Is John Resig's OO JavaScript implementation production safe? - javascript

For a long time I have been throwing around the idea of making my JavaScript more object oriented. I have looked at a few different implementations of this as well but I just cannot decide if it is necessary or not.
What I am trying to answer are the following questions
Is John Resig's simple inheritance structure safe to use for production?
Is there any way to be able to tell how well it has been tested?
Besides Joose what other choices do I have for this purpose? I need one that is easy to use, fast, and robust. It also needs to be compatible with jQuery.

Huh. It looks much more complicated than it needs to be, to me.
Actually looking more closely I really take exception to what it is doing with providing this._super() whilst in a method, to call the superclass method.
The code introduces a reliance on typeof==='function' (unreliable for some objects), Function#toString (argh, function decomposition is also unreliable), and deciding whether to wrap based on whether you've used the sequence of bytes _super in the function body (even if you've only used it in a string. and if you try eg. this['_'+'super'] it'll fail).
And if you're storing properties on your function objects (eg MyClass.myFunction.SOME_PRIVATE_CONSTANT, which you might do to keep namespaces clean) the wrapping will stop you from getting at those properties. And if an exception is thrown in a method and caught in another method of the same object, _super will end up pointing at the wrong thing.
All this is just to make calling your superclass's method-of-the-same name easier. But I don't think that's especially hard to do in JS anyway. It's too clever for its own good, and in the process making the whole less reliable. (Oh, and arguments.callee isn't valid in Strict Mode, though that's not really his fault since that occurred after he posted it.)
Here's what I'm using for classes at the moment. I don't claim that this is the “best” JS class system, because there are loads of different ways of doing it and a bunch of different features you might want to add or not add. But it's very lightweight and aims at being ‘JavaScriptic’, if that's a word. (It isn't.)
Function.prototype.makeSubclass= function() {
function Class() {
if (!(this instanceof Class))
throw 'Constructor function requires new operator';
if ('_init' in this)
this._init.apply(this, arguments);
}
if (this!==Object) {
Function.prototype.makeSubclass.nonconstructor.prototype= this.prototype;
Class.prototype= new Function.prototype.makeSubclass.nonconstructor();
}
return Class;
};
Function.prototype.makeSubclass.nonconstructor= function() {};
It provides:
protection against accidental missing new. The alternative is to silently redirect X() to new X() so missing new works. It's a toss-up which is best; I went for explicit error so that one doesn't get used to writing without new and causing problems on other objects not defined like that. Either way is better than the unacceptable JS default of letting this. properties fall onto window and mysteriously going wrong later.
an inheritable _init method, so you don't have to write a constructor-function that does nothing but call the superclass constructor function.
and that's really all.
Here's how you might use it to implement Resig's example:
var Person= Object.makeSubclass();
Person.prototype._init= function(isDancing) {
this.dancing= isDancing;
};
Person.prototype.dance= function() {
return this.dancing;
};
var Ninja = Person.makeSubclass();
Ninja.prototype._init= function() {
Person.prototype._init.call(this, false);
};
Ninja.prototype.swingSword= function() {
return true;
};
var p= new Person(true);
p.dance(); // => true
var n = new Ninja();
n.dance(); // => false
n.swingSword(); // => true
// Should all be true
p instanceof Person &&
n instanceof Ninja && n instanceof Person
Superclass-calling is done by specifically naming the method you want and calling it, a bit like in Python. You could add a _super member to the constructor function if you wanted to avoid naming Person again (so you'd say Ninja._super.prototype._init.call, or perhaps Ninja._base._init.call).

JavaScript is prototype based and not class based. My recommendation is not to fight it and declare subtypes the JS way:
MyDerivedObj.prototype = new MySuperObj();
MyDerivedObj.prototype.constructor = MyDerivedObj;

See how far you can get without using inheritance at all. Treat it as a performance hack (to be applied reluctantly where genuinely necessary) rather than a design principle.
In an a highly dynamic language like JS, it is rarely necessary to know whether an object is a Person. You just need to know if it has a firstName property or an eatFood method. You don't often need to know if an object is an array; if it has a length property and some other properties named after integers, that's usually good enough (e.g. the Arguments object). "If it walks like a duck and quacks like a duck, it's a duck."
// give back a duck
return {
walk: function() { ... },
quack: function() { ... }
};
Yes, if you're making very large numbers of small objects, each with dozens of methods, then by all means assign those methods to the prototype to avoid the overhead of creating dozens of slots in every instance. But treat that as a way of reducing memory overhead - a mere optimisation. And do your users a favour by hiding your use of new behind some kind of factory function, so they don't even need to know how the object is created. They just need to know it has method foo or property bar.
(And note that you won't really be modelling classical inheritance in that scenario. It's merely the equivalent of defining a single class to get the efficiency of a shared vtable.)

Related

Javascript - Dependency Injection without implementation-contract (interface)

New to javascript. Let's say I have a constructor like this:
function Dependent(dependency) {
this.doSomething = function(x) {
dependency.doSomethingReal(x);
}
}
var impl = new SomeImplementation();
var dependent = new Dependent(impl);
console.log(dependent.doSomething(3));
My understanding is that there is nothing in the language that can help to ensure that impl can in fact fulfill its responsibilities (actually has a method called doSomethingReal that takes an argument).
A few questions come up:
In the constructor-function should I manually check the dependency argument to ensure that it has all the things Dependent requires?
Should I just not worry about it?
How do the other libraries deal with this situation? For example, I know there are a couple DI projects...or MVC projects that for example require their view objects to implement certain well-known-methods.
I realize that I can just pass a function into the constructor. In other words, if dependency was a function then we'd just invoke it. Is that the safest way to do it? I don't think that's what the MVC projects do...also there are times that it makes sense to pass in an object.
You can use instanceof to check if an object is an instance of another one.
For example, within your code:
function Dependent(dependency) {
// here we could check that dependency is an instance of SomeImplementation
if (!(dependency instanceof SomeImplementation))
throw "dependency must be an instance of SomeImplementation";
this.doSomething = function(x) {
dependency.doSomethingReal(x);
}
}
var impl = new SomeImplementation();
var dependent = new Dependent(impl);
console.log(dependent.doSomething(3));
In javascript it's also common to use the 'duck typing' method to validate an object. For example:
console.log (
'isABird' in duck &&
'walks' in duck &&
'swims' in duck &&
'quacks' in duck ?
"juhm... I'm pretty sure we're dealing with a duck" :
"meh... since I a expect a duck to be a bird, walks, swims and quacks, then this buddy is definitely not a duck"
);
Well, as far as I have understood it, Duck Typing would be the natural way to deal with this problem in JavaScript since JavaScript is not a strict typed language.
In consequence this would mean that you indeed just accept, that JavaScript is loosely typed and that you will have to deal with runtime-errors when you try to access a method on an object that does not have this method. (Your option 2)
Apart from that, you could use a pattern that tries to simulate interfaces or abstract classes in JavaScript which works like you have suggested in option 1 and which is described here in detail:
http://www.addyosmani.com/resources/essentialjsdesignpatterns/book/#decoratorpatternjavascript
(Chapter "Pseudo-classical Decorators")
But this would also just lead to runtime-errors. The exceptions might just rise up a little earlier but not at "compile time". So in both designs you will need to test your application in order to find type-related-errors.
So I tent to accept that Duck Typing.

Object.prototype is Verboten?

RECAP:
Ok, it's been a while since I asked this question. As usual, I went and augmented the Object.prototype anyway, in spite of all the valid arguments against it given both here and elsewhere on the web. I guess I'm just that kind of stubborn jerk.
I've tried to come up with a conclusive way of preventing the new method from mucking up any expected behaviour, which proved to be a very tough, but informative thing to do. I've learned a great many things about JavaScript. Not in the least that I won't be trying anything as brash as messing with the native prototypes, (except for String.prototype.trim for IE < 9).
In this particular case, I don't use any libs, so conflicts were not my main concern. But having dug a little deeper into possible mishaps when playing around with native prototypes, I'm not likely to try this code in combination with any lib.
By looking into this prototype approach, I've come to a better understanding of the model itself. I was treating prototypes as some form of flexible traditional abstract class, making me cling on to traditional OOP thinking. This viewpoint doesn't really do the prototype model justice. Douglas Crockford wrote about this pitfall, sadly the pink background kept me from reading the full article.
I've decided to update this question in the off chance people who read this are tempted to see for themselves. All I can say to that is: by all means, do. I hope you learn a couple of neat things, as I did, before deciding to abandon this rather silly idea. A simple function might work just as well, or better even, especially in this case. After all, the real beauty of it is, that by adding just 3 lines of code, you can use that very same function to augment specific objects' prototypes all the same.
I know I'm about to ask a question that has been around for quite a while, but: Why is Object.prototype considered to be off limits? It's there, and it can be augmented all the same, like any other prototype. Why, then, shouldn't you take advantage of this. To my mind, as long as you know what you're doing, there's no reason to steer clear of the Object prototype. Take this method for example:
if (!Object.prototype.getProperties)
{
Object.prototype.getProperties = function(f)
{
"use strict";
var i,ret;
f = f || false;
ret = [];
for (i in this)
{
if (this.hasOwnProperty(i))
{
if (f === false && typeof this[i] === 'function')
{
continue;
}
ret.push(i);
}
}
return ret;
};
}
Basically, it's the same old for...in loop you would either keep safe in a function, or write over and over again. I know it will be added to all objects, and since nearly every inheritance chain in JavaScript can be traced back to the Object.prototype, but in my script, I consider it the lesser of two evils.
Perhaps, someone could do a better job at telling me where I'm wrong than this chap, among others. Whilst looking for reasons people gave NOT to touch the Object's prototype, one thing kept cropping up: it breaks the for..in loop-thingy, but then again: many frameworks do, too, not to mention your own inheritance chains. It is therefore bad practice not to include a .hasOwnProperty check when looping through an object's properties, to my mind.
I also found this rather interesting. Again: one comment is quite unequivocal: extending native prototypes is bad practice, but if the V8 people do it, who am I to say they're wrong? I know, that argument doesn't quite stack up.
The point is: I can't really see a problem with the above code. I like it, use it a lot and so far, it hasn't let me down once. I'm even thinking of attaching a couple more functions to the Object prototype. Unless somebody can tell me why I shouldn't, that is.
The fact is, it's fine as long as you know what you're doing and what the costs are. But it's a big "if". Some examples of the costs:
You'll need to do extensive testing with any library you choose to use with an environment that augments Object.prototype, because the overwhelming convention is that a blank object will have no enumerable properties. By adding an enumerable property to Object.prototype, you're making that convention false. E.g., this is quite common:
var obj = {"a": 1, "b": 2};
var name;
for (name in obj) {
console.log(name);
}
...with the overwhelming convention being that only "a" and "b" will show up, not "getProperties".
Anyone working on the code will have to be schooled in the fact that that convention (above) is not being followed.
You can mitigate the above by using Object.defineProperty (and similar) if supported, but beware that even in 2014, browsers like IE8 that don't support it properly remain in significant use (though we can hope that will change quickly now that XP is officially EOL'd). That's because using Object.defineProperty, you can add non-enumerable properties (ones that don't show up in for-in loops) and so you'll have a lot less trouble (at that point, you're primarily worried about name conflicts) — but it only works on systems that correctly implement Object.defineProperty (and a correct implementation cannot be "shimmed").
In your example, I wouldn't add getProperties to Object.prototype; I'd add it to Object and accept the object as an argument, like ES5 does for getPrototypeOf and similar.
Be aware that the Prototype library gets a lot of flak for extending Array.prototype because of how that affects for..in loops. And that's just Arrays (which you shouldn't use for..in on anyway (unless you're using the hasOwnProperty guard and quite probably String(Number(name)) === name as well).
...if the V8 people do it, who am I to say they're wrong?
On V8, you can rely on Object.defineProperty, because V8 is an entirely ES5-compliant engine.
Note that even when the properties are non-enumerable, there are issues. Years ago, Prototype (indirectly) defined a filter function on Array.prototype. And it does what you'd expect: Calls an iterator function and creates a new array based on elements the function chooses. Then ECMAScript5 came along and defined Array.prototype.filter to do much the same thing. But there's the rub: Much the same thing. In particular, the signature of the iterator functions that get called is different (ECMAScript5 includes an argument that Prototype didn't). It could have been much worse than that (and I suspect — but cannot prove — that TC39 were aware of Prototype and intentionally avoided too much conflict with it).
So: If you're going to do it, be aware of the risks and costs. The ugly, edge-case bugs you can run into as a result of trying to use off-the-shelf libraries could really cost you time...
If frameworks and libraries generally did what you are proposing, it would very soon happen that two different frameworks would define two different functionalities as the same method of Object (or Array, Number... or any of the existing object prototypes). It is therefore better to add such new functionality into its own namespace.
For example... imagine, you would have a library that would serialize objects to json and a library that would serialize them to XML and both would define their functionality as
Object.prototype.serialize = function() { ... }
and you would only be able to use the one that was defined later. So it is better if they don't do this, but instead
JSONSerializingLibrary.seralize = function(obj) { ... }
XMLSerializingLibrary.seralize = function(obj) { ... }
It could also happen that a new functionality is defined in a new ECMAscript standard, or added by a browser vendor. So imagine that your browsers would also add a serialize function. That would again cause conflict with libraries that defined the same function. Even if the libraries' functionality was the same as that which is built in to the browser, the interpreted script functions would override the native function which would, in fact, be faster.
See http://www.websanova.com/tutorials/javascript/extending-javascript-the-right-way
Which addresses some, but not all, the objections raised. The objection about different libraries creating clashing methods can be alleviated by raising an exception if a domain specific method is already present in Object.prototype. That will at least provide an alert when this undesirable event happens.
Inspired by this post I developed the following which is also available in the comments of the cited page.
!Object.implement && Object.defineProperty (Object.prototype, 'implement', {
// based on http://www.websanova.com/tutorials/javascript/extending-javascript-the-right-way
value: function (mthd, fnc, cfg) { // adds fnc to prototype under name mthd
if (typeof mthd === 'function') { // find mthd from function source
cfg = fnc, fnc = mthd;
(mthd = (fnc.toString ().match (/^function\s+([a-z$_][\w$]+)/i) || [0, ''])[1]);
}
mthd && !this.prototype[mthd] &&
Object.defineProperty (this.prototype, mthd, {configurable: !!cfg, value: fnc, enumerable: false});
}
});
Object.implement (function forEach (fnc) {
for (var key in this)
this.hasOwnProperty (key) && fnc (this[key], key, this);
});
I have used this primarily to add standard defined function on implementation that do not support them.

Can you extend an object that has access to private properties with a function that can also access those private properties?

I am creating an object inside of an enclosure. Also in the enclosure are private properties that the object's functions can access - and this works as expected.
My issue: I want others to be able to extend my object with functions of their own (functions from a different context), but those functions will also need access to the same private properties - and I have not been able to find a way to make this work.
I've tried various configurations of .call, and also wrapping their function in a new function, amongst other things. I feel like I've gotten close to a solution, but have just fallen short.
Here's a bit of simplified example code that accurately reflects my situation:
//extension object
//fn2 can be any function, with any number of arguments, etc.
var obj1 = {};
obj1.fn2 = function (s1, s2){ console.log(priv); };
//actual object
var obj2 = (function (){
//private property
var priv = "hello world";
//return object
var obj3 = {};
//return object's native fn (works)
obj3.fn = function (s){ console.log(priv); };
//extension happens here - but is obviously not correct
obj3.fn2 = obj1.fn2;
//return object
return obj3;
})();
//try output
obj2.fn("goodbye world"); //works
obj2.fn2("goodbye world", "thx 4 teh phish"); //fails
Any insight would be appreciated. And I totally understand if what I want just isn't possible - but it sure seems like it should be :P
EDIT: Thank you all for the responses. I fully understand that the properties are more easily accessed as public, and that normally inherited objects won't have access to them otherwise. However, since the new function is being attached to the original object I have to believe there's a way to use the original context and not the context the new function was created in.
Now, I'm the first to say that eval is evil - and, in fact, I've never used it, or even considered using it, before. However, I'm trying everything I can think of to make this work - and I stumbled across this (seemingly) working solution:
obj3.fn2 = eval(obj1.fn2.toString());
So, if I check to make sure that obj1.fn2 is a typeof function, is there any way this could be harmful to my code? It doesn't execute the function, so I can't see how - but maybe I'm missing something?
Javascript doesn't have a "protected" analog. You either get super private or completely public. From here you can choose to:
Reconsider your class design, and have the subclasses depend only on the public interface of the parent class.
Add getter and setter functions to the public interface. Not necessarily the best thing though as you might just as well make the properties public (besides best practice issues and whatnot)
Just use public properties instead. This is the "natural" way to do OO inheritance in Javascript and is usually not a problem if you use a donvention like adding an underscore to the beggining of the name. As a bonus you can use the prototypal inheritance feature (it is nice knowing how to use this instead of only closure-based classes)
function Base(){
this._priv = "Hello world"
};
Base.prototype = {
fn: function(){
console.log(this._priv);
}
}
var obj2 = new Base();
obj2.fn = function(){ ... }
I hate to answer my own question - seems like a bit of a faux pas - but c'est la vie. (because I woke up French today?)
So, while I found that the eval() solution I presented last night in the edit to my original question does seem to be a valid solution, and a proper use of eval for retaining the object's context within the new function, it is far from perfect.
Firstly, it works in FF, but both IE and Chrome seem to hate it (those were the next ones I tried, and I quit trying others after they both failed). Though I'm sure it could probably be made to work across browsers, it seems like a hassle.
Secondly, it does give quite a bit of power to the new function, and as I look at my code more I do like the idea of controlling exactly what these new functions being added to my object get access to.
Thirdly, .eval() is typically pretty slow - and it turns out that .apply() (which is typically faster) just may work well enough.
This is because I realized at some point last night that no new functions on this object will need to set any of the private variables (at least, I'm fairly certain they won't) - and .apply() works fine to pass the values through for them to read.
I'm sure there's more to it than just those 3 things, but for now I think I'm going to go with more of a 'wrapper' solution - something like this:
var f = function (){
var fauxThis = {};
fauxThis.priv = priv;
obj1.fn2.apply(fauxThis, arguments);
};
obj3.fn2 = f;
//(To be placed where I had "obj3.fn2 = obj1.fn2;")
I am certainly willing now to consider the use of eval() in very specific cases - and may even revisit this specific use of it before I make my final decision of which direction to take. (especially if I can think of a case where the private value would need to be set)
Thanks all for your input!
The quickest and easiest solution is to prefix any supposedly private properties with the underscore (_).
Personally I like to bottle my private properties into a single object which would be placed on the object, like so:
obj.publicProp = 20;
obj._.privateProp = true;
I wouldn't worry so much about it though, the underscore is basically a universal symbol for private so those using the script will know that it's private and shouldn't be touched. Or, better yet, just leave it out of the public documentation ;)
There are other methods and you can use which do emulate "true" protected variables, but they're not the best as they avoid garbage collection, and can be clunky to use.

What is the purpose of `this.prototype.constructor = this;`?

In the ASP.NET ajax library, there is a line that makes me confused.
Type.prototype.registerClass = function Type$registerClass(typeName, baseType, interfaceTypes) {
//..
this.prototype.constructor = this;
//..
}
I know that (this.prototype.constructor === this) == true, so what is significance of this line? I remove the line, and test the library with some code. It seems it is okay. What is the purpose of this line?
I'm not familiar with the asp.net libs, but:
A common pattern in Javascript, especially when trying to simulate class based systems, is to reassign the prototype object to an instance of another object, rather than just adding properties to the prototype object JS gives you. One issue with this is that it gives you the wrong constructor - unless perhaps one resets with a 'correct' value.
My guess would be that at some point before this.prototype.constructor = this;, some object was assigned to the prototype property, which overwrote prototype.constructor. This trick is often used when inheriting object prototypes easily, but still being able to call instanceof to see whether an object instance is of a certain type.
Hard to tell anything more specific than that in this case and a seriously old question, however it might be useful to somebody.

Is JavaScript's "new" keyword considered harmful?

In another question, a user pointed out that the new keyword was dangerous to use and proposed a solution to object creation that did not use new. I didn't believe that was true, mostly because I've used Prototype, Script.aculo.us and other excellent JavaScript libraries, and everyone of them used the new keyword.
In spite of that, yesterday I was watching Douglas Crockford's talk at YUI theater and he said the exactly same thing, that he didn't use the new keyword anymore in his code (Crockford on JavaScript - Act III: Function the Ultimate - 50:23 minutes).
Is it 'bad' to use the new keyword? What are the advantages and disadvantages of using it?
Crockford has done a lot to popularize good JavaScript techniques. His opinionated stance on key elements of the language have sparked many useful discussions. That said, there are far too many people that take each proclamation of "bad" or "harmful" as gospel, refusing to look beyond one man's opinion. It can be a bit frustrating at times.
Use of the functionality provided by the new keyword has several advantages over building each object from scratch:
Prototype inheritance. While often looked at with a mix of suspicion and derision by those accustomed to class-based OO languages, JavaScript's native inheritance technique is a simple and surprisingly effective means of code re-use. And the new keyword is the canonical (and only available cross-platform) means of using it.
Performance. This is a side-effect of #1: if I want to add 10 methods to every object I create, I could just write a creation function that manually assigns each method to each new object... Or, I could assign them to the creation function's prototype and use new to stamp out new objects. Not only is this faster (no code needed for each and every method on the prototype), it avoids ballooning each object with separate properties for each method. On slower machines (or especially, slower JS interpreters) when many objects are being created this can mean a significant savings in time and memory.
And yes, new has one crucial disadvantage, ably described by other answers: if you forget to use it, your code will break without warning. Fortunately, that disadvantage is easily mitigated - simply add a bit of code to the function itself:
function foo()
{
// if user accidentally omits the new keyword, this will
// silently correct the problem...
if ( !(this instanceof foo) )
return new foo();
// constructor logic follows...
}
Now you can have the advantages of new without having to worry about problems caused by accidentally misuse.
John Resig goes into detail on this technique in his Simple "Class" Instantiation post, as well as including a means of building this behavior into your "classes" by default. Definitely worth a read... as is his upcoming book, Secrets of the JavaScript Ninja, which finds hidden gold in this and many other "harmful" features of the JavaScript language (the chapter on with is especially enlightening for those of us who initially dismissed this much-maligned feature as a gimmick).
A general-purpose sanity check
You could even add an assertion to the check if the thought of broken code silently working bothers you. Or, as some commented, use the check to introduce a runtime exception:
if ( !(this instanceof arguments.callee) )
throw new Error("Constructor called as a function");
Note that this snippet is able to avoid hard-coding the constructor function name, as unlike the previous example it has no need to actually instantiate the object - therefore, it can be copied into each target function without modification.
ES5 taketh away
As Sean McMillan, stephenbez and jrh noted, the use of arguments.callee is invalid in ES5's strict mode. So the above pattern will throw an error if you use it in that context.
ES6 and an entirely harmless new
ES6 introduces Classes to JavaScript - no, not in the weird Java-aping way that old-school Crockford did, but in spirit much more like the light-weight way he (and others) later adopted, taking the best parts of prototypal inheritance and baking common patterns into the language itself.
...and part of that includes a safe new:
class foo
{
constructor()
{
// constructor logic that will ONLY be hit
// if properly constructed via new
}
}
// bad invocation
foo(); // throws,
// Uncaught TypeError: class constructors must be invoked with 'new'
But what if you don't want to use the new sugar? What if you just want to update your perfectly fine old-style prototypal code with the sort of safety checks shown above such that they keep working in strict mode?
Well, as Nick Parsons notes, ES6 provides a handy check for that as well, in the form of new.target:
function foo()
{
if ( !(new.target) )
throw new Error("Constructor called as a function");
// constructor logic follows...
}
So whichever approach you choose, you can - with a bit of thought and good hygiene - use new without harm.
I have just read some parts of Crockford's book "JavaScript: The Good Parts". I get the feeling that he considers everything that ever has bitten him as harmful:
About switch fall through:
I never allow switch cases to fall
through to the next case. I once found
a bug in my code caused by an
unintended fall through immediately
after having made a vigorous speech
about why fall through was sometimes
useful. (page 97, ISBN
978-0-596-51774-8)
About ++ and --:
The ++ (increment) and -- (decrement)
operators have been known to
contribute to bad code by encouraging
excessive trickiness. They are second
only to faulty architecture in
enabling viruses and other security
menaces. (page 122)
About new:
If you forget to include the new
prefix when calling a constructor
function, then this will not be
bound to the new object. Sadly, this
will be bound to the global object, so
instead of augmenting your new object,
you will be clobbering global
variables. That is really bad. There
is no compile warning, and there is no
runtime warning. (page 49)
There are more, but I hope you get the picture.
My answer to your question: No, it's not harmful. but if you forget to use it when you should you could have some problems. If you are developing in a good environment you notice that.
In the 5th edition of ECMAScript there is support for strict mode. In strict mode, this is no longer bound to the global object, but to undefined.
JavaScript being a dynamic language, there are a zillion ways to mess up where another language would stop you.
Avoiding a fundamental language feature such as new on the basis that you might mess up is a bit like removing your shiny new shoes before walking through a minefield just in case you might get your shoes muddy.
I use a convention where function names begin with a lowercase letter and 'functions' that are actually class definitions begin with an uppercase letter. The result is a really quite compelling visual clue that the 'syntax' is wrong:
var o = MyClass(); // This is clearly wrong.
On top of this, good naming habits help. After all, functions do things and therefore there should be a verb in its name whereas classes represent objects and are nouns and adjectives without any verb.
var o = chair() // Executing chair is daft.
var o = createChair() // Makes sense.
It's interesting how Stack Overflow's syntax colouring has interpreted the code above.
I am newbie to JavaScript so maybe I am just not too experienced in providing a good view point to this. Yet I want to share my view on this "new" thing.
I have come from the C# world where using the keyword "new" is so natural that it is the factory design pattern that looks weird to me.
When I first code in JavaScript, I don't realize that there is the "new" keyword and code like the one in YUI pattern and it doesn't take me long to run into disaster. I lose track of what a particular line is supposed to be doing when looking back the code I've written. More chaotic is that my mind can't really transit between object instances boundaries when I am "dry-running" the code.
Then, I found the "new" keyword which, to me, "separates" things. With the new keyword, it creates things. Without the new keyword, I know I won't confuse it with creating things unless the function I am invoking gives me strong clues of that.
For instance, with var bar=foo(); I don’t have any clues as what bar could possibly be.... Is it a return value or is it a newly created object? But with var bar = new foo(); I know for sure bar is an object.
Another case for new is what I call Pooh Coding. Winnie-the-Pooh follows his tummy. I say go with the language you are using, not against it.
Chances are that the maintainers of the language will optimize the language for the idioms they try to encourage. If they put a new keyword into the language they probably think it makes sense to be clear when creating a new instance.
Code written following the language's intentions will increase in efficiency with each release. And code avoiding the key constructs of the language will suffer with time.
And this goes well beyond performance. I can't count the times I've heard (or said) "why the hell did they do that?" when finding strange looking code. It often turns out that at the time when the code was written there was some "good" reason for it. Following the Tao of the language is your best insurance for not having your code ridiculed some years from now.
I wrote a post on how to mitigate the problem of calling a constructor without the new keyword.
It's mostly didactic, but it shows how you can create constructors that work with or without new and doesn't require you to add boilerplate code to test this in every constructor.
Constructors without using "new"
Here's the gist of the technique:
/**
* Wraps the passed in constructor so it works with
* or without the new keyword
* #param {Function} realCtor The constructor function.
* Note that this is going to be wrapped
* and should not be used directly
*/
function ctor(realCtor) {
// This is going to be the actual constructor
return function wrapperCtor() {
var obj; // The object that will be created
if (this instanceof wrapperCtor) {
// Called with new
obj = this;
} else {
// Called without new. Create an empty object of the
// correct type without running that constructor
surrogateCtor.prototype = wrapperCtor.prototype;
obj = new surrogateCtor();
}
// Call the real constructor function
realCtor.apply(obj, arguments);
return obj;
}
function surrogateCtor() {}
}
Here's how to use it:
// Create our point constructor
Point = ctor(function(x, y) {
this.x = x;
this.y = y;
});
// This is good
var pt = new Point(20, 30);
// This is OK also
var pt2 = Point(20, 30);
The rationale behind not using the new keyword, is simple:
By not using it at all, you avoid the pitfall that comes with accidentally omitting it. The construction pattern that YUI uses, is an example of how you can avoid the new keyword altogether:
var foo = function () {
var pub = { };
return pub;
}
var bar = foo();
Alternatively, you could do this:
function foo() { }
var bar = new foo();
But by doing so you run risk of someone forgetting to use the new keyword, and the this operator being all FUBAR. As far as I know, there isn't any advantage to doing this (other than you being used to it).
At The End Of The Day: It's about being defensive. Can you use the new statement? Yes. Does it make your code more dangerous? Yes.
If you have ever written C++, it's akin to setting pointers to NULL after you delete them.
I think "new" adds clarity to the code. And clarity is worth everything. It is good to know there are pitfalls, but avoiding them by avoiding clarity doesn't seem like the way for me.
Case 1: new isn't required and should be avoided
var str = new String('asd'); // type: object
var str = String('asd'); // type: string
var num = new Number(12); // type: object
var num = Number(12); // type: number
Case 2: new is required, otherwise you'll get an error
new Date().getFullYear(); // correct, returns the current year, i.e. 2010
Date().getFullYear(); // invalid, returns an error
Here is the briefest summary I could make of the two strongest arguments for and against using the new operator:
Arguments against new
Functions designed to be
instantiated as objects using the
new operator can have disastrous
effects if they are incorrectly
invoked as normal functions. A
function's code in such a case will
be executed in the scope where the
function is called, instead of in
the scope of a local object as
intended. This can cause global
variables and properties to get
overwritten with disastrous
consequences.
Finally, writing function Func(),
and then calling Func.prototype
and adding stuff to it so that you
can call new Func() to construct
your object seems ugly to some
programmers, who would rather use
another style of object inheritance
for architectural and stylistic
reasons.
For more on this argument check out Douglas Crockford's great and concise book JavaScript: The Good Parts. In fact, check it out anyway.
Arguments in favor of new
Using the new operator along with
prototypal assignment is fast.
That stuff about accidentally
running a constructor function's
code in the global namespace can
easily be prevented if you always
include a bit of code in your
constructor functions to check to
see if they are being called
correctly, and, in the cases where
they aren't, handling the call
appropriately as desired.
See John Resig's post for a simple explanation of this technique, and for a generally deeper explanation of the inheritance model he advocates.
I agree with PEZ and some here.
It seems obvious to me that "new" is self descriptive object creation, where the YUI pattern Greg Dean describes is completely obscured.
The possibility someone could write var bar = foo; or var bar = baz(); where baz isn't an object creating method seems far more dangerous.
I think new is evil, not because if you forget to use it by mistake it might cause problems, but because it screws up the inheritance chain, making the language tougher to understand.
JavaScript is prototype-based object-oriented. Hence every object must be created from another object like so: var newObj=Object.create(oldObj). Here oldObj is called the prototype of newObj (hence "prototype-based"). This implies that if a property is not found in newObj then it will be searched in oldObj. newObj by default will thus be an empty object, but due to its prototype chain, it appears to have all the values of oldObj.
On the other hand, if you do var newObj=new oldObj(), the prototype of newObj is oldObj.prototype, which is unnecessarily difficult to understand.
The trick is to use
Object.create=function(proto){
var F = function(){};
F.prototype = proto;
var instance = new F();
return instance;
};
It is inside this function and it is only here that new should be used. After this, simply use the Object.create() method. The method resolves the prototype problem.
In my not-so-humble opinion, "new" is a flawed concept in 2021 JavaScript. It adds words where none are needed. It makes the return value of a function/constructor implicit and forces the use of this in the function/constructor. Adding noise to code is never a good thing.
// With new
function Point(x, y) {
this.x = x
this.y = y
}
let point = new Point(0, 0)
Vs.
// Without new
function Point(x, y) {
return { x, y }
}
let point = Point(0, 0)

Categories

Resources