How do I pass variables by reference in JavaScript?
I have three variables that I want to perform several operations to, so I want to put them in a for loop and perform the operations to each one.
Pseudocode:
myArray = new Array(var1, var2, var3);
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
makePretty(myArray[x]);
}
// Now do stuff to the updated variables
What is the best way to do this?
There is no "pass by reference" available in JavaScript. You can pass an object (which is to say, you can pass-by-value a reference to an object) and then have a function modify the object contents:
function alterObject(obj) {
obj.foo = "goodbye";
}
var myObj = { foo: "hello world" };
alterObject(myObj);
alert(myObj.foo); // "goodbye" instead of "hello world"
You can iterate over the properties of an array with a numeric index and modify each cell of the array, if you want.
var arr = [1, 2, 3];
for (var i = 0; i < arr.length; i++) {
arr[i] = arr[i] + 1;
}
It's important to note that "pass-by-reference" is a very specific term. It does not mean simply that it's possible to pass a reference to a modifiable object. Instead, it means that it's possible to pass a simple variable in such a way as to allow a function to modify that value in the calling context. So:
function swap(a, b) {
var tmp = a;
a = b;
b = tmp; //assign tmp to b
}
var x = 1, y = 2;
swap(x, y);
alert("x is " + x + ", y is " + y); // "x is 1, y is 2"
In a language like C++, it's possible to do that because that language does (sort-of) have pass-by-reference.
edit — this recently (March 2015) blew up on Reddit again over a blog post similar to mine mentioned below, though in this case about Java. It occurred to me while reading the back-and-forth in the Reddit comments that a big part of the confusion stems from the unfortunate collision involving the word "reference". The terminology "pass by reference" and "pass by value" predates the concept of having "objects" to work with in programming languages. It's really not about objects at all; it's about function parameters, and specifically how function parameters are "connected" (or not) to the calling environment. In particular, note that in a true pass-by-reference language — one that does involve objects — one would still have the ability to modify object contents, and it would look pretty much exactly like it does in JavaScript. However, one would also be able to modify the object reference in the calling environment, and that's the key thing that you can't do in JavaScript. A pass-by-reference language would pass not the reference itself, but a reference to the reference.
edit — here is a blog post on the topic. (Note the comment to that post that explains that C++ doesn't really have pass-by-reference. That is true. What C++ does have, however, is the ability to create references to plain variables, either explicitly at the point of function invocation to create a pointer, or implicitly when calling functions whose argument type signature calls for that to be done. Those are the key things JavaScript doesn't support.)
Primitive type variables like strings and numbers are always passed by value.
Arrays and Objects are passed by reference or by value based on these conditions:
if you are setting the value of an object or array it is Pass by Value.
object1 = { prop: "car" };
array1 = [1,2,3];
if you are changing a property value of an object or array then it is Pass by Reference.
object1.prop = "car";
array1[0] = 9;
Code
function passVar(obj1, obj2, num) {
obj1.prop = "laptop"; // will CHANGE original
obj2 = { prop: "computer" }; //will NOT affect original
num = num + 1; // will NOT affect original
}
var object1 = {
prop: "car"
};
var object2 = {
prop: "bike"
};
var number1 = 10;
passVar(object1, object2, number1);
console.log(object1); // output: Object { prop: "laptop" }
console.log(object2); // output: Object { prop: "bike" }
console.log(number1); // ouput: 10
Workaround to pass variable like by reference:
var a = 1;
inc = function(variableName) {
window[variableName] += 1;
};
inc('a');
alert(a); // 2
And yup, actually you can do it without access a global variable:
inc = (function () {
var variableName = 0;
var init = function () {
variableName += 1;
alert(variableName);
}
return init;
})();
inc();
Simple Object
function foo(x) {
// Function with other context
// Modify `x` property, increasing the value
x.value++;
}
// Initialize `ref` as object
var ref = {
// The `value` is inside `ref` variable object
// The initial value is `1`
value: 1
};
// Call function with object value
foo(ref);
// Call function with object value again
foo(ref);
console.log(ref.value); // Prints "3"
Custom Object
Object rvar
/**
* Aux function to create by-references variables
*/
function rvar(name, value, context) {
// If `this` is a `rvar` instance
if (this instanceof rvar) {
// Inside `rvar` context...
// Internal object value
this.value = value;
// Object `name` property
Object.defineProperty(this, 'name', { value: name });
// Object `hasValue` property
Object.defineProperty(this, 'hasValue', {
get: function () {
// If the internal object value is not `undefined`
return this.value !== undefined;
}
});
// Copy value constructor for type-check
if ((value !== undefined) && (value !== null)) {
this.constructor = value.constructor;
}
// To String method
this.toString = function () {
// Convert the internal value to string
return this.value + '';
};
} else {
// Outside `rvar` context...
// Initialice `rvar` object
if (!rvar.refs) {
rvar.refs = {};
}
// Initialize context if it is not defined
if (!context) {
context = this;
}
// Store variable
rvar.refs[name] = new rvar(name, value, context);
// Define variable at context
Object.defineProperty(context, name, {
// Getter
get: function () { return rvar.refs[name]; },
// Setter
set: function (v) { rvar.refs[name].value = v; },
// Can be overrided?
configurable: true
});
// Return object reference
return context[name];
}
}
// Variable Declaration
// Declare `test_ref` variable
rvar('test_ref_1');
// Assign value `5`
test_ref_1 = 5;
// Or
test_ref_1.value = 5;
// Or declare and initialize with `5`:
rvar('test_ref_2', 5);
// ------------------------------
// Test Code
// Test Function
function Fn1(v) { v.value = 100; }
// Test
function test(fn) { console.log(fn.toString()); console.info(fn()); }
// Declare
rvar('test_ref_number');
// First assign
test_ref_number = 5;
test(() => test_ref_number.value === 5);
// Call function with reference
Fn1(test_ref_number);
test(() => test_ref_number.value === 100);
// Increase value
test_ref_number++;
test(() => test_ref_number.value === 101);
// Update value
test_ref_number = test_ref_number - 10;
test(() => test_ref_number.value === 91);
Yet another approach to pass any (local, primitive) variables by reference is by wrapping variable with closure "on the fly" by eval. This also works with "use strict". (Note: be aware that eval is not friendly to JavaScript optimizers, and also missing quotes around variable name may cause unpredictive results)
"use strict"
// Return text that will reference variable by name (by capturing that variable to closure)
function byRef(varName){
return "({get value(){return "+varName+";}, set value(v){"+varName+"=v;}})";
}
// Demo
// Assign argument by reference
function modifyArgument(argRef, multiplier){
argRef.value = argRef.value * multiplier;
}
(function(){
var x = 10;
alert("x before: " + x);
modifyArgument(eval(byRef("x")), 42);
alert("x after: " + x);
})()
Live sample: https://jsfiddle.net/t3k4403w/
There's actually a pretty sollution:
function updateArray(context, targetName, callback) {
context[targetName] = context[targetName].map(callback);
}
var myArray = ['a', 'b', 'c'];
updateArray(this, 'myArray', item => {return '_' + item});
console.log(myArray); //(3) ["_a", "_b", "_c"]
I personally dislike the "pass by reference" functionality offered by various programming languages. Perhaps that's because I am just discovering the concepts of functional programming, but I always get goosebumps when I see functions that cause side effects (like manipulating parameters passed by reference). I personally strongly embrace the "single responsibility" principle.
IMHO, a function should return just one result/value using the return keyword. Instead of modifying a parameter/argument, I would just return the modified parameter/argument value and leave any desired reassignments up to the calling code.
But sometimes (hopefully very rarely), it is necessary to return two or more result values from the same function. In that case, I would opt to include all those resulting values in a single structure or object. Again, processing any reassignments should be up to the calling code.
Example:
Suppose passing parameters would be supported by using a special keyword like 'ref' in the argument list. My code might look something like this:
//The Function
function doSomething(ref value) {
value = "Bar";
}
//The Calling Code
var value = "Foo";
doSomething(value);
console.log(value); //Bar
Instead, I would actually prefer to do something like this:
//The Function
function doSomething(value) {
value = "Bar";
return value;
}
//The Calling Code:
var value = "Foo";
value = doSomething(value); //Reassignment
console.log(value); //Bar
When I would need to write a function that returns multiple values, I would not use parameters passed by reference either. So I would avoid code like this:
//The Function
function doSomething(ref value) {
value = "Bar";
//Do other work
var otherValue = "Something else";
return otherValue;
}
//The Calling Code
var value = "Foo";
var otherValue = doSomething(value);
console.log(value); //Bar
console.log(otherValue); //Something else
Instead, I would actually prefer to return both new values inside an object, like this:
//The Function
function doSomething(value) {
value = "Bar";
//Do more work
var otherValue = "Something else";
return {
value: value,
otherValue: otherValue
};
}
//The Calling Code:
var value = "Foo";
var result = doSomething(value);
value = result.value; //Reassignment
console.log(value); //Bar
console.log(result.otherValue);
These code examples are quite simplified, but it roughly demonstrates how I personally would handle such stuff. It helps me to keep various responsibilities in the correct place.
Happy coding. :)
I've been playing around with syntax to do this sort of thing, but it requires some helpers that are a little unusual. It starts with not using 'var' at all, but a simple 'DECLARE' helper that creates a local variable and defines a scope for it via an anonymous callback. By controlling how variables are declared, we can choose to wrap them into objects so that they can always be passed by reference, essentially. This is similar to one of the Eduardo Cuomo's answer above, but the solution below does not require using strings as variable identifiers. Here's some minimal code to show the concept.
function Wrapper(val){
this.VAL = val;
}
Wrapper.prototype.toString = function(){
return this.VAL.toString();
}
function DECLARE(val, callback){
var valWrapped = new Wrapper(val);
callback(valWrapped);
}
function INC(ref){
if(ref && ref.hasOwnProperty('VAL')){
ref.VAL++;
}
else{
ref++;//or maybe throw here instead?
}
return ref;
}
DECLARE(5, function(five){ //consider this line the same as 'let five = 5'
console.log("five is now " + five);
INC(five); // increment
console.log("five is incremented to " + five);
});
Actually it is really easy. The problem is understanding that once passing classic arguments, you are scoped into another, read-only zone.
The solution is to pass the arguments using JavaScript's object-oriented design. It is the same as putting the arguments in a global/scoped variable, but better...
function action(){
/* Process this.arg, modification allowed */
}
action.arg = [["empty-array"], "some string", 0x100, "last argument"];
action();
You can also promise stuff up to enjoy the well-known chain:
Here is the whole thing, with promise-like structure
function action(){
/* Process this.arg, modification allowed */
this.arg = ["a", "b"];
}
action.setArg = function(){this.arg = arguments; return this;}
action.setArg(["empty-array"], "some string", 0x100, "last argument")()
Or better yet...
action.setArg(["empty-array"],"some string",0x100,"last argument").call()
JavaScript can modify array items inside a function (it is passed as a reference to the object/array).
function makeAllPretty(items) {
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
items[x] = makePretty(items[x]);
}
}
myArray = new Array(var1, var2, var3);
makeAllPretty(myArray);
Here's another example:
function inc(items) {
for (let i=0; i < items.length; i++) {
items[i]++;
}
}
let values = [1,2,3];
inc(values);
console.log(values);
// Prints [2,3,4]
Putting aside the pass-by-reference discussion, those still looking for a solution to the stated question could use:
const myArray = new Array(var1, var2, var3);
myArray.forEach(var => var = makePretty(var));
As we don't have javascript pass by reference functionality, the only way to do this is to make the function return the value and let the caller assign it:
So
"makePretty(myArray[x]);"
should be
"myArray[x] = makePretty(myArray[x]);"
This is in case you need assignment inside the function, if only mutation is necessary, then passing the object and mutating it should be enough
I know exactly what you mean. The same thing in Swift will be no problem. The bottom line is use let, not var.
The fact that primitives are passed by value, but the fact that the value of var i at the point of iteration is not copied into the anonymous function is quite surprising to say the least.
for (let i = 0; i < boxArray.length; i++) {
boxArray[i].onclick = function() { console.log(i) }; // Correctly prints the index
}
If you want to pass variables by reference, a better way to do that is by passing your arguments in an object and then start changing the value by using window:
window["varName"] = value;
Example:
// Variables with first values
var x = 1, b = 0, f = 15;
function asByReference (
argumentHasVars = {}, // Passing variables in object
newValues = []) // Pass new values in array
{
let VarsNames = [];
// Getting variables names one by one
for(let name in argumentHasVars)
VarsNames.push(name);
// Accessing variables by using window one by one
for(let i = 0; i < VarsNames.length; i += 1)
window[VarsNames[i]] = newValues[i]; // Set new value
}
console.log(x, b, f); // Output with first values
asByReference({x, b, f}, [5, 5, 5]); // Passing as by reference
console.log(x, b, f); // Output after changing values
I like to solve the lack of by reference in JavaScript like this example shows.
The essence of this is that you don't try to create a by reference. You instead use the return functionality and make it able to return multiple values. So there isn't any need to insert your values in arrays or objects.
var x = "First";
var y = "Second";
var z = "Third";
log('Before call:',x,y,z);
with (myFunc(x, y, z)) {x = a; y = b; z = c;} // <-- Way to call it
log('After call :',x,y,z);
function myFunc(a, b, c) {
a = "Changed first parameter";
b = "Changed second parameter";
c = "Changed third parameter";
return {a:a, b:b, c:c}; // <-- Return multiple values
}
function log(txt,p1,p2,p3) {
document.getElementById('msg').innerHTML += txt + '<br>' + p1 + '<br>' + p2 + '<br>' + p3 + '<br><br>'
}
<div id='msg'></div>
Using Destructuring here is an example where I have 3 variables, and on each I do the multiple operations:
If value is less than 0 then change to 0,
If greater than 255 then change to 1,
Otherwise dived the number by 255 to convert from a range of 0-255 to a range of 0-1.
let a = 52.4, b = -25.1, c = 534.5;
[a, b, c] = [a, b, c].map(n => n < 0 ? 0 : n > 255 ? 1 : n / 255);
console.log(a, b, c); // 0.20549019607843136 0 1
It the code below I am not certain as to which way is better to write the code. The NewVar is a variable which I think can become which ever value is returned from the functions that are inside of the quotes. Is there a better way of writting this.
var NewVar = {
myVar: function() {
return AnotherValue;
},
isAny: function() {
return SomeValue;
}
};
Can you make the like this: Would the following work the same.
var NewVar;
function myFunc() {
//code here
}
function myFunc2() {
//code here
}
NewVar = myFunc();
or
NewVar = myFunc2();
The NewVar is a variable which I think can become which ever value is returned from the functions
No. NewVar is a variable that gets assigned an object literal that contains these two functions as properties. You can invoke them as methods (without changing NewVar):
console.log(NewVar.isAny()); // SomeValue
console.log(NewVar.myVar()); // AnotherValue
Your second snippet is totally different from that.
Not sure if I understand your question.
In your first snippet NewVar is a object which contains two methods (myVar and isAny) so I can do something like:
var foo = NewVar.myVar();
In the second snippet you are declaring two functions and then you assign to NewVar the return value of one of these functions.
Nope, these two examples are different. In the first example, you can call myVar and isAny as a member of NewVar:
NewVar.myVar(); // returns AnotherValue
NewVar.isAny(); // returns SomeValue
But in the second example, you assign the return value of the functions to the variable NewVar. For example, look at this example:
var myObject = {
addUp: function(a, b) {
return a + b;
}
};
myObject.addUp(1, 2); // returns 3
var myVar = myObject.addUp(1, 2); // myVar holds 3, because myObject.addUp(1,2) returns 3
In JavaScript I want to make a function which takes an argument and in this function a variable will be created whose name will be the value of the argument.
For example if user pass "jack" in the argument then in function I want a variable whose name is jack like:
var jack = "";
Typically, you won't need to do this. As Bergi pointed out, a local variable would usually suffice. However, in the event that you do need to use this technique, you could give the property to the window object:
function setVariable(userPassedString);
window[userPassedString] = "";
}
Don't use eval for this, ever, no matter how tempted you are to.
Creating local variables via a function is typically a bad idea. You could accomplish something similar by passing a local object around, e.g.
function setVar(o, name, value)
{
o[name] = value;
}
Then, inside your local scope:
var o = {};
setVar(o, 'jack', 123);
// o.jack contains 123
In this way, if the need would really arise (this is rarely required) to introduce global variables in this manner, you can always call the function like this:
setVar(window, 'jack', 123);
// now window.jack == jack == 123
The best that you can do about is to create an object and assigns the variable name to the keys of the created object like this -
var myvar={};
function create(var){
myvar[var]='values';
}
You could always use a dictionary. Here is a very simple stub:
function Dictionary(){
var container = {};
this.set = function(key, value){
container[key] = value;
}
this.get = function(key){
return container[key];
}
}
var vars = new Dictionary();
vars.set('foo', 'foo rocks');
vars.set('bar', 'bar rocks too');
console.log(vars.get('foo'));
console.log(vars.get('bar'));
To prevent using the window global array, you can create a local array which holds your variables.
function doSomething(var) {
var vars = {};
vars[var] = value;
}
I have a name of a method as a string in javascript variable and I would like to get a result of its call to variable:
var myMethod = "methodToBeCalled";
var result;
eval("result = "+myMethod+"();")
This works and there are no problems. But this code is inacceptable for Google Closure Compiler. How can I modify it to work with it? Thanks!
EDIT:
It seems the proposed solutions does not work when the name of the method is inside of some object, for instance:
var myFunction = function () { return "foo!" }
var myObject = {
itsMethod: function() { return "foo!" }
};
...
var fstMethodToCall = "myFunction"
var sndMethodToCall = "myObject.itsMethod";
...
window[fstMethodToCall](); // foo!
window[sndMethodToCall](); // undefined
Assuming you are not in a nested scope of some kind, try:
var result = window['methodToBeCalled']();
or
var myMethod = 'methodToBeCalled';
var result = window[myMethod]();
To execute an arbitrary function of arbitrary depth based on a string specification, while not executing eval:
var SomeObject = {
level1: {
level2: {
someFunc: function () {
console.log('hello');
}
}
}
};
var target = 'SomeObject.level1.level2.someFunc';
var obj;
var split = target.split('.');
for (var i = 0; i < split.length; i++) {
obj = (obj || window)[split[i]];
}
obj();
You can use indexer notation:
result = window[myMethod]();
The Closure Compiler doesn't prohibit 'eval', you can continue to use it if you find it convenient but you have to understand that the compiler doesn't try to understand what is going on in your eval statement and assumes your eval is "safe":
function f(x, y) {
alert(eval("y")); // fails: hidden reference to "y"
alert(eval('"'+x+'"')); // might be valid
}
f('me', 'you');
When the compiler optimizes this function it tries to remove "y" and renamed the remain parameter. This will the first eval to fail as "y" no longer exists. The second eval would correct display the alert "me".
So with SIMPLE optimizations, you can use eval to reference global variables and object properties as these are not renamed or removed (but not local ones).
With ADVANCED optimizations, it is a little trickier, as the compiler tries to remove and rename global as well as local variables. So you need to export the values you need to have preserved. This is also true if you use a string to try to reference a name by other means:
var methodName = "myMethod";
(window[methodName])()
or
var methodName = "myMethod";
eval(methodName+"()")
the compiler simply doesn't try to determine if "methodName" is a reference to a function. Here is a simply example of an ADVANCED mode export:
window['myMethod'] = myMethod;
The assignment does two things: it preserves the myMethod function if it would otherwise be removed and it gives it a fixed name by assigning it to a property using a string. If you do need to reference local values, you need to be a little trickier and use a Function constructor. A definition of "f" from my first example, that can eval locals:
var f = new Function("x", "y", "alert(eval('y')); alert(eval('\"' + x + '\"'));");
You may find this page useful:
https://developers.google.com/closure/compiler/docs/limitations
In javascript, can I declare properties of an object to be constant?
Here is an example object:
var XU = {
Cc: Components.classes
};
or
function aXU()
{
this.Cc = Components.classes;
}
var XU = new aXU();
just putting "const" in front of it, doesn't work.
I know, that i could declare a function with the same name (which would be also kind of constant), but I am looking for a simpler and more readable way.
Browser-compatibility is not important. It just has to work on the Mozilla platform, as it is for a Xulrunner project.
Thank you a lot!
Cheers.
Since you only need it to work on the Mozilla platform, you can define a getter with no corresponding setter. The best way to do it is different for each of your examples.
In an object literal, there is a special syntax for it:
var XU = {
get Cc() { return Components.classes; }
};
In your second exampe, you can use the __defineGetter__ method to add it to either aXU.prototype or to this inside the constructor. Which way is better depends on whether the value is different for each instance of the object.
Edit: To help with the readability problem, you could write a function like defineConstant to hide the uglyness.
function defineConstant(obj, name, value) {
obj.__defineGetter__(name, function() { return value; });
}
Also, if you want to throw an error if you try to assign to it, you can define a setter that just throws an Error object:
function defineConstant(obj, name, value) {
obj.__defineGetter__(name, function() { return value; });
obj.__defineSetter__(name, function() {
throw new Error(name + " is a constant");
});
}
If all the instances have the same value:
function aXU() {
}
defineConstant(aXU.prototype, "Cc", Components.classes);
or, if the value depends on the object:
function aXU() {
// Cc_value could be different for each instance
var Cc_value = return Components.classes;
defineConstant(this, "Cc", Cc_value);
}
For more details, you can read the Mozilla Developer Center documentation.
UPDATE: This works!
const FIXED_VALUE = 37;
FIXED_VALUE = 43;
alert(FIXED_VALUE);//alerts "37"
Technically I think the answer is no (Until const makes it into the wild). You can provide wrappers and such, but when it all boils down to it, you can redefine/reset the variable value at any time.
The closest I think you'll get is defining a "constant" on a "class".
// Create the class
function TheClass(){
}
// Create the class constant
TheClass.THE_CONSTANT = 42;
// Create a function for TheClass to alert the constant
TheClass.prototype.alertConstant = function(){
// You can’t access it using this.THE_CONSTANT;
alert(TheClass.THE_CONSTANT);
}
// Alert the class constant from outside
alert(TheClass.THE_CONSTANT);
// Alert the class constant from inside
var theObject = new TheClass();
theObject.alertConstant();
However, the "class" TheClass itself can be redefined later on
If you are using Javascript 1.5 (in XUL for example), you can use the const keyword instead of var to declare a constant.
The problem is that it cannot be a property of an object. You can try to limit its scope by namespacing it inside a function.
(function(){
const XUL_CC = Components.classes;
// Use the constant here
})()
To define a constant property, you could set the writable attribute to false in the defineProperty method as shown below:
Code snippet:
var XU = {};
Object.defineProperty(XU, 'Cc', {
value: 5,
writable: false
});
XU.Cc = 345;
console.log(XU.Cc);
Result:
5 # The value hasn't changed