JavaScript class memory usage - javascript

So I've been doing some JavaScript class-like stuff such as
MyClass = function()
{
var x;
this.sayX = function()
{
alert(x);
}
}
but I've also seen
MyClass = function()
{
this.x = 0;
}
MyClass.prototype.sayX = function()
{
alert(this.x);
}
The big question is, am I still wasting memory space in today's JavaScript engines, or are they capable of seeing the duplication in my method and optimizing them out? The reason I ask is because I'd rather do proper data hiding and not have to prefix absolutely everything with 'this'.

The memory footprint of the first one will always be larger. Consider prototype as a shared package of methods that all instances can use. It is effective because you don't create a new function for every instance, but you're reusing the existing method already in memory.
The good news is that the two ways you showed can be combined.
MyClass = function () {
var x;
// public method with access
// to private variables
this.sayX = function () {
alert(x);
};
}
// method that doesn't need access to private variables
MyClass.prototype.sharedMethod = function () {
// ...
}
But as far as you're dealing with small codebase, you shouldn't worry about memory usage. You can even use patterns like
// everything will be created for every
// instance, but the whole thing is nicely
// wrapped into one 'factory' function
myClass = function () {
// private variables
var x;
// private methods
function doSomethingWithX() {}
// public interface
return {
sayX: function () {
alert(x);
},
publicMethod: function () { .. },
// ...
};
};
Note, I intentionally changed myClass to lowercase, because it's no longer a constructor function and there's no need to use new when invoking!
UPDATE - there's a third pattern which well suits your needs:
MyClass = function (x, y, whatever) {
this._init.apply(this, arguments);
}
// The prototype creates a scope for data hiding.
// It also includes a constructor function.
MyClass.prototype = (function () {
var x; // private
return {
_init: function (x_in) {
x = x_in;
},
sayX: function () {
alert(x);
},
// ...
};
})();

Revisiting this a huge amount later, but it turns out V8 is smart enough that it doesn't create multiple instanced of that function in the first method. Go hidden classes :D
http://www.youtube.com/watch?v=hWhMKalEicY

Related

Writing JS Prototypes, should all functions use the Prototype object?

I'm beginning to learn more about writing JS using the Prototype object, but I want to make sure I don't pick up any bad habits from other developers. My understanding of using Prototype is to create public methods for your instance. For example:
var module = new Module();
module.method();
But I see a lot of developers creating all their code inside the Prototype object, things that I would consider "private". Is this bad practice or considered okay? It just means I can then do:
module.privateFn();
Do they know this? Is that okay? Any help appreciated. I've been looking through the source code on GitHub to try establish the best way forward, here's a script that uses Prototypes for everything (for instance attachEvent which they clearly want privately kept):
https://github.com/WickyNilliams/headroom.js/blob/master/dist/headroom.js
Much appreciated, I want to make sure I develop using the correct implementations.
First of all you don't need to write modules using prototype. Think like if you writing something like a class you should use prototypes. And also it's important to where define your methods. Defining methods on prototype object and defining them in constructor function is totally different things!
Let's see a sample class definition with using methods defined in constructor:
var Dog = (function () {
var Dog = function (age, name) {
var that = this;
this.age = age;
this.name = name;
this.sayHi = function () {
console.log('Warf! Im ' + that.name); // meaning of "this" changed!!!
};
this.anotherMethod = function () {};
};
return Dog;
}());
var puppy = new Dog(1, 'puppy'); // sayHi and anotherMethod created
var sirius = new Dog(1, 'sirius'); // sayHi and anotherMethod recreated
sirius.sayHi = function () { console.log('Yohalolop!'); };
puppy.sayHi(); // -> 'Warf! Im puppy'
sirius.sayHi(); // -> 'Yohalolop!'
So there is some problems with the above example, firstly methods are defined like any other instance variables. Actually yeah you define them as instance variable and this means this functions are recreated for every instance object you create. I guess you have mentioned you can't use this keyword in your method definitions. This is error prone and there is a chance to forget that and use this keyword by mistaken. There are some times you can use methods as instance variables of course like variable callbacks.
Let's see a sample class definition with prototype object:
var Dog = (function () {
var Dog = function (age, name) {
this.age = age;
this.name = name;
};
// sayHi method defined only once in prototype
Dog.prototype.sayHi = function () {
console.log('Warf! Im ' + this.name; // we can use this keyword
};
// anotherMethod defined only once in protoype
Dog.prototype.anotherMethod() {
};
return Dog;
}());
var puppy = new Dog(1, 'puppy');
var sirius = new Dog(1, 'sirius'); // sirius and puppy sharing same prototype object
puppy.sayHi(); // -> 'Warf! Im puppy'
sirius.sayHi(); // -> 'Warf! Im sirius'
// remember puppy and sirius sharing same prototype object
Dog.prototype.sayHi = function () {
console.log('Yohalolop');
};
puppy.sayHi(); // -> 'Yohalolop'
sirius.sayHi(); // -> 'Yohalolop'
As an answer to your question about private functions, it is more complicated. Yes you can use private functions even you define your methods on prototype, but there are some concerns about testing. Usage of them is up to you. I prefer to don't use. Let me show some examples.
var Calculator = (function () {
var Calculator = function () {
this.importantNumber = 2;
};
// There is unfortunately no native implementation
// for private methods but you can mimic them with
// unaccessible functions and binding.
var someExtremeComputations = function () {
return 40 + this.importantNumber; // this keyword points to instance because of binding
};
Calculator.prototype.getMeaningOfLife = function () {
var result = someExtremeComputations.call(this); // we bind function to instance
return result;
};
return Calculator;
}());
This is the one of the examples how you can define private methods in javascript. The problem with private functions, they can't be tested. There is no way to test someExtremeComputations method.
Some people (includes me) use prefixed underscore naming convention for private methods. So they are actually public methods but if someone calling them or overriding they were warned by prefixed underscore. After all we can test private methods since they are public in real.
var Calculator = (function () {
var Calculator = function () {
this.importantNumber = 2;
};
// private method's name prefixed by an underscore to warn
// other developers to be careful about that or not to use.
Calculator.prototype._someExtremeComputations = function () {
return 40 + this.importantNumber;
};
Calculator.prototype.getMeaningOfLife = function () {
var result = this.someExtremeComputations(); // no need to bind
return result;
};
return Calculator;
}());
Explaining this with a few words is impossible. A generally good pattern is to construct methods through prototypes when you want to optimize your code. A good guideline is to only put the most essential data in the memory, using prototypes is critical for this since the prototyped variables and methods isn't injected into the memory until you request them.
When it comes yo your example there are no prototypes.
Simple example
// new object
var Dog = function() {
var that = this;
// add a property
that.name = "Fido";
// add a method
that.getName = function() {
return that.name;
};
};
// ... all the above is stored in memory directly
// Requires to be constructed
var dogObj = new Dog();
console.log(dogObj.getName()); // Fido
delete Dog.name // false
typeof Dog.name // "string"
delete dogObj.name // true
typeof dogObj.name // "undefined"
typeof Dog.name // "string" (still there)
// Will be available in the dogObj (after you call it)
dog.prototype.first = "first";
// Will be available in the dogObj (after you call it)
dog.prototype.second = function() {
return "second";
}
// Will not be available in dogObj
dog.third = "third";

Making JavaScript private methods accessible to its public methods

I understand there are couple of patterns to make JavaScript 'class-like'.
I would like to take the 'extending by prototype' way... simply because it looks more neat. I am not worried about performance much here...
In the below example I have a class (basically function) MetricsChart. I have couple of public methods and one private method (basically a reusable method).
Here from the public method (drawOrAdd) I can't access the private method (_convertArrayToTable), how can I do that?
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
}
MetricsChart.prototype.drawOrAdd = function(data)
{
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
MetricsChart.prototype.isChartDrawn = function () {
return this._isChartDrawn;
}
MetricsChart.prototype.getChartData = function () {
}
One way I accidentally found was to enclose the public methods inside the MetricsChart class itself...
It works for me :): I can access the public methods outside and the public method can access the private method (serves the purpose).
Below code... Is this right? Am I doing anything wrong?
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
MetricsChart.prototype.drawOrAdd = function (data) {
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
MetricsChart.prototype.isChartDrawn = function () {
return this._isChartDrawn;
}
MetricsChart.prototype.getChartData = function () {
}
}
So, here a couple of things, in order to understand what you have done precisely.
First of all:
function foo() {
var i = 0;
function bar() {
return true;
}
}
What's happening here: every time the function foo is called, it creates in its scope a new variable i, and a new function bar. The function bar and the variable i are in its scope, it means they're local: there is no way, with this code, to access to either i or bar outside the function foo. Also because, once the function foo is terminated, both i and bar are disposed.
So, this is why you cannot access from your "public" method to the "private" one, and I hope it's more clear now. The only way for a function to access to a function or variable is that there is a reference shared in the same scope. So, this is what you have done in your last example: you define your "public" methods in the same scope where you define your "private" method. In this way they can access each other. However, the way you have done, has a big downside. As I said previously, the function bar is created every time the function foo is called. In a "class" example, it means:
function MyClass() {
function myprivate() {}
MyClass.prototype.mypublic = function () { return myprivate() }
}
It means that every time you're creating an instance of MyClass, you're creating two new functions, and you're rewrite all the time the prototype of your "class". This is far from be a good approach. In fact, if you have something like:
var a = new MyClass();
var _mypublic = a.mypublic;
var b = new MyClass();
console.log(_mypublic === b.mypublic) // false
console.log(_mypublic === a.mypublic) // false too!
So, you guess right but you executed wrong. What you need here is a the "module pattern": nowadays you can use CommonJS module in nodejs or AMD in browser and so on, but the basic idea is defined a "scope" and exports from this scope only what you want. In your case, you could have:
// this is your "module"
;(function(exports) {
// your local (private) function
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
}
MetricsChart.prototype.drawOrAdd = function(data) {
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
// you decided to exports to the main scope what you want
exports.MetricsChart = MetricsChart;
}(this)); // here `this` is the global object
And that's it. You have created a closure, using the "module pattern", and from the "public" method you can access to the "private" function, because they're defined in the same scope. But because you do not do that in the "class" constructor, you don't redefine them every time you instantiate a new object. Therefore, the previous example written in this way, will give the right result:
var a = new MyClass();
var _mypublic = a.mypublic;
var b = new MyClass();
console.log(_mypublic === b.mypublic) // true
console.log(_mypublic === a.mypublic) // true
What you've done isn't necessarily "wrong"...it just looks weird. Also, you won't be able to access "MetricsChart.prototype.*" until after you've created an instance of "MetricsChart". Depending on how you are using this object, it may not matter.
That being said, another way is to keep your original structure, but move the following outside of the constructor:
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
It would still be private to your module which should be good enough (you are using modules right?).
What you have done works perfectly.
You can't inherit private methods in any OOP language in terms of overriding them or accessing them directly. They are private. So it makes no sense to have them prototyped for inheritance purposes. You have wrapped them in function scope so they are as "private" as they need to be.
To access the private methods use privilege methods. Check this document: http://javascript.crockford.com/private.html.
About your code check this answer:
Setting javascript prototype function within object class declaration
p.s.
function Test()
{
var p = function(pv)
{
//
}
this.e = function (ap) { p(ap) }
}
var n = new Test();
n.e("e"); // It is legal call
n.p(); // will throw
But if you declare a private function in c-tor it will be executed on first creation of object of this type. When declare a methods in prototype this methods are add before any code execution. In general the browser first check the js file to collect all methods for prototype and than execute any code. So when you declare a prototype methods into c-tor this methods will be available only after first creation of the object of those type. ( Sorry for my English ).
Check this situation:
function Test()
{
alert(this.ST_A);//alert undefined
alert(this.ST_B);//alert 2
Test.prototype.ST_A = 1;
alert( this.ST_A)//alert 1
}
Test.prototype.ST_B = 2;
In first pass the browser will populate Test with ST_B and ST_B will be available anywhere any time. After than in second pass the browser will start to execute the code in this time ST_A will not be visible until the browser execute the Test.prototype.ST_A = 1;

Extending a javascript object

I'm currently working on a platform game engine using javascript and the HTML5 canvas.
I have an object, "platform" which looks something like this...
var platform = function(pid,px,py,pw,ph) {
//Some variables here... and then we have some functions
this.step = function() {
//Update / step events here
}
this.draw = function() {
//Drawing events here
}
//etc.
}
The step() function has all of the calculations for collision detection while the draw() function draws the platform.
What I want to do is make another object called movingPlatform. This will be almost identical to the current platform except for the fact this one moves.
Rather than copying all of the collision detection code I'd like to be able to extend movingPlatform from platform... and then be able to add some additional code into the step() function to the moving platform can... well... move.
Some additional information...
When the game loads, it generates the level using data from a CSV file. I have an array, platforms[] that stores all of the platforms within it.
So to create a platform it looks like this...
platforms.push(new platform(i,data[1],data[2],data[3],data[4]));
I then make the platforms perform their step and draw events during the game's main step and draw events.
i.e.
for(var i=0; i<platforms.length; i++) {
platforms[i].step();
}
Any help would be awesome. Thanks!
I would use the platform class as a "base" object for the moving platform object.
I would do this via the prototype which is JavaScript's implementation of object oriented programming.
More info here How does JavaScript .prototype work?
+ many more articles on the web
You can use Javascript prototype inheritance functionality:
var baseItem = {
push: function(){alert('push');},
pull: function(){alert('pull')}
}
var childItem = {}
childItem.prototype = baseItem;
childItem.push = function(){
//call base function
childItem.prototype.push.call(this);
//do your custom stuff.
alert('I did it again.');
}
childItem.push();
Fiddle
Rather than pure inheritance, here, I'd go with prototype-extension, unless you build some big, ugly factory, just for the sake of saying that "MovingPlatform" inherited from "Platform" in a pure sense, it's not really what you'd expect it to be.
There are a few concerns (cheating, for one), but if your objects are all based wholly around this, and you're okay with people potentially hacking away in the console, then you don't really have much to worry about.
First, understand what you're doing inside of Platform:
var MyObject = function (a) {
this.property = a;
this.method = function (b) { this.property += b; };
};
Every time you make a new MyObject, you're creating a brand new version of the .method function.
That is to say, if you make 10,000 of these, there will be 10,000 copies of that function, as well.
Sometimes that's a very good and safe thing.
It can also be a very slow thing.
The problem is, because everything in your object is using this, and because nothing inside of the function changes, there's no benefit to creating new copies -- just extra memory used.
...so:
MyObject = function (a) {
this.property = a;
};
MyObject.prototype.method = function (b) { this.property += b; };
var o = new MyObject(1);
o.method(2);
o.property; //3
When you call new X, where X has properties/methods on its prototype, those properties/methods get copied onto the object, during its construction.
It would be the same as going:
var method = function (b) { this.property += b; },
o = new MyObject(1);
o.method = method;
o.method(2);
o.property; // 3
Except without the extra work of doing it yourself, by hand.
The benefit here is that each object uses the same function.
They basically hand the function access to their whole this, and the function can do whatever it wants with it.
There's a catch:
var OtherObj = function (a, b) {
var private_property = b,
private_method = function () { return private_property; };
this.public_property = a;
this.unshared_method = function () { var private_value = private_method(); return private_value; };
};
OtherObj.prototype.public_method = function () {
return private_property;
};
var obj = new OtherObj(1, "hidden");
obj.public_property; // 1
obj.unshared_method(); // "hidden"
obj.public_method(); // err -- private_property doesn't exist
So assuming you don't have much you care about staying private, the easiest way of doing this would be to make reusable function, which rely on this, which you then give to multiple prototypes, through extension.
// collision-handling
var testCollision = function (target) { this./*...*/ },
handleCollision = function (obj) { this./* ... */ };
// movement-handling
var movePlatform = function (x, y, elapsed) { this.x += this.speed.x*elapsed; /*...*/ };
// not really the cleanest timestep implementation, but it'll do for examples
var Platform = function (texture, x, y, w, h) {
this.x = x;
// ...
},
MovingPlatform = function (texture, x, y, w, h, speedX, speedY, etc) {
this.etc = etc;//...
};
Platform.prototype.testCollision = testCollision;
Platform.prototype.handleCollision = handleCollision;
MovingPlatform.prototype. // both of the above, plus the movePlatform method
This is a lot by hand.
That's why functions in different libraries will clone or extend objects.
var bunchOfComponents = {
a : function () { },
b : 32,
c : { }
},
myObj = {};
copy(myObj, bunchOfComponents);
myObj.a();
myObj.b; //32
Your function-reuse goes up, while the horror of writing proper Class-based, hierarchical inheritance, with virtual-overrides, abstracts, and shared-private properties, by hand, goes down.
Getting inheritance right in Javascript is somewhat tricky if you're used to class-based languages.
If you're not sharing a lot of behaviours, you might find it easier to just create some shared methods, then make them available to objects of each platform type.
//Create constructors for each type
var Platform = function(pid,px,py,pw,ph) { //By convention, constructors should start with an uppercase character
...
}
var MovingPlatform = function() {
...
}
//Create some reuseable methods
var step = function() {
...
}
var draw = function() {
...
}
var move = function() {
...
}
//Attach your methods to the prototypes for each constructor
Platform.prototype.step = step;
Platform.prototype.draw = draw;
MovingPlatform.prototype.step = step;
MovingPlatform.prototype.draw = draw;
MovingPlatform.prototype.move = move;
...etc
That said, if you do want to build up a proper inheritance chain, there are plenty of articles available to help you: 1 2 3 4

Javascript mixins when using the module pattern

I've been using the module pattern for a while, but recently have started wanting to mix in functions and properties into them to increase code re-use. I've read some good resources on the subject, but still am a bit uncertain as to the best approach. Here is a module:
var myModule = function () {
var privateConfigVar = "Private!";
//"constructor"
function module() {}
module.publicMethod = function () {
console.log('public');
}
function privateMethod1() {
console.log('private');
}
return module;
}
And here is a mixin object:
var myMixin = function () {};
Mixin.prototype = {
mixinMethod1: function () {
console.log('mixin private 1');
},
mixinMethod2: function () {
console.log('mixin private 2');
}
};
Ideally, I'd like to mix-in some methods from other objects as private methods and some as public methods, so that I could call some "extend" function, with a param as "private"/"public". So, that
mixin(myModule, myMixin, "private");
makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope, and:
mixin(myModule, myMixin, "public");
makes the myMixin methods available within myModule by calling module.mixinMethod1() and have correct scope
I've tried using a method that copies properties from one prototype to another, I've tried the underscore extend method to copy properties of the object from one to to the other, and various things in between. I think I'm a bit turned around regarding scope and prototypes at this point, and would love some direction as to how best to do mixins like this when using the module pattern. Note that it doesn't matter what the object myMixin looks like (whether adding functions to the prototype, or a module itself), I'm just trying to figure out some way to make it work.
Thank!
So that [some code] makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope
That's impossible. You cannot modify a scope by calling a function, especially not from outside. See also Is it possible to import variables in JavaScript? for the design reasons of that.
So, what can you do?
From outside the module
Nothing to the private scope(s) of module functions. And you cannot use the private functions of the module, obviously. You can extend its prototype with methods (which is the most common), you can even decorate its constructor function. Within those, you can use your own private functions, either completely static ones or class-specific ones.
var myMixin = (function() {
// everything class-unspecific but mixin-local
var staticMixinVariables, …;
function globalPrivateFunction(){…}
function staticMethod(){…}
return function(mod) {
// everything class-specific
// also using the locals from above
mod.staticHelper = function() { staticMixinVariable … };
mod.prototype.mixinMethod1 = staticMethod;
mod.prototype.mixinMethod2 = function(){…};
…
};
})();
// Example:
myMixin(SomeClass)
From within the module
Using the mixin in the module code itself can allow for much greater flexibility.
var myMixin = (function() {
// everything class-unspecific but mixin-local
…
return {
publicHelper1: function(){…},
publicHelper2: function(){…},
decorateInstance: function(o) {
o.xy = …;
},
extendPrototype: function(proto) {
// everything class-specific
// also using the locals from above
proto.mixinMethod1 = staticMethod;
proto.mixinMethod2 = function(){…};
…
}
};
})();
With such an interface, it becomes easy to construct a class that is using this as a mixin (not inheriting from it):
var myClass = (function() {
function Constructor() {
myMixin.decorateInstance(this);
…
}
Constructor.prototype.method1 = function() { myMixin.publicHelper1() … };
Constructor.prototype.method2 = function() { … };
myMixin.extendPrototype(Constructor.prototype);
Constructor.myHelper = myMixin.publicHelper2; // re-export explicitly
return Constructor;
})();
However, the mixin will never have access to the private class variables, nor can it present a private, class-specific API. Still, we can use dependency injection to provide that access explicitly (and having a mixin factory in effect):
var myClass = (function() {
var … // private class functions and variables
var mixer = myMixin(privateClassHelper,
privateClassVariable,
function setPrivateVar(x) {…},
… );
var myHelper = mixer.customHelper, … // local "aliases"
function Constructor(localX) {
mixer.decorateInstance(this, localX);
…
}
… // further using the class-specific private mixer
return Constructor;
})();
Not all techniques shown above need to be used in every mixin, just choose the ones you need. Not all possible techniques are shown in the above examples, also :-) The mixin pattern can be applied onto a plain module or inside its declaration as well, the above examples have only shown classes with prototypes.
For a few good examples, and a theoretical distinction between (stateless) Traits, (stateful) Mixins and their "privileged" counterparts, have a look at this presentation.
The with keyword can be very usefull to define a scope, but it has also some drawbacks (it is by the way forbidden in strict mode).
Using the with keyword, you can define a private variable privateScope within the body of your module, that would contain all your provate methods :
var myModule = function () {
var privateConfigVar = "Private!";
var privateScope = {};
//"constructor"
function module() {}
var proto = module.prototype;//avoids multiple attribute lookup
//Let's re-define you example' private method, but with a new strategy
privateScope['privateMethod1'] = function() {
console.log('private');
}
proto.publicMethod = function () {
with(privateScope){
//this call should work
privateMethod1();
}
console.log('public');
}
proto.publicMethod2=function(name,fn){
with(privateScope){
//this will be defined later by a Mixin
otherPrivateMethod();
}
console.log('public2');
}
proto.definePrivateFunction=function(name,fn){
privateScope[name] = fn;
}
return module;
}
Your mixin will use the definePrivateFunction we just defined to add private methods to the private scope :
//An example mixin implementation
function Mixin(source,target,flag){
if(flag==="private"){
for(var currentMethodName in source){
target.definePrivateFunction(currentMethodName,source[currentMethod])
}
}else{
for(var currentMethodName in source){
target[currentMethodName]=source[currentMethod];
}
}
}
The following code should work fine:
var test = myModule();
var testInstance = new test();
testInstance.publicMethod();// will call the private method defined internally
Mixin({
otherPrivateMethod:function(){
console.log("other Prvate Method called")
}
},test.prototype,"private");
testInstance.publicMethod2();// will call the private method defined by the mixin
Ideally, I'd like to mix-in some methods from other objects as private methods and some as public methods, so that I could call some "extend" function, with a param as "private"/"public". ...
As it already has been mentioned, there is no way of achieving exactly this goal.
So, that ... makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope, and: ... makes the myMixin methods available within myModule by calling module.mixinMethod1() and have correct scope.
And referring to scope ... this is a closed address space created by functions.
Except for closures, scope only is available during a function's runtime
within this function's body. It never ever can be manipulated/spoofed.
The term one is looking for is context. JavaScript, being in many ways highly
dynamic, is build upon late binding (the object/target/context a method is called
on gets evaluated/looked up at runtime) and two kinds of delegation.
Context gets delegated either automatically by "walking the prototype chain"
or explicitly by one of both call methods which every function object does provide
- either call or apply.
Thus JavaScript already at language core level does offer a function based
Mixin pattern that is mightier than any of the available extend(s) or mixin
implementations for it provides delegation for free and is able of passing
around state which almost every of the blamed helpers does lack unless there
was effort of implementing this feature again in a rather roundabout fashion
(or ass-backwards to put it bluntly).
Bergi for his explanation already earned the bounties.
Within his answer's last paragraph there is a link to resources of mine that
already got outdated 3 month after giving the referred talk. Due of not having
enough reputation points, I'm not able to comment his answer directly. For this
I'll take the chance pointing now to the latest state of my personal research and
understanding of »The many talents of JavaScript for generalizing Role Oriented Programming approaches like Traits and Mixins«
Back again answering the OP's question.
I'm going to change the two first given code examples from the assumed module pattern
and the rather exemplarily provided mixin code base towards a plain constructor function
and what I'm meanwhile tempted to call a "proxified" and/or "bicontextual" mixin in order
to boil down the mechanics of delegating two different target/context objects at once.
Thus demonstrating a pure function based mixin pattern that might come closest to what
the OP tries to achieve.
var MyBicontextualMixin = function (localProxy) {
localProxy.proxifiedAccessible = function () {
console.log("proxified accessible.");
};
this.publiclyAccessible = function () {
console.log("publicly accessible.");
};
};
var MyConstructor = function () {
var localProxy = {};
MyBicontextualMixin.call(this, localProxy);
var locallyAccessible = localProxy.proxifiedAccessible;
// call 'em
locallyAccessible(); // "proxified accessible."
this.publiclyAccessible(); // "publicly accessible."
};
(new MyConstructor);
// will log:
//
// proxified accessible.
// publicly accessible.
This special pattern also is the underlying base for composing pure
function based Traits that rely on conflict resolution functionality
provided by "proxified" Mixins that won't expose this functionality
into public.
And for not ending up that theoretical there will be a "real world example",
composing a Queue module out of various reusable mixins that entirely
worship the approach of DRY. It also should answer the OP's question about
how to achieve encapsulation and exposition build only upon the module
pattern and function based mixin composition.
var Enumerable_first_last_item = (function (global) {
var
parseFloat = global.parseFloat,
math_floor = global.Math.floor,
// shared code.
first = function () {
return this[0];
},
last = function () {
return this[this.length - 1];
},
item = function (idx) {
return this[math_floor(parseFloat(idx, 10))];
}
;
return function () { // [Enumerable_first_last_item] Mixin.
var enumerable = this;
enumerable.first = first;
enumerable.last = last;
enumerable.item = item;
};
}(window || this));
var Enumerable_first_last_item_proxified = function (list) {
Enumerable_first_last_item.call(list);
// implementing the proxified / bicontextual [Enumerable_first_last_item] Mixin.
var enumerable = this;
enumerable.first = function () {
return list.first();
};
enumerable.last = function () {
return list.last();
};
enumerable.item = function (idx) {
return list.item(idx);
};
};
var Allocable = (function (Array) {
var
array_from = ((typeof Array.from == "function") && Array.from) || (function (array_prototype_slice) {
return function (listType) {
return array_prototype_slice.call(listType);
};
}(Array.prototype.slice))
;
return function (list) { // proxified / bicontextual [Allocable] Mixin.
var
allocable = this
;
allocable.valueOf = allocable.toArray = function () {
return array_from(list);
};
allocable.toString = function () {
return ("" + list);
};
allocable.size = function () {
return list.length;
};
Enumerable_first_last_item_proxified.call(allocable, list);
};
}(Array));
var Queue = (function () { // [Queue] Module.
var
onEnqueue = function (queue, type) {
//queue.dispatchEvent({type: "enqueue", item: type});
},
onDequeue = function (queue, type) {
//queue.dispatchEvent({type: "dequeue", item: type});
}/*,
onEmpty = function (queue) {
//queue.dispatchEvent({type: "empty"});
}*/,
onEmpty = function (queue) {
//queue.dispatchEvent("empty");
},
Queue = function () { // [Queue] Constructor.
var
queue = this,
list = []
;
queue.enqueue = function (type) {
list.push(type);
onEnqueue(queue, type);
return type;
};
queue.dequeue = function () {
var type = list.shift();
onDequeue(queue, type);
(list.length || onEmpty(queue));
return type;
};
//Observable.call(queue); // applying the [Observable] Mixin.
Allocable.call(queue, list); // applying the bicontextual [Allocable] Mixin.
},
isQueue = function (type) {
return !!(type && (type instanceof Queue));
},
createQueue = function () { // [Queue] Factory.
return (new Queue);
}
;
return { // [Queue] Module.
isQueue : isQueue,
create : createQueue
};
}());
var q = Queue.create();
//q.addEventListener("enqueue", function (evt) {/* ... */});
//q.addEventListener("dequeue", function (evt) {/* ... */});
//q.addEventListener("empty", function (evt) {/* ... */});
console.log("q : ", q); // { .., .., .., }
console.log("q.size() : ", q.size()); // 0
console.log("q.valueOf() : ", q.valueOf()); // []
"the quick brown fox jumped over the lazy dog".split(/\s+/).forEach(function (elm/*, idx, arr*/) {
console.log("q.enqueue(\"" + elm + "\")", q.enqueue(elm));
});
console.log("q.size() : ", q.size()); // 9
console.log("q.toArray() : ", q.toArray()); // [ .., .., .., ]
console.log("q.first() : ", q.first()); // "the"
console.log("q.last() : ", q.last()); // "dog"
console.log("q.item(2) : ", q.item(2)); // "brown"
console.log("q.item(5) : ", q.item(5)); // "over"
console.log("q.dequeue()", q.dequeue()); // "the"
console.log("q.dequeue()", q.dequeue()); // "quick"
console.log("q.dequeue()", q.dequeue()); // "brown"
console.log("q.dequeue()", q.dequeue()); // "fox"
console.log("q.dequeue()", q.dequeue()); // "jumped"
console.log("q.size() : ", q.size()); // 4
console.log("q.toArray() : ", q.toArray()); // [ .., .., .., ]
console.log("q.first() : ", q.first()); // "over"
console.log("q.last() : ", q.last()); // "dog"
console.log("q.item(2) : ", q.item(2)); // "lazy"
console.log("q.item(5) : ", q.item(5)); // undefined
.as-console-wrapper { max-height: 100%!important; top: 0; }

Better way to access private members in Javascript

After reading a bit on Javascript's prototypical inheritance model, I change my style of constructing a class from
var Some_Class = function() {
this.public_method = function() {
};
(function() {
// constructor
}).call(this)
}
to
var Some_Class = function() {
(function() {
// constructor
}).call(this)
}
Some_Class.prototype.public_method = function() {
};
Although I understand that this is a good practice, but I am not allowed to access private methods from the public method anymore
var Some_Class = function() {
var private_member = 'whatever';
(function() {
// constructor
}).call(this)
}
Some_Class.prototype.public_method = function() {
return private_member; // not possible
};
After reading through an article here (Closure-created constructor), then I came out with this
var Some_Class = function() {
var private_member = 'whatever',
private_method = function(_some_value) {
// private method implementation
};
if(!arguments.callee.prototype.public_method) {
arguments.callee.prototype.public_method = function() {
private_method.call(this, private_method);
};
}
(function() {
// constructor
}).call(this)
}
However, what are the drawbacks of doing this?! or is there a better way of doing this if I want to access private member in the public method?
My answer is a non-answer: there's no built-in private access in JavaScript but that's okay because YAGNI. Here's how I make private members in my code:
function Some_Class() {
this._private_member = 'whatever';
}
Some_Class.prototype._private_method = function() {
};
That's good enough. It's not really worth it to jump through hoops when the only real purpose of private is to protect yourself from... yourself.
(I say this having spent many hours myself playing around with every permutation of closures and prototyping, just as you are, and finally saying "screw it, it's not worth it".)
The use of function scope variables and closures to simulate private variables/functions is a well established idiom in the javascript community. If the variable is truly intended to be private, I see no drawback to this approach (although some claim that performant code on certain browsers/hosts has to pay attention to how many closures get created).
In your example, the private_method (and its environment) is shared across all objects - since your public_method closure is created only the first time the object is constructed (and bound to the constructor's prototype property that sets the created object's internal prototype chain) - so the private_method that is used is only the one that was created the first time.
Here is some sample code that will help illustrate what is going on:
var global = 1;
var Some_Class = function() {
var private_method = 'whatever';
var now = ++global;
print("outer now: " + now );
private_method = function(_some_value) {
// private method implementation
print("inner now: " + now);
};
if(!arguments.callee.prototype.public_method) {
arguments.callee.prototype.public_method = function() {
private_method.call(this, private_method);
};
}
(function() {
// constructor
}).call(this)
}
new Some_Class().public_method(); // outer now: 2, inner now: 2
new Some_Class().public_method(); // outer now: 3, inner now: 2
new Some_Class().public_method(); // outer now: 4, inner now: 2
Are you sure that is what you want?
If your private_method does not need to refer to the enclosing object's state, then I see little benefit in doing things the way you are doing.
What I usually do (if i have to use 'new' to create my object) is the following:
function MyClass() {
var private_var = 1;
function private_func()
{
}
this.public_func = function()
{
// do something
private_func();
}
this.public_var = 10;
}
var myObj = new MyClass();
The downside to this approach is that each time you construct the object via 'new' you re-create all the closures. But unless my profiler tells me that this design choice needs to be optimized, i prefer its simplicity and clarity.
Also I don't see the benefit in your code of doing the following either:
(function() { }).call(this); // call the constructor
Why are you creating a separate scope in your constructor?
If you have not done so already have a look at this JavaScript Module Pattern, which allows you to access private methods and variables from within the public functions, etc.
Echoing John Kugelman: It's impossible to create private members in javascript. Live with it. Even if you create a enclosure like this:
function SomeClass() {
var _private = 0;
this.public_acessor = function() {return _private};
}
Any user can still write:
SomeClass._not_private_anymore = 1;
SomeClass.public_acessor = function () {return this._not_private_anymore};
In the end, you can't trust any public member to be the same you declared. If someone is up to break your code, he will! Another user won't break your code only because it's useful.
Works with prototype, not just singleton. Problem is, when it's time to subclass, my subclass has no access to the privates

Categories

Resources