same number value as y, return true.
  8. If x is +0 and y is −0, return true.
  9. If x is −0 and y is +0, return true.
  10. Return false.
  11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and same characters in corresponding positions); otherwise, return false.
  12. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
  13. Return true if x and y refer to the same object or if they refer to objects joined to each other (see 13.1.2). Otherwise, return false.
Interesting is step 11. Yes, strings are treated as value types. But this does not explain why new String("a") !== "a". Do we have a browser not conforming to ECMA-262?
Not so fast!
Let's check the types of the operands. Try it out for yourself by wrapping them in typeof(). I find that new String("a") is an object, and step 1 is used: return false if the types are different.
If you wonder why new String("a") does not return a string, how about some exercise reading a specification? Have fun!
Aidiakapi wrote this in a comment below:
From the specification
11.2.2 The new Operator:
If Type(constructor) is not Object, throw a TypeError exception.
With other words, if String wouldn't be of type Object it couldn't be used with the new operator.
new always returns an Object, even for String constructors, too. And alas! The value semantics for strings (see step 11) is lost.
And this finally means: new String("a") !== "a".
I tested this in Firefox with Firebug using code like this:
console.time("testEquality");
var n = 0;
while (true) {
n++;
if (n == 100000)
break;
}
console.timeEnd("testEquality");
and
console.time("testTypeEquality");
var n = 0;
while (true) {
n++;
if (n === 100000)
break;
}
console.timeEnd("testTypeEquality");
My results (tested five times each and averaged):
==: 115.2
===: 114.4
So I'd say that the miniscule difference (this is over 100000 iterations, remember) is negligible. Performance isn't a reason to do ===. Type safety (well, as safe as you're going to get in JavaScript), and code quality is.
In PHP and JavaScript, it is a strict equality operator. Which means, it will compare both type and values.
In JavaScript it means of the same value and type.
For example,
4 == "4" // will return true
but
4 === "4" // will return false
Why == is so unpredictable?
What do you get when you compare an empty string "" with the number zero 0?
true
Yep, that's right according to == an empty string and the number zero are the same time.
And it doesn't end there, here's another one:
'0' == false // true
Things get really weird with arrays.
[1] == true // true
[] == false // true
[[]] == false // true
[0] == false // true
Then weirder with strings
[1,2,3] == '1,2,3' // true - REALLY?!
'\r\n\t' == 0 // true - Come on!
It get's worse:
When is equal not equal?
let A = '' // empty string
let B = 0 // zero
let C = '0' // zero string
A == B // true - ok...
B == C // true - so far so good...
A == C // **FALSE** - Plot twist!
Let me say that again:
(A == B) && (B == C) // true
(A == C) // **FALSE**
And this is just the crazy stuff you get with primitives.
It's a whole new level of crazy when you use == with objects.
At this point your probably wondering...
Why does this happen?
Well it's because unlike "triple equals" (===) which just checks if two values are the same.
== does a whole bunch of other stuff.
It has special handling for functions, special handling for nulls, undefined, strings, you name it.
It get's pretty wacky.
In fact, if you tried to write a function that does what == does it would look something like this:
function isEqual(x, y) { // if `==` were a function
if(typeof y === typeof x) return y === x;
// treat null and undefined the same
var xIsNothing = (y === undefined) || (y === null);
var yIsNothing = (x === undefined) || (x === null);
if(xIsNothing || yIsNothing) return (xIsNothing && yIsNothing);
if(typeof y === "function" || typeof x === "function") {
// if either value is a string
// convert the function into a string and compare
if(typeof x === "string") {
return x === y.toString();
} else if(typeof y === "string") {
return x.toString() === y;
}
return false;
}
if(typeof x === "object") x = toPrimitive(x);
if(typeof y === "object") y = toPrimitive(y);
if(typeof y === typeof x) return y === x;
// convert x and y into numbers if they are not already use the "+" trick
if(typeof x !== "number") x = +x;
if(typeof y !== "number") y = +y;
// actually the real `==` is even more complicated than this, especially in ES6
return x === y;
}
function toPrimitive(obj) {
var value = obj.valueOf();
if(obj !== value) return value;
return obj.toString();
}
So what does this mean?
It means == is complicated.
Because it's complicated it's hard to know what's going to happen when you use it.
Which means you could end up with bugs.
So the moral of the story is...
Make your life less complicated.
Use === instead of ==.
The End.
The === operator is called a strict comparison operator, it does differ from the == operator.
Lets take 2 vars a and b.
For "a == b" to evaluate to true a and b need to be the same value.
In the case of "a === b" a and b must be the same value and also the same type for it to evaluate to true.
Take the following example
var a = 1;
var b = "1";
if (a == b) //evaluates to true as a and b are both 1
{
alert("a == b");
}
if (a === b) //evaluates to false as a is not the same type as b
{
alert("a === b");
}
In summary; using the == operator might evaluate to true in situations where you do not want it to so using the === operator would be safer.
In the 90% usage scenario it won't matter which one you use, but it is handy to know the difference when you get some unexpected behaviour one day.
=== checks same sides are equal in type as well as value.
Example:
'1' === 1 // will return "false" because `string` is not a `number`
Common example:
0 == '' // will be "true", but it's very common to want this check to be "false"
Another common example:
null == undefined // returns "true", but in most cases a distinction is necessary
Many times an untyped check would be handy because you do not care if the value is either undefined, null, 0 or ""
Javascript execution flow diagram for strict equality / Comparison '==='
Javascript execution flow diagram for non strict equality / comparison '=='
JavaScript === vs == .
0==false // true
0===false // false, because they are of a different type
1=="1" // true, auto type coercion
1==="1" // false, because they are of a different type
It means equality without type coercion
type coercion means JavaScript do not automatically convert any other data types to string data types
0==false // true,although they are different types
0===false // false,as they are different types
2=='2' //true,different types,one is string and another is integer but
javaScript convert 2 to string by using == operator
2==='2' //false because by using === operator ,javaScript do not convert
integer to string
2===2 //true because both have same value and same types
In a typical script there will be no performance difference. More important may be the fact that thousand "===" is 1 KB heavier than thousand "==" :) JavaScript profilers can tell you if there is a performance difference in your case.
But personally I would do what JSLint suggests. This recommendation is there not because of performance issues, but because type coercion means ('\t\r\n' == 0) is true.
The equal comparison operator == is confusing and should be avoided.
If you HAVE TO live with it, then remember the following 3 things:
It is not transitive: (a == b) and (b == c) does not lead to (a == c)
It's mutually exclusive to its negation: (a == b) and (a != b) always hold opposite Boolean values, with all a and b.
In case of doubt, learn by heart the following truth table:
EQUAL OPERATOR TRUTH TABLE IN JAVASCRIPT
Each row in the table is a set of 3 mutually "equal" values, meaning that any 2 values among them are equal using the equal == sign*
** STRANGE: note that any two values on the first column are not equal in that sense.**
'' == 0 == false // Any two values among these 3 ones are equal with the == operator
'0' == 0 == false // Also a set of 3 equal values, note that only 0 and false are repeated
'\t' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\r' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\t\r\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
null == undefined // These two "default" values are not-equal to any of the listed values above
NaN // NaN is not equal to any thing, even to itself.
There is unlikely to be any performance difference between the two operations in your usage. There is no type-conversion to be done because both parameters are already the same type. Both operations will have a type comparison followed by a value comparison.
Simply
== means comparison between operands with type coercion
and
=== means comparison between operands without type coercion.
Type coercion in JavaScript means automatically converting data types to other data types.
For example:
123 == "123" // Returns true, because JS coerces string "123" to number 123
// and then goes on to compare `123 == 123`.
123 === "123" // Returns false, because JS does not coerce values of different types here.
Yes! It does matter.
=== operator in javascript checks value as well as type where as == operator just checks the value (does type conversion if required).
You can easily test it. Paste following code in an HTML file and open it in browser
<script>
function onPageLoad()
{
var x = "5";
var y = 5;
alert(x === 5);
};
</script>
</head>
<body onload='onPageLoad();'>
You will get 'false' in alert. Now modify the onPageLoad() method to alert(x == 5); you will get true.
As a rule of thumb, I would generally use === instead of == (and !== instead of !=).
Reasons are explained in in the answers above and also Douglas Crockford is pretty clear about it (JavaScript: The Good Parts).
However there is one single exception:
== null is an efficient way to check for 'is null or undefined':
if( value == null ){
// value is either null or undefined
}
For example jQuery 1.9.1 uses this pattern 43 times, and the JSHint syntax checker even provides the eqnull relaxing option for this reason.
From the jQuery style guide:
Strict equality checks (===) should be used in favor of ==. The only
exception is when checking for undefined and null by way of null.
// Check for both undefined and null values, for some important reason.
undefOrNull == null;
EDIT 2021-03:
Nowadays most browsers
support the Nullish coalescing operator (??)
and the Logical nullish assignment (??=), which allows a more concise way to
assign a default value if a variable is null or undefined, for example:
if (a.speed == null) {
// Set default if null or undefined
a.speed = 42;
}
can be written as any of these forms
a.speed ??= 42;
a.speed ?? a.speed = 42;
a.speed = a.speed ?? 42;
It's a strict check test.
It's a good thing especially if you're checking between 0 and false and null.
For example, if you have:
$a = 0;
Then:
$a==0;
$a==NULL;
$a==false;
All returns true and you may not want this. Let's suppose you have a function that can return the 0th index of an array or false on failure. If you check with "==" false, you can get a confusing result.
So with the same thing as above, but a strict test:
$a = 0;
$a===0; // returns true
$a===NULL; // returns false
$a===false; // returns false
=== operator checks the values as well as the types of the variables for equality.
== operator just checks the value of the variables for equality.
JSLint sometimes gives you unrealistic reasons to modify stuff. === has exactly the same performance as == if the types are already the same.
It is faster only when the types are not the same, in which case it does not try to convert types but directly returns a false.
So, IMHO, JSLint maybe used to write new code, but useless over-optimizing should be avoided at all costs.
Meaning, there is no reason to change == to === in a check like if (a == 'test') when you know it for a fact that a can only be a String.
Modifying a lot of code that way wastes developers' and reviewers' time and achieves nothing.
A simple example is
2 == '2' -> true, values are SAME because of type conversion.
2 === '2' -> false, values are NOT SAME because of no type conversion.
The top 2 answers both mentioned == means equality and === means identity. Unfortunately, this statement is incorrect.
If both operands of == are objects, then they are compared to see if they are the same object. If both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.
var a = [1, 2, 3];
var b = [1, 2, 3];
console.log(a == b) // false
console.log(a === b) // false
In the code above, both == and === get false because a and b are not the same objects.
That's to say: if both operands of == are objects, == behaves same as ===, which also means identity. The essential difference of this two operators is about type conversion. == has conversion before it checks equality, but === does not.
The problem is that you might easily get into trouble since JavaScript have a lot of implicit conversions meaning...
var x = 0;
var isTrue = x == null;
var isFalse = x === null;
Which pretty soon becomes a problem. The best sample of why implicit conversion is "evil" can be taken from this code in MFC / C++ which actually will compile due to an implicit conversion from CString to HANDLE which is a pointer typedef type...
CString x;
delete x;
Which obviously during runtime does very undefined things...
Google for implicit conversions in C++ and STL to get some of the arguments against it...
From the core javascript reference
=== Returns true if the operands are strictly equal (see above)
with no type conversion.
Equality comparison:
Operator ==
Returns true, when both operands are equal. The operands are converted to the same type before being compared.
>>> 1 == 1
true
>>> 1 == 2
false
>>> 1 == '1'
true
Equality and type comparison:
Operator ===
Returns true if both operands are equal and of the same type. It's generally
better and safer if you compare this way, because there's no behind-the-scenes type conversions.
>>> 1 === '1'
false
>>> 1 === 1
true
Here is a handy comparison table that shows the conversions that happen and the differences between == and ===.
As the conclusion states:
"Use three equals unless you fully understand the conversions that take
place for two-equals."
http://dorey.github.io/JavaScript-Equality-Table/
null and undefined are nothingness, that is,
var a;
var b = null;
Here a and b do not have values. Whereas, 0, false and '' are all values. One thing common beween all these are that they are all falsy values, which means they all satisfy falsy conditions.
So, the 0, false and '' together form a sub-group. And on other hand, null & undefined form the second sub-group. Check the comparisons in the below image. null and undefined would equal. The other three would equal to each other. But, they all are treated as falsy conditions in JavaScript.
This is same as any object (like {}, arrays, etc.), non-empty string & Boolean true are all truthy conditions. But, they are all not equal.

When to use equality ("==") instead of identity ("===")? [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I'm using JSLint to go through JavaScript, and it's returning many suggestions to replace == (two equals signs) with === (three equals signs) when doing things like comparing idSele_UNVEHtype.value.length == 0 inside of an if statement.
Is there a performance benefit to replacing == with ===?
Any performance improvement would be welcomed as many comparison operators exist.
If no type conversion takes place, would there be a performance gain over ==?
The strict equality operator (===) behaves identically to the abstract equality operator (==) except no type conversion is done, and the types must be the same to be considered equal.
Reference: JavaScript Tutorial: Comparison Operators
The == operator will compare for equality after doing any necessary type conversions. The === operator will not do the conversion, so if two values are not the same type === will simply return false. Both are equally quick.
To quote Douglas Crockford's excellent JavaScript: The Good Parts,
JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good ones work the way you would expect. If the two operands are of the same type and have the same value, then === produces true and !== produces false. The evil twins do the right thing when the operands are of the same type, but if they are of different types, they attempt to coerce the values. The rules by which they do that are complicated and unmemorable. These are some of the interesting cases:
'' == '0' // false
0 == '' // true
0 == '0' // true
false == 'false' // false
false == '0' // true
false == undefined // false
false == null // false
null == undefined // true
' \t\r\n ' == 0 // true
The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use === and !==. All of the comparisons just shown produce false with the === operator.
Update
A good point was brought up by #Casebash in the comments and in #Phillipe Laybaert's answer concerning objects. For objects, == and === act consistently with one another (except in a special case).
var a = [1,2,3];
var b = [1,2,3];
var c = { x: 1, y: 2 };
var d = { x: 1, y: 2 };
var e = "text";
var f = "te" + "xt";
a == b // false
a === b // false
c == d // false
c === d // false
e == f // true
e === f // true
The special case is when you compare a primitive with an object that evaluates to the same primitive, due to its toString or valueOf method. For example, consider the comparison of a string primitive with a string object created using the String constructor.
"abc" == new String("abc") // true
"abc" === new String("abc") // false
Here the == operator is checking the values of the two objects and returning true, but the === is seeing that they're not the same type and returning false. Which one is correct? That really depends on what you're trying to compare. My advice is to bypass the question entirely and just don't use the String constructor to create string objects from string literals.
Reference
https://262.ecma-international.org/5.1/#sec-11.9.3
Using the == operator (Equality)
true == 1; //true, because 'true' is converted to 1 and then compared
"2" == 2; //true, because "2" is converted to 2 and then compared
Using the === operator (Identity)
true === 1; //false
"2" === 2; //false
This is because the equality operator == does type coercion, meaning that the interpreter implicitly tries to convert the values before comparing.
On the other hand, the identity operator === does not do type coercion, and thus does not convert the values when comparing.
Here's an interesting visualisation of the equality comparison between == and ===.
Source: https://github.com/dorey/JavaScript-Equality-Table (demo, unified demo)
var1 === var2
When using === for JavaScript equality testing, everything is as is.
Nothing gets converted before being evaluated.
var1 == var2
When using == for JavaScript equality testing, some funky conversions take place.
Summary of equality in Javascript
Conclusion:
Always use ===, unless you fully understand the funky conversions that take place with ==.
In the answers here, I didn't read anything about what equal means. Some will say that === means equal and of the same type, but that's not really true. It actually means that both operands reference the same object, or in case of value types, have the same value.
So, let's take the following code:
var a = [1,2,3];
var b = [1,2,3];
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
The same here:
var a = { x: 1, y: 2 };
var b = { x: 1, y: 2 };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
Or even:
var a = { };
var b = { };
var c = a;
var ab_eq = (a === b); // false (even though a and b are the same type)
var ac_eq = (a === c); // true
This behavior is not always obvious. There's more to the story than being equal and being of the same type.
The rule is:
For value types (numbers):
a === b returns true if a and b have the same value and are of the same type
For reference types:
a === b returns true if a and b reference the exact same object
For strings:
a === b returns true if a and b are both strings and contain the exact same characters
Strings: the special case...
Strings are not value types, but in Javascript they behave like value types, so they will be "equal" when the characters in the string are the same and when they are of the same length (as explained in the third rule)
Now it becomes interesting:
var a = "12" + "3";
var b = "123";
alert(a === b); // returns true, because strings behave like value types
But how about this?:
var a = new String("123");
var b = "123";
alert(a === b); // returns false !! (but they are equal and of the same type)
I thought strings behave like value types? Well, it depends who you ask... In this case a and b are not the same type. a is of type Object, while b is of type string. Just remember that creating a string object using the String constructor creates something of type Object that behaves as a string most of the time.
Let me add this counsel:
If in doubt, read the specification!
ECMA-262 is the specification for a scripting language of which JavaScript is a dialect. Of course in practice it matters more how the most important browsers behave than an esoteric definition of how something is supposed to be handled. But it is helpful to understand why new String("a") !== "a".
Please let me explain how to read the specification to clarify this question. I see that in this very old topic nobody had an answer for the very strange effect. So, if you can read a specification, this will help you in your profession tremendously. It is an acquired skill. So, let's continue.
Searching the PDF file for === brings me to page 56 of the specification: 11.9.4. The Strict Equals Operator ( === ), and after wading through the specificationalese I find:
11.9.6 The Strict Equality Comparison Algorithm
The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as follows:
  1. If Type(x) is different from Type(y), return false.
  2. If Type(x) is Undefined, return true.
  3. If Type(x) is Null, return true.
  4. If Type(x) is not Number, go to step 11.
  5. If x is NaN, return false.
  6. If y is NaN, return false.
  7. If x is the same number value as y, return true.
  8. If x is +0 and y is −0, return true.
  9. If x is −0 and y is +0, return true.
  10. Return false.
  11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and same characters in corresponding positions); otherwise, return false.
  12. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
  13. Return true if x and y refer to the same object or if they refer to objects joined to each other (see 13.1.2). Otherwise, return false.
Interesting is step 11. Yes, strings are treated as value types. But this does not explain why new String("a") !== "a". Do we have a browser not conforming to ECMA-262?
Not so fast!
Let's check the types of the operands. Try it out for yourself by wrapping them in typeof(). I find that new String("a") is an object, and step 1 is used: return false if the types are different.
If you wonder why new String("a") does not return a string, how about some exercise reading a specification? Have fun!
Aidiakapi wrote this in a comment below:
From the specification
11.2.2 The new Operator:
If Type(constructor) is not Object, throw a TypeError exception.
With other words, if String wouldn't be of type Object it couldn't be used with the new operator.
new always returns an Object, even for String constructors, too. And alas! The value semantics for strings (see step 11) is lost.
And this finally means: new String("a") !== "a".
I tested this in Firefox with Firebug using code like this:
console.time("testEquality");
var n = 0;
while (true) {
n++;
if (n == 100000)
break;
}
console.timeEnd("testEquality");
and
console.time("testTypeEquality");
var n = 0;
while (true) {
n++;
if (n === 100000)
break;
}
console.timeEnd("testTypeEquality");
My results (tested five times each and averaged):
==: 115.2
===: 114.4
So I'd say that the miniscule difference (this is over 100000 iterations, remember) is negligible. Performance isn't a reason to do ===. Type safety (well, as safe as you're going to get in JavaScript), and code quality is.
In PHP and JavaScript, it is a strict equality operator. Which means, it will compare both type and values.
In JavaScript it means of the same value and type.
For example,
4 == "4" // will return true
but
4 === "4" // will return false
Why == is so unpredictable?
What do you get when you compare an empty string "" with the number zero 0?
true
Yep, that's right according to == an empty string and the number zero are the same time.
And it doesn't end there, here's another one:
'0' == false // true
Things get really weird with arrays.
[1] == true // true
[] == false // true
[[]] == false // true
[0] == false // true
Then weirder with strings
[1,2,3] == '1,2,3' // true - REALLY?!
'\r\n\t' == 0 // true - Come on!
It get's worse:
When is equal not equal?
let A = '' // empty string
let B = 0 // zero
let C = '0' // zero string
A == B // true - ok...
B == C // true - so far so good...
A == C // **FALSE** - Plot twist!
Let me say that again:
(A == B) && (B == C) // true
(A == C) // **FALSE**
And this is just the crazy stuff you get with primitives.
It's a whole new level of crazy when you use == with objects.
At this point your probably wondering...
Why does this happen?
Well it's because unlike "triple equals" (===) which just checks if two values are the same.
== does a whole bunch of other stuff.
It has special handling for functions, special handling for nulls, undefined, strings, you name it.
It get's pretty wacky.
In fact, if you tried to write a function that does what == does it would look something like this:
function isEqual(x, y) { // if `==` were a function
if(typeof y === typeof x) return y === x;
// treat null and undefined the same
var xIsNothing = (y === undefined) || (y === null);
var yIsNothing = (x === undefined) || (x === null);
if(xIsNothing || yIsNothing) return (xIsNothing && yIsNothing);
if(typeof y === "function" || typeof x === "function") {
// if either value is a string
// convert the function into a string and compare
if(typeof x === "string") {
return x === y.toString();
} else if(typeof y === "string") {
return x.toString() === y;
}
return false;
}
if(typeof x === "object") x = toPrimitive(x);
if(typeof y === "object") y = toPrimitive(y);
if(typeof y === typeof x) return y === x;
// convert x and y into numbers if they are not already use the "+" trick
if(typeof x !== "number") x = +x;
if(typeof y !== "number") y = +y;
// actually the real `==` is even more complicated than this, especially in ES6
return x === y;
}
function toPrimitive(obj) {
var value = obj.valueOf();
if(obj !== value) return value;
return obj.toString();
}
So what does this mean?
It means == is complicated.
Because it's complicated it's hard to know what's going to happen when you use it.
Which means you could end up with bugs.
So the moral of the story is...
Make your life less complicated.
Use === instead of ==.
The End.
The === operator is called a strict comparison operator, it does differ from the == operator.
Lets take 2 vars a and b.
For "a == b" to evaluate to true a and b need to be the same value.
In the case of "a === b" a and b must be the same value and also the same type for it to evaluate to true.
Take the following example
var a = 1;
var b = "1";
if (a == b) //evaluates to true as a and b are both 1
{
alert("a == b");
}
if (a === b) //evaluates to false as a is not the same type as b
{
alert("a === b");
}
In summary; using the == operator might evaluate to true in situations where you do not want it to so using the === operator would be safer.
In the 90% usage scenario it won't matter which one you use, but it is handy to know the difference when you get some unexpected behaviour one day.
=== checks same sides are equal in type as well as value.
Example:
'1' === 1 // will return "false" because `string` is not a `number`
Common example:
0 == '' // will be "true", but it's very common to want this check to be "false"
Another common example:
null == undefined // returns "true", but in most cases a distinction is necessary
Many times an untyped check would be handy because you do not care if the value is either undefined, null, 0 or ""
Javascript execution flow diagram for strict equality / Comparison '==='
Javascript execution flow diagram for non strict equality / comparison '=='
JavaScript === vs == .
0==false // true
0===false // false, because they are of a different type
1=="1" // true, auto type coercion
1==="1" // false, because they are of a different type
It means equality without type coercion
type coercion means JavaScript do not automatically convert any other data types to string data types
0==false // true,although they are different types
0===false // false,as they are different types
2=='2' //true,different types,one is string and another is integer but
javaScript convert 2 to string by using == operator
2==='2' //false because by using === operator ,javaScript do not convert
integer to string
2===2 //true because both have same value and same types
In a typical script there will be no performance difference. More important may be the fact that thousand "===" is 1 KB heavier than thousand "==" :) JavaScript profilers can tell you if there is a performance difference in your case.
But personally I would do what JSLint suggests. This recommendation is there not because of performance issues, but because type coercion means ('\t\r\n' == 0) is true.
The equal comparison operator == is confusing and should be avoided.
If you HAVE TO live with it, then remember the following 3 things:
It is not transitive: (a == b) and (b == c) does not lead to (a == c)
It's mutually exclusive to its negation: (a == b) and (a != b) always hold opposite Boolean values, with all a and b.
In case of doubt, learn by heart the following truth table:
EQUAL OPERATOR TRUTH TABLE IN JAVASCRIPT
Each row in the table is a set of 3 mutually "equal" values, meaning that any 2 values among them are equal using the equal == sign*
** STRANGE: note that any two values on the first column are not equal in that sense.**
'' == 0 == false // Any two values among these 3 ones are equal with the == operator
'0' == 0 == false // Also a set of 3 equal values, note that only 0 and false are repeated
'\t' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\r' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
'\t\r\n' == 0 == false // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
null == undefined // These two "default" values are not-equal to any of the listed values above
NaN // NaN is not equal to any thing, even to itself.
There is unlikely to be any performance difference between the two operations in your usage. There is no type-conversion to be done because both parameters are already the same type. Both operations will have a type comparison followed by a value comparison.
Simply
== means comparison between operands with type coercion
and
=== means comparison between operands without type coercion.
Type coercion in JavaScript means automatically converting data types to other data types.
For example:
123 == "123" // Returns true, because JS coerces string "123" to number 123
// and then goes on to compare `123 == 123`.
123 === "123" // Returns false, because JS does not coerce values of different types here.
Yes! It does matter.
=== operator in javascript checks value as well as type where as == operator just checks the value (does type conversion if required).
You can easily test it. Paste following code in an HTML file and open it in browser
<script>
function onPageLoad()
{
var x = "5";
var y = 5;
alert(x === 5);
};
</script>
</head>
<body onload='onPageLoad();'>
You will get 'false' in alert. Now modify the onPageLoad() method to alert(x == 5); you will get true.
As a rule of thumb, I would generally use === instead of == (and !== instead of !=).
Reasons are explained in in the answers above and also Douglas Crockford is pretty clear about it (JavaScript: The Good Parts).
However there is one single exception:
== null is an efficient way to check for 'is null or undefined':
if( value == null ){
// value is either null or undefined
}
For example jQuery 1.9.1 uses this pattern 43 times, and the JSHint syntax checker even provides the eqnull relaxing option for this reason.
From the jQuery style guide:
Strict equality checks (===) should be used in favor of ==. The only
exception is when checking for undefined and null by way of null.
// Check for both undefined and null values, for some important reason.
undefOrNull == null;
EDIT 2021-03:
Nowadays most browsers
support the Nullish coalescing operator (??)
and the Logical nullish assignment (??=), which allows a more concise way to
assign a default value if a variable is null or undefined, for example:
if (a.speed == null) {
// Set default if null or undefined
a.speed = 42;
}
can be written as any of these forms
a.speed ??= 42;
a.speed ?? a.speed = 42;
a.speed = a.speed ?? 42;
It's a strict check test.
It's a good thing especially if you're checking between 0 and false and null.
For example, if you have:
$a = 0;
Then:
$a==0;
$a==NULL;
$a==false;
All returns true and you may not want this. Let's suppose you have a function that can return the 0th index of an array or false on failure. If you check with "==" false, you can get a confusing result.
So with the same thing as above, but a strict test:
$a = 0;
$a===0; // returns true
$a===NULL; // returns false
$a===false; // returns false
=== operator checks the values as well as the types of the variables for equality.
== operator just checks the value of the variables for equality.
JSLint sometimes gives you unrealistic reasons to modify stuff. === has exactly the same performance as == if the types are already the same.
It is faster only when the types are not the same, in which case it does not try to convert types but directly returns a false.
So, IMHO, JSLint maybe used to write new code, but useless over-optimizing should be avoided at all costs.
Meaning, there is no reason to change == to === in a check like if (a == 'test') when you know it for a fact that a can only be a String.
Modifying a lot of code that way wastes developers' and reviewers' time and achieves nothing.
A simple example is
2 == '2' -> true, values are SAME because of type conversion.
2 === '2' -> false, values are NOT SAME because of no type conversion.
The top 2 answers both mentioned == means equality and === means identity. Unfortunately, this statement is incorrect.
If both operands of == are objects, then they are compared to see if they are the same object. If both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.
var a = [1, 2, 3];
var b = [1, 2, 3];
console.log(a == b) // false
console.log(a === b) // false
In the code above, both == and === get false because a and b are not the same objects.
That's to say: if both operands of == are objects, == behaves same as ===, which also means identity. The essential difference of this two operators is about type conversion. == has conversion before it checks equality, but === does not.
The problem is that you might easily get into trouble since JavaScript have a lot of implicit conversions meaning...
var x = 0;
var isTrue = x == null;
var isFalse = x === null;
Which pretty soon becomes a problem. The best sample of why implicit conversion is "evil" can be taken from this code in MFC / C++ which actually will compile due to an implicit conversion from CString to HANDLE which is a pointer typedef type...
CString x;
delete x;
Which obviously during runtime does very undefined things...
Google for implicit conversions in C++ and STL to get some of the arguments against it...
From the core javascript reference
=== Returns true if the operands are strictly equal (see above)
with no type conversion.
Equality comparison:
Operator ==
Returns true, when both operands are equal. The operands are converted to the same type before being compared.
>>> 1 == 1
true
>>> 1 == 2
false
>>> 1 == '1'
true
Equality and type comparison:
Operator ===
Returns true if both operands are equal and of the same type. It's generally
better and safer if you compare this way, because there's no behind-the-scenes type conversions.
>>> 1 === '1'
false
>>> 1 === 1
true
Here is a handy comparison table that shows the conversions that happen and the differences between == and ===.
As the conclusion states:
"Use three equals unless you fully understand the conversions that take
place for two-equals."
http://dorey.github.io/JavaScript-Equality-Table/
null and undefined are nothingness, that is,
var a;
var b = null;
Here a and b do not have values. Whereas, 0, false and '' are all values. One thing common beween all these are that they are all falsy values, which means they all satisfy falsy conditions.
So, the 0, false and '' together form a sub-group. And on other hand, null & undefined form the second sub-group. Check the comparisons in the below image. null and undefined would equal. The other three would equal to each other. But, they all are treated as falsy conditions in JavaScript.
This is same as any object (like {}, arrays, etc.), non-empty string & Boolean true are all truthy conditions. But, they are all not equal.

Categories

Resources