Related
Is it possible to seed the random number generator (Math.random) in JavaScript?
No, it is not possible to seed Math.random(). The ECMAScript specification is intentionally vague on the subject, providing no means for seeding nor require that browsers even use the same algorithm. So such a function must be externally provided, which thankfully isn't too difficult.
I've implemented a number of good, short and fast Pseudorandom number generator (PRNG) functions in plain JavaScript. All of them can be seeded and provide high quality numbers. These are not intended for security purposes--if you need a seedable CSPRNG, look into ISAAC.
First of all, take care to initialize your PRNGs properly. To keep things simple, the generators below have no built-in seed generating procedure, but accept one or more 32-bit numbers as the initial seed state of the PRNG. Similar or sparse seeds (e.g. a simple seed of 1 and 2) have low entropy, and can cause correlations or other randomness quality issues, sometimes resulting in the output having similar properties (such as randomly generated levels being similar). To avoid this, it is best practice to initialize PRNGs with a well-distributed, high entropy seed and/or advancing past the first 15 or so numbers.
There are many ways to do this, but here are two methods. Firstly, hash functions are very good at generating seeds from short strings. A good hash function will generate very different results even when two strings are similar, so you don't have to put much thought into the string. Here's an example hash function:
function cyrb128(str) {
let h1 = 1779033703, h2 = 3144134277,
h3 = 1013904242, h4 = 2773480762;
for (let i = 0, k; i < str.length; i++) {
k = str.charCodeAt(i);
h1 = h2 ^ Math.imul(h1 ^ k, 597399067);
h2 = h3 ^ Math.imul(h2 ^ k, 2869860233);
h3 = h4 ^ Math.imul(h3 ^ k, 951274213);
h4 = h1 ^ Math.imul(h4 ^ k, 2716044179);
}
h1 = Math.imul(h3 ^ (h1 >>> 18), 597399067);
h2 = Math.imul(h4 ^ (h2 >>> 22), 2869860233);
h3 = Math.imul(h1 ^ (h3 >>> 17), 951274213);
h4 = Math.imul(h2 ^ (h4 >>> 19), 2716044179);
return [(h1^h2^h3^h4)>>>0, (h2^h1)>>>0, (h3^h1)>>>0, (h4^h1)>>>0];
}
Calling cyrb128 will produce a 128-bit hash value from a string which can be used to seed a PRNG. Here's how you might use it:
// Create cyrb128 state:
var seed = cyrb128("apples");
// Four 32-bit component hashes provide the seed for sfc32.
var rand = sfc32(seed[0], seed[1], seed[2], seed[3]);
// Only one 32-bit component hash is needed for mulberry32.
var rand = mulberry32(seed[0]);
// Obtain sequential random numbers like so:
rand();
rand();
Note: If you want a slightly more robust 128-bit hash, consider MurmurHash3_x86_128, it's more thorough, but intended for use with large arrays.
Alternatively, simply choose some dummy data to pad the seed with, and advance the generator beforehand a few times (12-20 iterations) to mix the initial state thoroughly. This has the benefit of being simpler, and is often used in reference implementations of PRNGs, but it does limit the number of initial states:
var seed = 1337 ^ 0xDEADBEEF; // 32-bit seed with optional XOR value
// Pad seed with Phi, Pi and E.
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
var rand = sfc32(0x9E3779B9, 0x243F6A88, 0xB7E15162, seed);
for (var i = 0; i < 15; i++) rand();
Note: the output of these PRNG functions produce a positive 32-bit number (0 to 232-1) which is then converted to a floating-point number between 0-1 (0 inclusive, 1 exclusive) equivalent to Math.random(), if you want random numbers of a specific range, read this article on MDN. If you only want the raw bits, simply remove the final division operation.
JavaScript numbers can only represent whole integers up to 53-bit resolution. And when using bitwise operations, this is reduced to 32. Modern PRNGs in other languages often use 64-bit operations, which require shims when porting to JS that can drastically reduce performance. The algorithms here only use 32-bit operations, as it is directly compatible with JS.
Now, onward to the the generators. (I maintain the full list with references and license info here)
sfc32 (Simple Fast Counter)
sfc32 is part of the PractRand random number testing suite (which it passes of course). sfc32 has a 128-bit state and is very fast in JS.
function sfc32(a, b, c, d) {
return function() {
a >>>= 0; b >>>= 0; c >>>= 0; d >>>= 0;
var t = (a + b) | 0;
a = b ^ b >>> 9;
b = c + (c << 3) | 0;
c = (c << 21 | c >>> 11);
d = d + 1 | 0;
t = t + d | 0;
c = c + t | 0;
return (t >>> 0) / 4294967296;
}
}
You may wonder what the | 0 and >>>= 0 are for. These are essentially 32-bit integer casts, used for performance optimizations. Number in JS are basically floats, but during bitwise operations, they switch into a 32-bit integer mode. This mode is processed faster by JS interpreters, but any multiplication or addition will cause it to switch back to a float, resulting in a performance hit.
Mulberry32
Mulberry32 is a simple generator with a 32-bit state, but is extremely fast and has good quality randomness (author states it passes all tests of gjrand testing suite and has a full 232 period, but I haven't verified).
function mulberry32(a) {
return function() {
var t = a += 0x6D2B79F5;
t = Math.imul(t ^ t >>> 15, t | 1);
t ^= t + Math.imul(t ^ t >>> 7, t | 61);
return ((t ^ t >>> 14) >>> 0) / 4294967296;
}
}
I would recommend this if you just need a simple but decent PRNG and don't need billions of random numbers (see Birthday problem).
xoshiro128**
As of May 2018, xoshiro128** is the new member of the Xorshift family, by Vigna & Blackman (professor Vigna was also responsible for the Xorshift128+ algorithm powering most Math.random implementations under the hood). It is the fastest generator that offers a 128-bit state.
function xoshiro128ss(a, b, c, d) {
return function() {
var t = b << 9, r = a * 5; r = (r << 7 | r >>> 25) * 9;
c ^= a; d ^= b;
b ^= c; a ^= d; c ^= t;
d = d << 11 | d >>> 21;
return (r >>> 0) / 4294967296;
}
}
The authors claim it passes randomness tests well (albeit with caveats). Other researchers have pointed out that it fails some tests in TestU01 (particularly LinearComp and BinaryRank). In practice, it should not cause issues when floats are used (such as in these implementations), but may cause issues if relying on the raw lowest order bit.
JSF (Jenkins' Small Fast)
This is JSF or 'smallprng' by Bob Jenkins (2007), who also made ISAAC and SpookyHash. It passes PractRand tests and should be quite fast, although not as fast as sfc32.
function jsf32(a, b, c, d) {
return function() {
a |= 0; b |= 0; c |= 0; d |= 0;
var t = a - (b << 27 | b >>> 5) | 0;
a = b ^ (c << 17 | c >>> 15);
b = c + d | 0;
c = d + t | 0;
d = a + t | 0;
return (d >>> 0) / 4294967296;
}
}
No, it is not possible to seed Math.random(), but it's fairly easy to write your own generator, or better yet, use an existing one.
Check out: this related question.
Also, see David Bau's blog for more information on seeding.
NOTE: Despite (or rather, because of) succinctness and apparent elegance, this algorithm is by no means a high-quality one in terms of randomness. Look for e.g. those listed in this answer for better results.
(Originally adapted from a clever idea presented in a comment to another answer.)
var seed = 1;
function random() {
var x = Math.sin(seed++) * 10000;
return x - Math.floor(x);
}
You can set seed to be any number, just avoid zero (or any multiple of Math.PI).
The elegance of this solution, in my opinion, comes from the lack of any "magic" numbers (besides 10000, which represents about the minimum amount of digits you must throw away to avoid odd patterns - see results with values 10, 100, 1000). Brevity is also nice.
It's a bit slower than Math.random() (by a factor of 2 or 3), but I believe it's about as fast as any other solution written in JavaScript.
No, but here's a simple pseudorandom generator, an implementation of Multiply-with-carry I adapted from Wikipedia (has been removed since):
var m_w = 123456789;
var m_z = 987654321;
var mask = 0xffffffff;
// Takes any integer
function seed(i) {
m_w = (123456789 + i) & mask;
m_z = (987654321 - i) & mask;
}
// Returns number between 0 (inclusive) and 1.0 (exclusive),
// just like Math.random().
function random()
{
m_z = (36969 * (m_z & 65535) + (m_z >> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
Antti Sykäri's algorithm is nice and short. I initially made a variation that replaced JavaScript's Math.random when you call Math.seed(s), but then Jason commented that returning the function would be better:
Math.seed = function(s) {
return function() {
s = Math.sin(s) * 10000; return s - Math.floor(s);
};
};
// usage:
var random1 = Math.seed(42);
var random2 = Math.seed(random1());
Math.random = Math.seed(random2());
This gives you another functionality that JavaScript doesn't have: multiple independent random generators. That is especially important if you want to have multiple repeatable simulations running at the same time.
Please see Pierre L'Ecuyer's work going back to the late 1980s and early 1990s. There are others as well. Creating a (pseudo) random number generator on your own, if you are not an expert, is pretty dangerous, because there is a high likelihood of either the results not being statistically random or in having a small period. Pierre (and others) have put together some good (pseudo) random number generators that are easy to implement. I use one of his LFSR generators.
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/handstat.pdf
Combining some of the previous answers, this is the seedable random function you are looking for:
Math.seed = function(s) {
var mask = 0xffffffff;
var m_w = (123456789 + s) & mask;
var m_z = (987654321 - s) & mask;
return function() {
m_z = (36969 * (m_z & 65535) + (m_z >>> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >>> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
}
var myRandomFunction = Math.seed(1234);
var randomNumber = myRandomFunction();
It's not possible to seed the builtin Math.random function, but it is possible to implement a high quality RNG in Javascript with very little code.
Javascript numbers are 64-bit floating point precision, which can represent all positive integers less than 2^53. This puts a hard limit to our arithmetic, but within these limits you can still pick parameters for a high quality Lehmer / LCG random number generator.
function RNG(seed) {
var m = 2**35 - 31
var a = 185852
var s = seed % m
return function () {
return (s = s * a % m) / m
}
}
Math.random = RNG(Date.now())
If you want even higher quality random numbers, at the cost of being ~10 times slower, you can use BigInt for the arithmetic and pick parameters where m is just able to fit in a double.
function RNG(seed) {
var m_as_number = 2**53 - 111
var m = 2n**53n - 111n
var a = 5667072534355537n
var s = BigInt(seed) % m
return function () {
return Number(s = s * a % m) / m_as_number
}
}
See this paper by Pierre l'Ecuyer for the parameters used in the above implementations:
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
And whatever you do, avoid all the other answers here that use Math.sin!
To write your own pseudo random generator is quite simple.
The suggestion of Dave Scotese is useful but, as pointed out by others, it is not quite uniformly distributed.
However, it is not because of the integer arguments of sin. It's simply because of the range of sin, which happens to be a one dimensional projection of a circle. If you would take the angle of the circle instead it would be uniform.
So instead of sin(x) use arg(exp(i * x)) / (2 * PI).
If you don't like the linear order, mix it a bit up with xor. The actual factor doesn't matter that much either.
To generate n pseudo random numbers one could use the code:
function psora(k, n) {
var r = Math.PI * (k ^ n)
return r - Math.floor(r)
}
n = 42; for(k = 0; k < n; k++) console.log(psora(k, n))
Please also note that you cannot use pseudo random sequences when real entropy is needed.
Many people who need a seedable random-number generator in Javascript these days are using David Bau's seedrandom module.
Math.random no, but the ran library solves this. It has almost all distributions you can imagine and supports seeded random number generation. Example:
ran.core.seed(0)
myDist = new ran.Dist.Uniform(0, 1)
samples = myDist.sample(1000)
Here's the adopted version of Jenkins hash, borrowed from here
export function createDeterministicRandom(): () => number {
let seed = 0x2F6E2B1;
return function() {
// Robert Jenkins’ 32 bit integer hash function
seed = ((seed + 0x7ED55D16) + (seed << 12)) & 0xFFFFFFFF;
seed = ((seed ^ 0xC761C23C) ^ (seed >>> 19)) & 0xFFFFFFFF;
seed = ((seed + 0x165667B1) + (seed << 5)) & 0xFFFFFFFF;
seed = ((seed + 0xD3A2646C) ^ (seed << 9)) & 0xFFFFFFFF;
seed = ((seed + 0xFD7046C5) + (seed << 3)) & 0xFFFFFFFF;
seed = ((seed ^ 0xB55A4F09) ^ (seed >>> 16)) & 0xFFFFFFFF;
return (seed & 0xFFFFFFF) / 0x10000000;
};
}
You can use it like this:
const deterministicRandom = createDeterministicRandom()
deterministicRandom()
// => 0.9872818551957607
deterministicRandom()
// => 0.34880331158638
No, like they said it is not possible to seed Math.random()
but you can install external package which make provision for that. i used these package which can be install using these command
npm i random-seed
the example is gotten from the package documentation.
var seed = 'Hello World',
rand1 = require('random-seed').create(seed),
rand2 = require('random-seed').create(seed);
console.log(rand1(100), rand2(100));
follow the link for documentation https://www.npmjs.com/package/random-seed
SIN(id + seed) is a very interesting replacement for RANDOM functions that cannot be seeded like SQLite:
https://stackoverflow.com/a/75089040/7776828
Most of the answers here produce biased results. So here's a tested function based on seedrandom library from github:
!function(f,a,c){var s,l=256,p="random",d=c.pow(l,6),g=c.pow(2,52),y=2*g,h=l-1;function n(n,t,r){function e(){for(var n=u.g(6),t=d,r=0;n<g;)n=(n+r)*l,t*=l,r=u.g(1);for(;y<=n;)n/=2,t/=2,r>>>=1;return(n+r)/t}var o=[],i=j(function n(t,r){var e,o=[],i=typeof t;if(r&&"object"==i)for(e in t)try{o.push(n(t[e],r-1))}catch(n){}return o.length?o:"string"==i?t:t+"\0"}((t=1==t?{entropy:!0}:t||{}).entropy?[n,S(a)]:null==n?function(){try{var n;return s&&(n=s.randomBytes)?n=n(l):(n=new Uint8Array(l),(f.crypto||f.msCrypto).getRandomValues(n)),S(n)}catch(n){var t=f.navigator,r=t&&t.plugins;return[+new Date,f,r,f.screen,S(a)]}}():n,3),o),u=new m(o);return e.int32=function(){return 0|u.g(4)},e.quick=function(){return u.g(4)/4294967296},e.double=e,j(S(u.S),a),(t.pass||r||function(n,t,r,e){return e&&(e.S&&v(e,u),n.state=function(){return v(u,{})}),r?(c[p]=n,t):n})(e,i,"global"in t?t.global:this==c,t.state)}function m(n){var t,r=n.length,u=this,e=0,o=u.i=u.j=0,i=u.S=[];for(r||(n=[r++]);e<l;)i[e]=e++;for(e=0;e<l;e++)i[e]=i[o=h&o+n[e%r]+(t=i[e])],i[o]=t;(u.g=function(n){for(var t,r=0,e=u.i,o=u.j,i=u.S;n--;)t=i[e=h&e+1],r=r*l+i[h&(i[e]=i[o=h&o+t])+(i[o]=t)];return u.i=e,u.j=o,r})(l)}function v(n,t){return t.i=n.i,t.j=n.j,t.S=n.S.slice(),t}function j(n,t){for(var r,e=n+"",o=0;o<e.length;)t[h&o]=h&(r^=19*t[h&o])+e.charCodeAt(o++);return S(t)}function S(n){return String.fromCharCode.apply(0,n)}if(j(c.random(),a),"object"==typeof module&&module.exports){module.exports=n;try{s=require("crypto")}catch(n){}}else"function"==typeof define&&define.amd?define(function(){return n}):c["seed"+p]=n}("undefined"!=typeof self?self:this,[],Math);
function randIntWithSeed(seed, max=1) {
/* returns a random number between [0,max] including zero and max
seed can be either string or integer */
return Math.round(new Math.seedrandom('seed' + seed)()) * max
}
test for true randomness of this code: https://es6console.com/kkjkgur2/
There are plenty of good answers here but I had a similar issue with the additional requirement that I would like portability between Java's random number generator and whatever I ended up using in JavaScript.
I found the java-random package
These two pieces of code had identical output assuming the seed is the same:
Java:
Random randomGenerator = new Random(seed);
int randomInt;
for (int i=0; i<10; i++) {
randomInt = randomGenerator.nextInt(50);
System.out.println(randomInt);
}
JavaScript:
let Random = require('java-random');
let rng = new Random(seed);
for (let i=0; i<10; i++) {
let val = rng.nextInt(50);
console.log(val);
}
Do what bryc suggests ... but before you use his cyrb128 hash function to initialise, note that the return statement throws away 32 bits of entropy. Exclusive-or the four values together = 0. You should probably make the first element (h2^h3^h4) >>> 0.
I have written a function that returns a seeded random number, it uses Math.sin to have a long random number and uses the seed to pick numbers from that.
Use :
seedRandom("k9]:2#", 15)
it will return your seeded number
the first parameter is any string value ; your seed.
the second parameter is how many digits will return.
function seedRandom(inputSeed, lengthOfNumber){
var output = "";
var seed = inputSeed.toString();
var newSeed = 0;
var characterArray = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','y','x','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','U','R','S','T','U','V','W','X','Y','Z','!','#','#','$','%','^','&','*','(',')',' ','[','{',']','}','|',';',':',"'",',','<','.','>','/','?','`','~','-','_','=','+'];
var longNum = "";
var counter = 0;
var accumulator = 0;
for(var i = 0; i < seed.length; i++){
var a = seed.length - (i+1);
for(var x = 0; x < characterArray.length; x++){
var tempX = x.toString();
var lastDigit = tempX.charAt(tempX.length-1);
var xOutput = parseInt(lastDigit);
addToSeed(characterArray[x], xOutput, a, i);
}
}
function addToSeed(character, value, a, i){
if(seed.charAt(i) === character){newSeed = newSeed + value * Math.pow(10, a)}
}
newSeed = newSeed.toString();
var copy = newSeed;
for(var i=0; i<lengthOfNumber*9; i++){
newSeed = newSeed + copy;
var x = Math.sin(20982+(i)) * 10000;
var y = Math.floor((x - Math.floor(x))*10);
longNum = longNum + y.toString()
}
for(var i=0; i<lengthOfNumber; i++){
output = output + longNum.charAt(accumulator);
counter++;
accumulator = accumulator + parseInt(newSeed.charAt(counter));
}
return(output)
}
A simple approach for a fixed seed:
function fixedrandom(p){
const seed = 43758.5453123;
return (Math.abs(Math.sin(p)) * seed)%1;
}
In PHP, there is function srand(seed) which generate fixed random value for particular seed.
But, in JS, there is no such inbuilt function.
However, we can write simple and short function.
Step 1: Choose some Seed (Fix Number).
var seed = 100;
Number should be Positive Integer and greater than 1, further explanation in Step 2.
Step 2: Perform Math.sin() function on Seed, it will give sin value of that number. Store this value in variable x.
var x;
x = Math.sin(seed); // Will Return Fractional Value between -1 & 1 (ex. 0.4059..)
sin() method returns a Fractional value between -1 and 1.And we don't need Negative value, therefore, in first step choose number greater than 1.
Step 3: Returned Value is a Fractional value between -1 and 1. So mulitply this value with 10 for making it more than 1.
x = x * 10; // 10 for Single Digit Number
Step 4: Multiply the value with 10 for additional digits
x = x * 10; // Will Give value between 10 and 99 OR
x = x * 100; // Will Give value between 100 and 999
Multiply as per requirement of digits.
The result will be in decimal.
Step 5: Remove value after Decimal Point by Math's Round (Math.round()) Method.
x = Math.round(x); // This will give Integer Value.
Step 6: Turn Negative Values into Positive (if any) by Math.abs method
x = Math.abs(x); // Convert Negative Values into Positive(if any)
Explanation End.Final Code
var seed = 111; // Any Number greater than 1
var digit = 10 // 1 => single digit, 10 => 2 Digits, 100 => 3 Digits and so. (Multiple of 10)
var x; // Initialize the Value to store the result
x = Math.sin(seed); // Perform Mathematical Sin Method on Seed.
x = x * 10; // Convert that number into integer
x = x * digit; // Number of Digits to be included
x = Math.round(x); // Remove Decimals
x = Math.abs(x); // Convert Negative Number into Positive
Clean and Optimized Functional Code
function random_seed(seed, digit = 1) {
var x = Math.abs(Math.round(Math.sin(seed++) * 10 * digit));
return x;
}
Then Call this function using
random_seed(any_number, number_of_digits)any_number is must and should be greater than 1.number_of_digits is optional parameter and if nothing passed, 1 Digit will return.
random_seed(555); // 1 Digit
random_seed(234, 1); // 1 Digit
random_seed(7895656, 1000); // 4 Digit
For a number between 0 and 100.
Number.parseInt(Math.floor(Math.random() * 100))
I just took a coding test online and this one question really bothered me. My solution was correct but was rejected for being unoptimized. The question is as following:
Write a function combineTheGivenNumber taking two arguments:
numArray: number[]
num: a number
The function should check all the concatenation pairs that can result in making a number equal to num and return their count.
E.g. if numArray = [1, 212, 12, 12] & num = 1212 then we will have return value of 3 from combineTheGivenNumber
The pairs are as following:
numArray[0]+numArray[1]
numArray[2]+numArray[3]
numArray[3]+numArray[2]
The function I wrote for this purpose is as following:
function combineTheGivenNumber(numArray, num) {
//convert all numbers to strings for easy concatenation
numArray = numArray.map(e => e+'');
//also convert the `hay` to string for easy comparison
num = num+'';
let pairCounts = 0;
// itereate over the array to get pairs
numArray.forEach((e,i) => {
numArray.forEach((f,j) => {
if(i!==j && num === (e+f)) {
pairCounts++;
}
});
});
return pairCounts;
}
console.log('Test 1: ', combineTheGivenNumber([1,212,12,12],1212));
console.log('Test 2: ', combineTheGivenNumber([4,21,42,1],421));
From my experience, I know conversion of number to string is slow in JS, but I am not sure whether my approach is wrong/lack of knowledge or does the tester is ignorant of this fact. Can anyone suggest further optimization of the code snipped?
Elimination of string to number to string will be a significant speed boost but I am not sure how to check for concatenated numbers otherwise.
Elimination of string to number to string will be a significant speed boost
No, it won't.
Firstly, you're not converting strings to numbers anywhere, but more importantly the exercise asks for concatenation so working with strings is exactly what you should do. No idea why they're even passing numbers. You're doing fine already by doing the conversion only once for each number input, not every time your form a pair. And last but not least, avoiding the conversion will not be a significant improvement.
To get a significant improvement, you should use a better algorithm. #derpirscher is correct in his comment: "[It's] the nested loop checking every possible combination which hits the time limit. For instance for your example, when the outer loop points at 212 you don't need to do any checks, because regardless, whatever you concatenate to 212, it can never result in 1212".
So use
let pairCounts = 0;
numArray.forEach((e,i) => {
if (num.startsWith(e)) {
//^^^^^^^^^^^^^^^^^^^^^^
numArray.forEach((f,j) => {
if (i !== j && num === e+f) {
pairCounts++;
}
});
}
});
You might do the same with suffixes, but it becomes more complicated to rule out concatenation to oneself there.
Optimising further, you can even achieve a linear complexity solution by putting the strings in a lookup structure, then when finding a viable prefix just checking whether the missing part is an available suffix:
function combineTheGivenNumber(numArray, num) {
const strings = new Map();
for (const num of numArray) {
const str = String(num);
strings.set(str, 1 + (strings.get(str) ?? 0));
}
const whole = String(num);
let pairCounts = 0;
for (const [prefix, pCount] of strings) {
if (!whole.startsWith(prefix))
continue;
const suffix = whole.slice(prefix.length);
if (strings.has(suffix)) {
let sCount = strings.get(suffix);
if (suffix == prefix) sCount--; // no self-concatenation
pairCounts += pCount*sCount;
}
}
return pairCounts;
}
(the proper handling of duplicates is a bit difficile)
I like your approach of going to strings early. I can suggest a couple of simple optimizations.
You only need the numbers that are valid "first parts" and those that are valid "second parts"
You can use the javascript .startsWith and .endsWith to test for those conditions. All other strings can be thrown away.
The lengths of the strings must add up to the length of the desired answer
Suppose your target string is 8 digits long. If you have 2 valid 3-digit "first parts", then you only need to know how many valid 5-digit "second parts" you have. Suppose you have 9 of them. Those first parts can only combine with those second parts, and give you 2 * 9 = 18 valid pairs.
You don't actually need to keep the strings!
It struck me that if you know you have 2 valid 3-digit "first parts", you don't need to keep those actual strings. Knowing that they are valid 2-digit first parts is all you need to know.
So let's build an array containing:
How many valid 1-digit first parts do we have?,
How many valid 2-digit first parts do we have?,
How many valid 3-digit first parts do we have?,
etc.
And similarly an array containing the number of valid 1-digit second parts, etc.
X first parts and Y second parts can be combined in X * Y ways
Except if the parts are the same length, in which case we are reusing the same list, and so it is just X * (Y-1).
So not only do we not need to keep the strings, but we only need to do the multiplication of the appropriate elements of the arrays.
5 1-char first parts & 7 3-char second parts = 5 * 7 = 35 pairs
6 2-char first part & 4 2-char second parts = 6 * (4-1) = 18 pairs
etc
So this becomes extremely easy. One pass over the strings, tallying the "first part" and "second part" matches of each length. This can be done with an if and a ++ of the relevant array element.
Then one pass over the lengths, which will be very quick as the array of lengths will be very much shorter than the array of actual strings.
function combineTheGivenNumber(numArray, num) {
const sElements = numArray.map(e => "" + e);
const sTarget = "" + num;
const targetLength = sTarget.length
const startsByLen = (new Array(targetLength)).fill(0);
const endsByLen = (new Array(targetLength)).fill(0);
sElements.forEach(sElement => {
if (sTarget.startsWith(sElement)) {
startsByLen[sElement.length]++
}
if (sTarget.endsWith(sElement)) {
endsByLen[sElement.length]++
}
})
// We can now throw away the strings. We have two separate arrays:
// startsByLen[1] is the count of strings (without attempting to remove duplicates) which are the first character of the required answer
// startsByLen[2] similarly the count of strings which are the first 2 characters of the required answer
// etc.
// and endsByLen[1] is the count of strings which are the last character ...
// and endsByLen[2] is the count of strings which are the last 2 characters, etc.
let pairCounts = 0;
for (let firstElementLength = 1; firstElementLength < targetLength; firstElementLength++) {
const secondElementLength = targetLength - firstElementLength;
if (firstElementLength === secondElementLength) {
pairCounts += startsByLen[firstElementLength] * (endsByLen[secondElementLength] - 1)
} else {
pairCounts += startsByLen[firstElementLength] * endsByLen[secondElementLength]
}
}
return pairCounts;
}
console.log('Test 1: ', combineTheGivenNumber([1, 212, 12, 12], 1212));
console.log('Test 2: ', combineTheGivenNumber([4, 21, 42, 1], 421));
Depending on a setup, the integer slicing can be marginally faster
Although in the end it falls short
Also, when tested on higher N values, the previous answer exploded in jsfiddle. Possibly a memory error.
As far as I have tested with both random and hand-crafted values, my solution holds. It is based on an observation, that if X, Y concantenated == Z, then following must be true:
Z - Y == X * 10^(floor(log10(Y)) + 1)
an example of this:
1212 - 12 = 1200
12 * 10^(floor((log10(12)) + 1) = 12 * 10^(1+1) = 12 * 100 = 1200
Now in theory, this should be faster then manipulating strings. And in many other languages it most likely would be. However in Javascript as I just learned, the situation is a bit more complicated. Javascript does some weird things with casting that I haven't figured out yet. In short - when I tried storing the numbers(and their counts) in a map, the code got significantly slower making any possible gains from this logarithm shenanigans evaporate. Furthermore, storing them in a custom-crafted data structure isn't guaranteed to be faster since you have to build it etc. Also it would be quite a lot of work.
As it stands this log comparison is ~ 8 times faster in a case without(or with just a few) matches since the quadratic factor is yet to kick in. As long as the possible postfix count isn't too high, it will outperform the linear solution. Unfortunately it is still quadratic in nature with the breaking point depending on a total number of strings as well as their length.
So if you are searching for a needle in a haystack - for example you are looking for a few pairs in a huge heap of numbers, this can help. In the other case of searching for many matches, this won't help. Similarly, if the input array was sorted, you could use binary search to push the breaking point further up.
In the end, unless you manage to figure out how to store ints in a map(or some custom implementation of it) in a way that doesn't completely kill the performance, the linear solution of the previous answer will be faster. It can still be useful even with the performance hit if your computation is going to be memory heavy. Storing numbers takes less space then storing strings.
var log10 = Math.log(10)
function log10floored(num) {
return Math.floor(Math.log(num) / log10)
}
function combineTheGivenNumber(numArray, num) {
count = 0
for (var i=0; i!=numArray.length; i++) {
let portion = num - numArray[i]
let removedPart = Math.pow(10, log10floored(numArray[i]))
if (portion % (removedPart * 10) == 0) {
for (var j=0; j!=numArray.length; j++) {
if (j != i && portion / (removedPart * 10) == numArray[j] ) {
count += 1
}
}
}
}
return count
}
//The previous solution, that I used for timing, comparison and check purposes
function combineTheGivenNumber2(numArray, num) {
const strings = new Map();
for (const num of numArray) {
const str = String(num);
strings.set(str, 1 + (strings.get(str) ?? 0));
}
const whole = String(num);
let pairCounts = 0;
for (const [prefix, pCount] of strings) {
if (!whole.startsWith(prefix))
continue;
const suffix = whole.slice(prefix.length);
if (strings.has(suffix)) {
let sCount = strings.get(suffix);
if (suffix == prefix) sCount--; // no self-concatenation
pairCounts += pCount*sCount;
}
}
return pairCounts;
}
var myArray = []
for (let i =0; i!= 10000000; i++) {
myArray.push(Math.floor(Math.random() * 1000000))
}
var a = new Date()
t1 = a.getTime()
console.log('Test 1: ', combineTheGivenNumber(myArray,15285656));
var b = new Date()
t2 = b.getTime()
console.log('Test 2: ', combineTheGivenNumber2(myArray,15285656));
var c = new Date()
t3 = c.getTime()
console.log('Test1 time: ', t2 - t1)
console.log('test2 time: ', t3 - t2)
Small update
As long as you are willing to take a performance hit with the setup and settle for the ~2 times performance, using a simple "hashing" table can help.(Hashing tables are nice and tidy, this is a simple modulo lookup table. The principle is similar though.)
Technically this isn't linear, practicaly it is enough for the most cases - unless you are extremely unlucky and all your numbers fall in the same bucket.
function combineTheGivenNumber(numArray, num) {
count = 0
let size = 1000000
numTable = new Array(size)
for (var i=0; i!=numArray.length; i++) {
let idx = numArray[i] % size
if (numTable[idx] == undefined) {
numTable[idx] = [numArray[i]]
} else {
numTable[idx].push(numArray[i])
}
}
for (var i=0; i!=numArray.length; i++) {
let portion = num - numArray[i]
let removedPart = Math.pow(10, log10floored(numArray[i]))
if (portion % (removedPart * 10) == 0) {
if (numTable[portion / (removedPart * 10) % size] != undefined) {
let a = numTable[portion / (removedPart * 10) % size]
for (var j=0; j!=a.length; j++) {
if (j != i && portion / (removedPart * 10) == a[j] ) {
count += 1
}
}
}
}
}
return count
}
Here's a simplified, and partially optimised approach with 2 loops:
// let's optimise 'combineTheGivenNumber', where
// a=array of numbers AND n=number to match
const ctgn = (a, n) => {
// convert our given number to a string using `toString` for clarity
// this isn't entirely necessary but means we can use strict equality later
const ns = n.toString();
// reduce is an efficient mechanism to return a value based on an array, giving us
// _=[accumulator], na=[array number] and i=[index]
return a.reduce((_, na, i) => {
// convert our 'array number' to an 'array number string' for later concatenation
const nas = na.toString();
// iterate back over our array of numbers ... we're using an optimised/reverse loop
for (let ii = a.length - 1; ii >= 0; ii--) {
// skip the current array number
if (i === ii) continue;
// string + number === string, which lets us strictly compare our 'number to match'
// if there's a match we increment the accumulator
if (a[ii] + nas === ns) ++_;
}
// we're done
return _;
}, 0);
}
I'm looking to get the length of a number in JavaScript or jQuery?
I've tried value.length without any success, do I need to convert this to a string first?
var x = 1234567;
x.toString().length;
This process will also work forFloat Number and for Exponential number also.
Ok, so many answers, but this is a pure math one, just for the fun or for remembering that Math is Important:
var len = Math.ceil(Math.log(num + 1) / Math.LN10);
This actually gives the "length" of the number even if it's in exponential form. num is supposed to be a non negative integer here: if it's negative, take its absolute value and adjust the sign afterwards.
Update for ES2015
Now that Math.log10 is a thing, you can simply write
const len = Math.ceil(Math.log10(num + 1));
Could also use a template string:
const num = 123456
`${num}`.length // 6
You have to make the number to string in order to take length
var num = 123;
alert((num + "").length);
or
alert(num.toString().length);
I've been using this functionality in node.js, this is my fastest implementation so far:
var nLength = function(n) {
return (Math.log(Math.abs(n)+1) * 0.43429448190325176 | 0) + 1;
}
It should handle positive and negative integers (also in exponential form) and should return the length of integer part in floats.
The following reference should provide some insight into the method:
Weisstein, Eric W. "Number Length." From MathWorld--A Wolfram Web Resource.
I believe that some bitwise operation can replace the Math.abs, but jsperf shows that Math.abs works just fine in the majority of js engines.
Update: As noted in the comments, this solution has some issues :(
Update2 (workaround) : I believe that at some point precision issues kick in and the Math.log(...)*0.434... just behaves unexpectedly. However, if Internet Explorer or Mobile devices are not your cup of tea, you can replace this operation with the Math.log10 function. In Node.js I wrote a quick basic test with the function nLength = (n) => 1 + Math.log10(Math.abs(n) + 1) | 0; and with Math.log10 it worked as expected. Please note that Math.log10 is not universally supported.
There are three way to do it.
var num = 123;
alert(num.toString().length);
better performance one (best performance in ie11)
var num = 123;
alert((num + '').length);
Math (best performance in Chrome, firefox but slowest in ie11)
var num = 123
alert(Math.floor( Math.log(num) / Math.LN10 ) + 1)
there is a jspref here
http://jsperf.com/fastest-way-to-get-the-first-in-a-number/2
You should go for the simplest one (stringLength), readability always beats speed. But if you care about speed here are some below.
Three different methods all with varying speed.
// 34ms
let weissteinLength = function(n) {
return (Math.log(Math.abs(n)+1) * 0.43429448190325176 | 0) + 1;
}
// 350ms
let stringLength = function(n) {
return n.toString().length;
}
// 58ms
let mathLength = function(n) {
return Math.ceil(Math.log(n + 1) / Math.LN10);
}
// Simple tests below if you care about performance.
let iterations = 1000000;
let maxSize = 10000;
// ------ Weisstein length.
console.log("Starting weissteinLength length.");
let startTime = Date.now();
for (let index = 0; index < iterations; index++) {
weissteinLength(Math.random() * maxSize);
}
console.log("Ended weissteinLength length. Took : " + (Date.now() - startTime ) + "ms");
// ------- String length slowest.
console.log("Starting string length.");
startTime = Date.now();
for (let index = 0; index < iterations; index++) {
stringLength(Math.random() * maxSize);
}
console.log("Ended string length. Took : " + (Date.now() - startTime ) + "ms");
// ------- Math length.
console.log("Starting math length.");
startTime = Date.now();
for (let index = 0; index < iterations; index++) {
mathLength(Math.random() * maxSize);
}
First convert it to a string:
var mynumber = 123;
alert((""+mynumber).length);
Adding an empty string to it will implicitly cause mynumber to turn into a string.
Well without converting the integer to a string you could make a funky loop:
var number = 20000;
var length = 0;
for(i = number; i > 1; ++i){
++length;
i = Math.floor(i/10);
}
alert(length);
Demo: http://jsfiddle.net/maniator/G8tQE/
I got asked a similar question in a test.
Find a number's length without converting to string
const numbers = [1, 10, 100, 12, 123, -1, -10, -100, -12, -123, 0, -0]
const numberLength = number => {
let length = 0
let n = Math.abs(number)
do {
n /= 10
length++
} while (n >= 1)
return length
}
console.log(numbers.map(numberLength)) // [ 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 1, 1 ]
Negative numbers were added to complicate it a little more, hence the Math.abs().
I'm perplex about converting into a string the given number because such an algorithm won't be robust and will be prone to errors: it will show all its limitations especially in case it has to evaluate very long numbers. In fact before converting the long number into a string it will "collapse" into its exponential notation equivalent (example: 1.2345e4). This notation will be converted into a string and this resulting string will be evaluated for returning its length. All of this will give a wrong result. So I suggest not to use that approach.
Have a look at the following code and run the code snippet to compare the different behaviors:
let num = 116234567891011121415113441236542134465236441625344625344625623456723423523429798771121411511034412365421344652364416253446253446254461253446221314623879235441623683749283441136232514654296853446323214617456789101112141511344122354416236837492834411362325146542968534463232146172368374928344113623251465429685;
let lenFromMath;
let lenFromString;
// The suggested way:
lenFromMath = Math.ceil(Math.log10(num + 1)); // this works in fact returns 309
// The discouraged way:
lenFromString = String(num).split("").length; // this doesn't work in fact returns 23
/*It is also possible to modify the prototype of the primitive "Number" (but some programmer might suggest this is not a good practice). But this is will also work:*/
Number.prototype.lenght = () => {return Math.ceil(Math.log10(num + 1));}
lenFromPrototype = num.lenght();
console.log({lenFromMath, lenFromPrototype, lenFromString});
A way for integers or for length of the integer part without banal converting to string:
var num = 9999999999; // your number
if (num < 0) num = -num; // this string for negative numbers
var length = 1;
while (num >= 10) {
num /= 10;
length++;
}
alert(length);
I would like to correct the #Neal answer which was pretty good for integers, but the number 1 would return a length of 0 in the previous case.
function Longueur(numberlen)
{
var length = 0, i; //define `i` with `var` as not to clutter the global scope
numberlen = parseInt(numberlen);
for(i = numberlen; i >= 1; i)
{
++length;
i = Math.floor(i/10);
}
return length;
}
To get the number of relevant digits (if the leading decimal part is 0 then the whole part has a length of 0) of any number separated by whole part and decimal part I use:
function getNumberLength(x) {
let numberText = x.toString();
let exp = 0;
if (numberText.includes('e')) {
const [coefficient, base] = numberText.split('e');
exp = parseInt(base, 10);
numberText = coefficient;
}
const [whole, decimal] = numberText.split('.');
const wholeLength = whole === '0' ? 0 : whole.length;
const decimalLength = decimal ? decimal.length : 0;
return {
whole: wholeLength > -exp ? wholeLength + exp : 0,
decimal: decimalLength > exp ? decimalLength - exp : 0,
};
}
var x = 1234567;
String(x).length;
It is shorter than with .toString() (which in the accepted answer).
Try this:
$("#element").text().length;
Example of it in use
Yes you need to convert to string in order to find the length.For example
var x=100;// type of x is number
var x=100+"";// now the type of x is string
document.write(x.length);//which would output 3.
What I would like to have is the almost opposite of Number.prototype.toPrecision(), meaning that when i have number, how many decimals does it have? E.g.
(12.3456).getDecimals() // 4
For anyone wondering how to do this faster (without converting to string), here's a solution:
function precision(a) {
var e = 1;
while (Math.round(a * e) / e !== a) e *= 10;
return Math.log(e) / Math.LN10;
}
Edit: a more complete solution with edge cases covered:
function precision(a) {
if (!isFinite(a)) return 0;
var e = 1, p = 0;
while (Math.round(a * e) / e !== a) { e *= 10; p++; }
return p;
}
One possible solution (depends on the application):
var precision = (12.3456 + "").split(".")[1].length;
If by "precision" you mean "decimal places", then that's impossible because floats are binary. They don't have decimal places, and most values that have a small number of decimal places have recurring digits in binary, and when they're translated back to decimal that doesn't necessarily yield the original decimal number.
Any code that works with the "decimal places" of a float is liable to produce unexpected results on some numbers.
There is no native function to determine the number of decimals. What you can do is convert the number to string and then count the offset off the decimal delimiter .:
Number.prototype.getPrecision = function() {
var s = this + "",
d = s.indexOf('.') + 1;
return !d ? 0 : s.length - d;
};
(123).getPrecision() === 0;
(123.0).getPrecision() === 0;
(123.12345).getPrecision() === 5;
(1e3).getPrecision() === 0;
(1e-3).getPrecision() === 3;
But it's in the nature of floats to fool you. 1 may just as well be represented by 0.00000000989 or something. I'm not sure how well the above actually performs in real life applications.
Basing on #blackpla9ue comment and considering numbers exponential format:
function getPrecision (num) {
var numAsStr = num.toFixed(10); //number can be presented in exponential format, avoid it
numAsStr = numAsStr.replace(/0+$/g, '');
var precision = String(numAsStr).replace('.', '').length - num.toFixed().length;
return precision;
}
getPrecision(12.3456); //4
getPrecision(120.30003300000); //6, trailing zeros are truncated
getPrecision(15); //0
getPrecision(120.000)) //0
getPrecision(0.0000005); //7
getPrecision(-0.01)) //2
Try the following
function countDecimalPlaces(number) {
var str = "" + number;
var index = str.indexOf('.');
if (index >= 0) {
return str.length - index - 1;
} else {
return 0;
}
}
Based on #boolean_Type's method of handling exponents, but avoiding the regex:
function getPrecision (value) {
if (!isFinite(value)) { return 0; }
const [int, float = ''] = Number(value).toFixed(12).split('.');
let precision = float.length;
while (float[precision - 1] === '0' && precision >= 0) precision--;
return precision;
}
Here are a couple of examples, one that uses a library (BigNumber.js), and another that doesn't use a library. Assume you want to check that a given input number (inputNumber) has an amount of decimal places that is less than or equal to a maximum amount of decimal places (tokenDecimals).
With BigNumber.js
import BigNumber from 'bignumber.js'; // ES6
// const BigNumber = require('bignumber.js').default; // CommonJS
const tokenDecimals = 18;
const inputNumber = 0.000000000000000001;
// Convert to BigNumber
const inputNumberBn = new BigNumber(inputNumber);
// BigNumber.js API Docs: http://mikemcl.github.io/bignumber.js/#dp
console.log(`Invalid?: ${inputNumberBn.dp() > tokenDecimals}`);
Without BigNumber.js
function getPrecision(numberAsString) {
var n = numberAsString.toString().split('.');
return n.length > 1
? n[1].length
: 0;
}
const tokenDecimals = 18;
const inputNumber = 0.000000000000000001;
// Conversion of number to string returns scientific conversion
// So obtain the decimal places from the scientific notation value
const inputNumberDecimalPlaces = inputNumber.toString().split('-')[1];
// Use `toFixed` to convert the number to a string without it being
// in scientific notation and with the correct number decimal places
const inputNumberAsString = inputNumber.toFixed(inputNumberDecimalPlaces);
// Check if inputNumber is invalid due to having more decimal places
// than the permitted decimal places of the token
console.log(`Invalid?: ${getPrecision(inputNumberAsString) > tokenDecimals}`);
Assuming number is valid.
let number = 0.999;
let noOfPlaces = number.includes(".") //includes or contains
? number.toString().split(".").pop().length
: 0;
5622890.31 ops/s (91.58% slower):
function precision (n) {
return (n.toString().split('.')[1] || '').length
}
precision(1.0123456789)
33004904.53 ops/s (50.58% slower):
function precision (n) {
let e = 1
let p = 0
while(Math.round(n * e) / e !== n) {
e *= 10
p++
}
return p
}
precision(1.0123456789)
62610550.04 ops/s (6.25% slower):
function precision (n) {
let cur = n
let p = 0
while(!Number.isInteger(cur)) {
cur *= 10
p++
}
return p
}
precision(1.0123456789)
66786361.47 ops/s (fastest):
function precision (n) {
let cur = n
let p = 0
while(Math.floor(cur) !== cur) {
cur *= 10
p++
}
return p
}
precision(1.0123456789)
Here is a simple solution
First of all, if you pass a simple float value as 12.1234 then most of the below/above logics may work but if you pass a value as 12.12340, then it may exclude a count of 0. For e.g, if the value is 12.12340 then it may give you a result of 4 instead of 5. As per your problem statement, if you ask javascript to split and count your float value into 2 integers then it won't include trailing 0s of it.
Let's satisfy our requirement here with a trick ;)
In the below function you need to pass a value in string format and it will do your work
function getPrecision(value){
a = value.toString()
console.log('a ->',a)
b = a.split('.')
console.log('b->',b)
return b[1].length
getPrecision('12.12340') // Call a function
For an example, run the below logic
value = '12.12340'
a = value.toString()
b = a.split('.')
console.log('count of trailing decimals->',b[1].length)
That's it! It will give you the exact count for normal float values as well as the float values with trailing 0s!
Thank you!
This answer adds to Mourner's accepted solution by making the function more robust. As noted by many, floating point precision makes such a function unreliable. For example, precision(0.1+0.2) yields 17 rather than 1 (this might be computer specific, but for this example see https://jsfiddle.net/s0v17jby/5/).
IMHO, there are two ways around this: 1. either properly define a decimal type, using e.g. https://github.com/MikeMcl/decimal.js/, or 2. define an acceptable precision level which is both OK for your use case and not a problem for the js Number representation (8 bytes can safely represent a total of 16 digits AFAICT). For the latter workaround, one can write a more robust variant of the proposed function:
const MAX_DECIMAL_PRECISION = 9; /* must be <= 15 */
const maxDecimalPrecisionFloat = 10**MAX_DECIMAL_PRECISION;
function precisionRobust(a) {
if (!isFinite(a)) return 0;
var e = 1, p = 0;
while ( ++p<=MAX_DECIMAL_PRECISION && Math.round( ( Math.round(a * e) / e - a ) * maxDecimalPrecisionFloat ) !== 0) e *= 10;
return p-1;
}
In the above example, the maximum precision of 9 means this accepts up to 6 digits before the decimal point and 9 after (so this would work for numbers less than one million and with a maximum of 9 decimal points). If your use-case numbers are smaller then you can choose to make this precision even greater (but with a maximum of 15). It turns out that, for calculating precision, this function seems to do OK on larger numbers as well (though that would no longer be the case if we were, say, adding two rounded numbers within the precisionRobust function).
Finally, since we now know the maximum useable precision, we can further avoid infinite loops (which I have not been able to replicate but which still seem to cause problems for some).
Is it possible to seed the random number generator (Math.random) in JavaScript?
No, it is not possible to seed Math.random(). The ECMAScript specification is intentionally vague on the subject, providing no means for seeding nor require that browsers even use the same algorithm. So such a function must be externally provided, which thankfully isn't too difficult.
I've implemented a number of good, short and fast Pseudorandom number generator (PRNG) functions in plain JavaScript. All of them can be seeded and provide high quality numbers. These are not intended for security purposes--if you need a seedable CSPRNG, look into ISAAC.
First of all, take care to initialize your PRNGs properly. To keep things simple, the generators below have no built-in seed generating procedure, but accept one or more 32-bit numbers as the initial seed state of the PRNG. Similar or sparse seeds (e.g. a simple seed of 1 and 2) have low entropy, and can cause correlations or other randomness quality issues, sometimes resulting in the output having similar properties (such as randomly generated levels being similar). To avoid this, it is best practice to initialize PRNGs with a well-distributed, high entropy seed and/or advancing past the first 15 or so numbers.
There are many ways to do this, but here are two methods. Firstly, hash functions are very good at generating seeds from short strings. A good hash function will generate very different results even when two strings are similar, so you don't have to put much thought into the string. Here's an example hash function:
function cyrb128(str) {
let h1 = 1779033703, h2 = 3144134277,
h3 = 1013904242, h4 = 2773480762;
for (let i = 0, k; i < str.length; i++) {
k = str.charCodeAt(i);
h1 = h2 ^ Math.imul(h1 ^ k, 597399067);
h2 = h3 ^ Math.imul(h2 ^ k, 2869860233);
h3 = h4 ^ Math.imul(h3 ^ k, 951274213);
h4 = h1 ^ Math.imul(h4 ^ k, 2716044179);
}
h1 = Math.imul(h3 ^ (h1 >>> 18), 597399067);
h2 = Math.imul(h4 ^ (h2 >>> 22), 2869860233);
h3 = Math.imul(h1 ^ (h3 >>> 17), 951274213);
h4 = Math.imul(h2 ^ (h4 >>> 19), 2716044179);
return [(h1^h2^h3^h4)>>>0, (h2^h1)>>>0, (h3^h1)>>>0, (h4^h1)>>>0];
}
Calling cyrb128 will produce a 128-bit hash value from a string which can be used to seed a PRNG. Here's how you might use it:
// Create cyrb128 state:
var seed = cyrb128("apples");
// Four 32-bit component hashes provide the seed for sfc32.
var rand = sfc32(seed[0], seed[1], seed[2], seed[3]);
// Only one 32-bit component hash is needed for mulberry32.
var rand = mulberry32(seed[0]);
// Obtain sequential random numbers like so:
rand();
rand();
Note: If you want a slightly more robust 128-bit hash, consider MurmurHash3_x86_128, it's more thorough, but intended for use with large arrays.
Alternatively, simply choose some dummy data to pad the seed with, and advance the generator beforehand a few times (12-20 iterations) to mix the initial state thoroughly. This has the benefit of being simpler, and is often used in reference implementations of PRNGs, but it does limit the number of initial states:
var seed = 1337 ^ 0xDEADBEEF; // 32-bit seed with optional XOR value
// Pad seed with Phi, Pi and E.
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
var rand = sfc32(0x9E3779B9, 0x243F6A88, 0xB7E15162, seed);
for (var i = 0; i < 15; i++) rand();
Note: the output of these PRNG functions produce a positive 32-bit number (0 to 232-1) which is then converted to a floating-point number between 0-1 (0 inclusive, 1 exclusive) equivalent to Math.random(), if you want random numbers of a specific range, read this article on MDN. If you only want the raw bits, simply remove the final division operation.
JavaScript numbers can only represent whole integers up to 53-bit resolution. And when using bitwise operations, this is reduced to 32. Modern PRNGs in other languages often use 64-bit operations, which require shims when porting to JS that can drastically reduce performance. The algorithms here only use 32-bit operations, as it is directly compatible with JS.
Now, onward to the the generators. (I maintain the full list with references and license info here)
sfc32 (Simple Fast Counter)
sfc32 is part of the PractRand random number testing suite (which it passes of course). sfc32 has a 128-bit state and is very fast in JS.
function sfc32(a, b, c, d) {
return function() {
a >>>= 0; b >>>= 0; c >>>= 0; d >>>= 0;
var t = (a + b) | 0;
a = b ^ b >>> 9;
b = c + (c << 3) | 0;
c = (c << 21 | c >>> 11);
d = d + 1 | 0;
t = t + d | 0;
c = c + t | 0;
return (t >>> 0) / 4294967296;
}
}
You may wonder what the | 0 and >>>= 0 are for. These are essentially 32-bit integer casts, used for performance optimizations. Number in JS are basically floats, but during bitwise operations, they switch into a 32-bit integer mode. This mode is processed faster by JS interpreters, but any multiplication or addition will cause it to switch back to a float, resulting in a performance hit.
Mulberry32
Mulberry32 is a simple generator with a 32-bit state, but is extremely fast and has good quality randomness (author states it passes all tests of gjrand testing suite and has a full 232 period, but I haven't verified).
function mulberry32(a) {
return function() {
var t = a += 0x6D2B79F5;
t = Math.imul(t ^ t >>> 15, t | 1);
t ^= t + Math.imul(t ^ t >>> 7, t | 61);
return ((t ^ t >>> 14) >>> 0) / 4294967296;
}
}
I would recommend this if you just need a simple but decent PRNG and don't need billions of random numbers (see Birthday problem).
xoshiro128**
As of May 2018, xoshiro128** is the new member of the Xorshift family, by Vigna & Blackman (professor Vigna was also responsible for the Xorshift128+ algorithm powering most Math.random implementations under the hood). It is the fastest generator that offers a 128-bit state.
function xoshiro128ss(a, b, c, d) {
return function() {
var t = b << 9, r = a * 5; r = (r << 7 | r >>> 25) * 9;
c ^= a; d ^= b;
b ^= c; a ^= d; c ^= t;
d = d << 11 | d >>> 21;
return (r >>> 0) / 4294967296;
}
}
The authors claim it passes randomness tests well (albeit with caveats). Other researchers have pointed out that it fails some tests in TestU01 (particularly LinearComp and BinaryRank). In practice, it should not cause issues when floats are used (such as in these implementations), but may cause issues if relying on the raw lowest order bit.
JSF (Jenkins' Small Fast)
This is JSF or 'smallprng' by Bob Jenkins (2007), who also made ISAAC and SpookyHash. It passes PractRand tests and should be quite fast, although not as fast as sfc32.
function jsf32(a, b, c, d) {
return function() {
a |= 0; b |= 0; c |= 0; d |= 0;
var t = a - (b << 27 | b >>> 5) | 0;
a = b ^ (c << 17 | c >>> 15);
b = c + d | 0;
c = d + t | 0;
d = a + t | 0;
return (d >>> 0) / 4294967296;
}
}
No, it is not possible to seed Math.random(), but it's fairly easy to write your own generator, or better yet, use an existing one.
Check out: this related question.
Also, see David Bau's blog for more information on seeding.
NOTE: Despite (or rather, because of) succinctness and apparent elegance, this algorithm is by no means a high-quality one in terms of randomness. Look for e.g. those listed in this answer for better results.
(Originally adapted from a clever idea presented in a comment to another answer.)
var seed = 1;
function random() {
var x = Math.sin(seed++) * 10000;
return x - Math.floor(x);
}
You can set seed to be any number, just avoid zero (or any multiple of Math.PI).
The elegance of this solution, in my opinion, comes from the lack of any "magic" numbers (besides 10000, which represents about the minimum amount of digits you must throw away to avoid odd patterns - see results with values 10, 100, 1000). Brevity is also nice.
It's a bit slower than Math.random() (by a factor of 2 or 3), but I believe it's about as fast as any other solution written in JavaScript.
No, but here's a simple pseudorandom generator, an implementation of Multiply-with-carry I adapted from Wikipedia (has been removed since):
var m_w = 123456789;
var m_z = 987654321;
var mask = 0xffffffff;
// Takes any integer
function seed(i) {
m_w = (123456789 + i) & mask;
m_z = (987654321 - i) & mask;
}
// Returns number between 0 (inclusive) and 1.0 (exclusive),
// just like Math.random().
function random()
{
m_z = (36969 * (m_z & 65535) + (m_z >> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
Antti Sykäri's algorithm is nice and short. I initially made a variation that replaced JavaScript's Math.random when you call Math.seed(s), but then Jason commented that returning the function would be better:
Math.seed = function(s) {
return function() {
s = Math.sin(s) * 10000; return s - Math.floor(s);
};
};
// usage:
var random1 = Math.seed(42);
var random2 = Math.seed(random1());
Math.random = Math.seed(random2());
This gives you another functionality that JavaScript doesn't have: multiple independent random generators. That is especially important if you want to have multiple repeatable simulations running at the same time.
Please see Pierre L'Ecuyer's work going back to the late 1980s and early 1990s. There are others as well. Creating a (pseudo) random number generator on your own, if you are not an expert, is pretty dangerous, because there is a high likelihood of either the results not being statistically random or in having a small period. Pierre (and others) have put together some good (pseudo) random number generators that are easy to implement. I use one of his LFSR generators.
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/handstat.pdf
Combining some of the previous answers, this is the seedable random function you are looking for:
Math.seed = function(s) {
var mask = 0xffffffff;
var m_w = (123456789 + s) & mask;
var m_z = (987654321 - s) & mask;
return function() {
m_z = (36969 * (m_z & 65535) + (m_z >>> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >>> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
}
var myRandomFunction = Math.seed(1234);
var randomNumber = myRandomFunction();
It's not possible to seed the builtin Math.random function, but it is possible to implement a high quality RNG in Javascript with very little code.
Javascript numbers are 64-bit floating point precision, which can represent all positive integers less than 2^53. This puts a hard limit to our arithmetic, but within these limits you can still pick parameters for a high quality Lehmer / LCG random number generator.
function RNG(seed) {
var m = 2**35 - 31
var a = 185852
var s = seed % m
return function () {
return (s = s * a % m) / m
}
}
Math.random = RNG(Date.now())
If you want even higher quality random numbers, at the cost of being ~10 times slower, you can use BigInt for the arithmetic and pick parameters where m is just able to fit in a double.
function RNG(seed) {
var m_as_number = 2**53 - 111
var m = 2n**53n - 111n
var a = 5667072534355537n
var s = BigInt(seed) % m
return function () {
return Number(s = s * a % m) / m_as_number
}
}
See this paper by Pierre l'Ecuyer for the parameters used in the above implementations:
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
And whatever you do, avoid all the other answers here that use Math.sin!
To write your own pseudo random generator is quite simple.
The suggestion of Dave Scotese is useful but, as pointed out by others, it is not quite uniformly distributed.
However, it is not because of the integer arguments of sin. It's simply because of the range of sin, which happens to be a one dimensional projection of a circle. If you would take the angle of the circle instead it would be uniform.
So instead of sin(x) use arg(exp(i * x)) / (2 * PI).
If you don't like the linear order, mix it a bit up with xor. The actual factor doesn't matter that much either.
To generate n pseudo random numbers one could use the code:
function psora(k, n) {
var r = Math.PI * (k ^ n)
return r - Math.floor(r)
}
n = 42; for(k = 0; k < n; k++) console.log(psora(k, n))
Please also note that you cannot use pseudo random sequences when real entropy is needed.
Many people who need a seedable random-number generator in Javascript these days are using David Bau's seedrandom module.
Math.random no, but the ran library solves this. It has almost all distributions you can imagine and supports seeded random number generation. Example:
ran.core.seed(0)
myDist = new ran.Dist.Uniform(0, 1)
samples = myDist.sample(1000)
Here's the adopted version of Jenkins hash, borrowed from here
export function createDeterministicRandom(): () => number {
let seed = 0x2F6E2B1;
return function() {
// Robert Jenkins’ 32 bit integer hash function
seed = ((seed + 0x7ED55D16) + (seed << 12)) & 0xFFFFFFFF;
seed = ((seed ^ 0xC761C23C) ^ (seed >>> 19)) & 0xFFFFFFFF;
seed = ((seed + 0x165667B1) + (seed << 5)) & 0xFFFFFFFF;
seed = ((seed + 0xD3A2646C) ^ (seed << 9)) & 0xFFFFFFFF;
seed = ((seed + 0xFD7046C5) + (seed << 3)) & 0xFFFFFFFF;
seed = ((seed ^ 0xB55A4F09) ^ (seed >>> 16)) & 0xFFFFFFFF;
return (seed & 0xFFFFFFF) / 0x10000000;
};
}
You can use it like this:
const deterministicRandom = createDeterministicRandom()
deterministicRandom()
// => 0.9872818551957607
deterministicRandom()
// => 0.34880331158638
No, like they said it is not possible to seed Math.random()
but you can install external package which make provision for that. i used these package which can be install using these command
npm i random-seed
the example is gotten from the package documentation.
var seed = 'Hello World',
rand1 = require('random-seed').create(seed),
rand2 = require('random-seed').create(seed);
console.log(rand1(100), rand2(100));
follow the link for documentation https://www.npmjs.com/package/random-seed
SIN(id + seed) is a very interesting replacement for RANDOM functions that cannot be seeded like SQLite:
https://stackoverflow.com/a/75089040/7776828
Most of the answers here produce biased results. So here's a tested function based on seedrandom library from github:
!function(f,a,c){var s,l=256,p="random",d=c.pow(l,6),g=c.pow(2,52),y=2*g,h=l-1;function n(n,t,r){function e(){for(var n=u.g(6),t=d,r=0;n<g;)n=(n+r)*l,t*=l,r=u.g(1);for(;y<=n;)n/=2,t/=2,r>>>=1;return(n+r)/t}var o=[],i=j(function n(t,r){var e,o=[],i=typeof t;if(r&&"object"==i)for(e in t)try{o.push(n(t[e],r-1))}catch(n){}return o.length?o:"string"==i?t:t+"\0"}((t=1==t?{entropy:!0}:t||{}).entropy?[n,S(a)]:null==n?function(){try{var n;return s&&(n=s.randomBytes)?n=n(l):(n=new Uint8Array(l),(f.crypto||f.msCrypto).getRandomValues(n)),S(n)}catch(n){var t=f.navigator,r=t&&t.plugins;return[+new Date,f,r,f.screen,S(a)]}}():n,3),o),u=new m(o);return e.int32=function(){return 0|u.g(4)},e.quick=function(){return u.g(4)/4294967296},e.double=e,j(S(u.S),a),(t.pass||r||function(n,t,r,e){return e&&(e.S&&v(e,u),n.state=function(){return v(u,{})}),r?(c[p]=n,t):n})(e,i,"global"in t?t.global:this==c,t.state)}function m(n){var t,r=n.length,u=this,e=0,o=u.i=u.j=0,i=u.S=[];for(r||(n=[r++]);e<l;)i[e]=e++;for(e=0;e<l;e++)i[e]=i[o=h&o+n[e%r]+(t=i[e])],i[o]=t;(u.g=function(n){for(var t,r=0,e=u.i,o=u.j,i=u.S;n--;)t=i[e=h&e+1],r=r*l+i[h&(i[e]=i[o=h&o+t])+(i[o]=t)];return u.i=e,u.j=o,r})(l)}function v(n,t){return t.i=n.i,t.j=n.j,t.S=n.S.slice(),t}function j(n,t){for(var r,e=n+"",o=0;o<e.length;)t[h&o]=h&(r^=19*t[h&o])+e.charCodeAt(o++);return S(t)}function S(n){return String.fromCharCode.apply(0,n)}if(j(c.random(),a),"object"==typeof module&&module.exports){module.exports=n;try{s=require("crypto")}catch(n){}}else"function"==typeof define&&define.amd?define(function(){return n}):c["seed"+p]=n}("undefined"!=typeof self?self:this,[],Math);
function randIntWithSeed(seed, max=1) {
/* returns a random number between [0,max] including zero and max
seed can be either string or integer */
return Math.round(new Math.seedrandom('seed' + seed)()) * max
}
test for true randomness of this code: https://es6console.com/kkjkgur2/
There are plenty of good answers here but I had a similar issue with the additional requirement that I would like portability between Java's random number generator and whatever I ended up using in JavaScript.
I found the java-random package
These two pieces of code had identical output assuming the seed is the same:
Java:
Random randomGenerator = new Random(seed);
int randomInt;
for (int i=0; i<10; i++) {
randomInt = randomGenerator.nextInt(50);
System.out.println(randomInt);
}
JavaScript:
let Random = require('java-random');
let rng = new Random(seed);
for (let i=0; i<10; i++) {
let val = rng.nextInt(50);
console.log(val);
}
Do what bryc suggests ... but before you use his cyrb128 hash function to initialise, note that the return statement throws away 32 bits of entropy. Exclusive-or the four values together = 0. You should probably make the first element (h2^h3^h4) >>> 0.
I have written a function that returns a seeded random number, it uses Math.sin to have a long random number and uses the seed to pick numbers from that.
Use :
seedRandom("k9]:2#", 15)
it will return your seeded number
the first parameter is any string value ; your seed.
the second parameter is how many digits will return.
function seedRandom(inputSeed, lengthOfNumber){
var output = "";
var seed = inputSeed.toString();
var newSeed = 0;
var characterArray = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','y','x','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','U','R','S','T','U','V','W','X','Y','Z','!','#','#','$','%','^','&','*','(',')',' ','[','{',']','}','|',';',':',"'",',','<','.','>','/','?','`','~','-','_','=','+'];
var longNum = "";
var counter = 0;
var accumulator = 0;
for(var i = 0; i < seed.length; i++){
var a = seed.length - (i+1);
for(var x = 0; x < characterArray.length; x++){
var tempX = x.toString();
var lastDigit = tempX.charAt(tempX.length-1);
var xOutput = parseInt(lastDigit);
addToSeed(characterArray[x], xOutput, a, i);
}
}
function addToSeed(character, value, a, i){
if(seed.charAt(i) === character){newSeed = newSeed + value * Math.pow(10, a)}
}
newSeed = newSeed.toString();
var copy = newSeed;
for(var i=0; i<lengthOfNumber*9; i++){
newSeed = newSeed + copy;
var x = Math.sin(20982+(i)) * 10000;
var y = Math.floor((x - Math.floor(x))*10);
longNum = longNum + y.toString()
}
for(var i=0; i<lengthOfNumber; i++){
output = output + longNum.charAt(accumulator);
counter++;
accumulator = accumulator + parseInt(newSeed.charAt(counter));
}
return(output)
}
A simple approach for a fixed seed:
function fixedrandom(p){
const seed = 43758.5453123;
return (Math.abs(Math.sin(p)) * seed)%1;
}
In PHP, there is function srand(seed) which generate fixed random value for particular seed.
But, in JS, there is no such inbuilt function.
However, we can write simple and short function.
Step 1: Choose some Seed (Fix Number).
var seed = 100;
Number should be Positive Integer and greater than 1, further explanation in Step 2.
Step 2: Perform Math.sin() function on Seed, it will give sin value of that number. Store this value in variable x.
var x;
x = Math.sin(seed); // Will Return Fractional Value between -1 & 1 (ex. 0.4059..)
sin() method returns a Fractional value between -1 and 1.And we don't need Negative value, therefore, in first step choose number greater than 1.
Step 3: Returned Value is a Fractional value between -1 and 1. So mulitply this value with 10 for making it more than 1.
x = x * 10; // 10 for Single Digit Number
Step 4: Multiply the value with 10 for additional digits
x = x * 10; // Will Give value between 10 and 99 OR
x = x * 100; // Will Give value between 100 and 999
Multiply as per requirement of digits.
The result will be in decimal.
Step 5: Remove value after Decimal Point by Math's Round (Math.round()) Method.
x = Math.round(x); // This will give Integer Value.
Step 6: Turn Negative Values into Positive (if any) by Math.abs method
x = Math.abs(x); // Convert Negative Values into Positive(if any)
Explanation End.Final Code
var seed = 111; // Any Number greater than 1
var digit = 10 // 1 => single digit, 10 => 2 Digits, 100 => 3 Digits and so. (Multiple of 10)
var x; // Initialize the Value to store the result
x = Math.sin(seed); // Perform Mathematical Sin Method on Seed.
x = x * 10; // Convert that number into integer
x = x * digit; // Number of Digits to be included
x = Math.round(x); // Remove Decimals
x = Math.abs(x); // Convert Negative Number into Positive
Clean and Optimized Functional Code
function random_seed(seed, digit = 1) {
var x = Math.abs(Math.round(Math.sin(seed++) * 10 * digit));
return x;
}
Then Call this function using
random_seed(any_number, number_of_digits)any_number is must and should be greater than 1.number_of_digits is optional parameter and if nothing passed, 1 Digit will return.
random_seed(555); // 1 Digit
random_seed(234, 1); // 1 Digit
random_seed(7895656, 1000); // 4 Digit
For a number between 0 and 100.
Number.parseInt(Math.floor(Math.random() * 100))