Related
I have code like this :
(function() {
$(document).ready(function() {
//event handlers
$('.project-delete').on('click', function() {
deleteProject($(this));
});
$('.keyword-delete').on('click', function() {
deleteKeyword($(this));
});
this.deleteKeyword = function(model) {
}
}).call(this);
I am curious if this is a good approach since I was learning JS recently and as far as I understand this function will have global scope, doesn't it ? since .call(this) is passing window object to this closure then I think it is not the best option ? Is there something I am missing ? Does changing .call(this) to just () change anything ?
EDIT:So is it OK to just pass window object to that closure ? Wouldn't it better to pass just a empty object or jQuery object ?
Assuming this function is defined in the global scope, the deleteKeyword function will have also have global scope since this in the context of the parent function is basically window (which has been passed in as this from outside; in the global scope this === window).
If you change .call(this) to just (), this is still window inside the function. This is because when you call a function via a simple function-call, this is set to the global object, which is window.
If you want a different value for this, you will need to pass in something else via .call or .apply.
For more information about the behavior of this, take a look here.
"as far as I understand this function will have global scope, doesn't it?"
"Scope" is about what variables a function has access to (i.e., its own local variables, plus locals declared in any functions that it might be nested inside, plus global variables), and that has nothing to do with the value of this. Scope depends on where the function declaration is, but this depends on how the function is called.
"since .call(this) is passing window object to this closure"
We can't tell that just from the code shown. Presumably you mean that that block of code is not nested inside some other function, so then yes, this would be window. But if that code was ever pasted inside some other function then that this might have some other value depending on how that other function was called.
"Does changing .call(this) to just () change anything?"
If you use just () that will mean that inside the function this will be window. Whether that changes anything depends on whether the this in .call(this) was window in the first place - as I already mentioned above, if that block were nested inside some other function this could be something else. Having said that, for the code shown if this was anything other than window I think your code would break. Because you declare a function like this:
this.deleteKeyword = function(model) {...}
...and then inside the second click handler you call what I assume is meant to be the same function without using this:
deleteKeyword($(this));
The only way that will work is if this is window and the deleteKeyword() function is thus global. If this were any other object the function would be a property of that other object and thus not accessible directly as deleteKeyword(). But unless you specifically want deleteKeyword() to be accessible from other code not shown there is no reason to create it as a property of this at all. Just declare it with var:
var deleteKeyword = function(...
...and then it will be accessible only inside that function and the ones nested in it such as your click handler. And the .call() at the end of your function would be redundant since the function wouldn't ever actually use this.
"so isn't it a better option to apply jQuery object (or maybe just empty object) to it to increase performance? Wouldn't it increase performance if this would point to local scope? Since window object is very slow."
Well as I already said, "scope" and the value of this are unrelated concepts. I'm not sure why you are worrying about performance for that code. But if you were to apply jQuery or an empty object with .call(jQuery) or .call({}) the code would not work as explained above.
This question already has answers here:
What is the (function() { } )() construct in JavaScript?
(28 answers)
Closed 9 years ago.
I see this all the time in javascript sources but i've never really found out the real reason this construct is used. Why is this needed?
(function() {
//stuff
})();
Why is this written like this? Why not just use stuff by itself and not in a function?
EDIT: i know this is defining an anonymous function and then calling it, but why?
This defines a function closure
This is used to create a function closure with private functionality and variables that aren't globally visible.
Consider the following code:
(function(){
var test = true;
})();
variable test is not visible anywhere else but within the function closure where it's defined.
What is a closure anyway?
Function closures make it possible for various scripts not to interfere with each other even though they define similarly named variables or private functions. Those privates are visible and accessible only within closure itself and not outside of it.
Check this code and read comments along with it:
// public part
var publicVar = 111;
var publicFunc = function(value) { alert(value); };
var publicObject = {
// no functions whatsoever
};
// closure part
(function(pubObj){
// private variables and functions
var closureVar = 222;
var closureFunc = function(value){
// call public func
publicFunc(value);
// alert private variable
alert(closureVar);
};
// add function to public object that accesses private functionality
pubObj.alertValues = closureFunc;
// mind the missing "var" which makes it a public variable
anotherPublic = 333;
})(publicObject);
// alert 111 & alert 222
publicObject.alertValues(publicVar);
// try to access varaibles
alert(publicVar); // alert 111
alert(anotherPublic); // alert 333
alert(typeof(closureVar)); // alert "undefined"
Here's a JSFiddle running code that displays data as indicated by comments in the upper code.
What it actually does?
As you already know this
creates a function:
function() { ... }
and immediately executes it:
(func)();
this function may or may not accept additional parameters.
jQuery plugins are usually defined this way, by defining a function with one parameter that plugin manipulates within:
(function(paramName){ ... })(jQuery);
But the main idea is still the same: define a function closure with private definitions that can't directly be used outside of it.
That construct is known as a self-executing anonymous function, which is actually not a very good name for it, here is what happens (and why the name is not a good one). This:
function abc() {
//stuff
}
Defines a function called abc, if we wanted an anonymous function (which is a very common pattern in javascript), it would be something along the lines of:
function() {
//stuff
}
But, if you have this you either need to associate it with a variable so you can call it (which would make it not-so-anonymous) or you need to execute it straight away. We can try to execute it straight away by doing this:
function() {
//stuff
}();
But this won't work as it will give you a syntax error. The reason you get a syntax error is as follows. When you create a function with a name (such as abc above), that name becomes a reference to a function expression, you can then execute the expression by putting () after the name e.g.: abc(). The act of declaring a function does not create an expression, the function declaration is infact a statement rather than an expression. Essentially, expression are executable and statements are not (as you may have guessed). So in order to execute an anonymous function you need to tell the parser that it is an expression rather than a statement. One way of doing this (not the only way, but it has become convention), is to wrap your anonymous function in a set of () and so you get your construct:
(function() {
//stuff
})();
An anonymous function which is immediately executed (you can see how the name of the construct is a little off since it's not really an anonymous function that executes itself but is rather an anonymous function that is executed straight away).
Ok, so why is all this useful, one reason is the fact that it lets you stop your code from polluting the global namespace. Because functions in javascript have their own scope any variable inside a function is not visible globally, so if we could somehow write all our code inside a function the global scope would be safe, well our self-executing anonymous function allows us to do just that. Let me borrow an example from John Resig's old book:
// Create a new anonymous function, to use as a wrapper
(function(){
// The variable that would, normally, be global
var msg = "Thanks for visiting!";
// Binding a new function to a global object
window.onunload = function(){
// Which uses the 'hidden' variable
alert( msg );
};
// Close off the anonymous function and execute it
})();
All our variables and functions are written within our self-executing anonymous function, our code is executed in the first place because it is inside a self-executing anonymous function. And due to the fact that javascript allows closures, i.e. essentially allows functions to access variables that are defined in an outer function, we can pretty much write whatever code we like inside the self-executing anonymous function and everything will still work as expected.
But wait there is still more :). This construct allows us to solve a problem that sometimes occurs when using closures in javascript. I will once again let John Resig explain, I quote:
Remember that closures allow you to reference variables that exist
within the parent function. However, it does not provide the value of
the variable at the time it is created; it provides the last value of
the variable within the parent function. The most common issue under
which you’ll see this occur is during a for loop. There is one
variable being used as the iterator (e.g., i). Inside of the for loop,
new functions are being created that utilize the closure to reference
the iterator again. The problem is that by the time the new closured
functions are called, they will reference the last value of the
iterator (i.e., the last position in an array), not the value that you
would expect. Listing 2-16 shows an example of using anonymous
functions to induce scope, to create an instance where expected
closure is possible.
// An element with an ID of main
var obj = document.getElementById("main");
// An array of items to bind to
var items = [ "click", "keypress" ];
// Iterate through each of the items
for ( var i = 0; i < items.length; i++ ) {
// Use a self-executed anonymous function to induce scope
(function(){
// Remember the value within this scope
var item = items[i];
// Bind a function to the element
obj[ "on" + item ] = function() {
// item refers to a parent variable that has been successfully
// scoped within the context of this for loop
alert( "Thanks for your " + item );
};
})();
}
Essentially what all of that means is this, people often write naive javascript code like this (this is the naive version of the loop from above):
for ( var i = 0; i < items.length; i++ ) {
var item = items[i];
// Bind a function to the elment
obj[ "on" + item ] = function() {
alert( "Thanks for your " + items[i] );
};
}
The functions we create within the loop are closures, but unfortunately they will lock in the last value of i from the enclosing scope (in this case it will probably be 2 which is gonna cause trouble). What we likely want is for each function we create within the loop to lock in the value of i at the time we create it. This is where our self-executing anonymous function comes in, here is a similar but perhaps easier to understand way of rewriting that loop:
for ( var i = 0; i < items.length; i++ ) {
(function(index){
obj[ "on" + item ] = function() {
alert( "Thanks for your " + items[index] );
};
})(i);
}
Because we invoke our anonymous function on every iteration, the parameter we pass in is locked in to the value it was at the time it was passed in, so all the functions we create within the loop will work as expected.
There you go, two good reasons to use the self-executing anonymous function construct and why it actually works in the first place.
It's used to define an anonymous function and then call it. I haven't tried but my best guess for why there are parens around the block is because JavaScript needs them to understand the function call.
It's useful if you want to define a one-off function in place and then immediately call it. The difference between using the anonymous function and just writing the code out is scope. All the variables in the anonymous function will go out of scope when the function's over with (unless the vars are told otherwise, of course). This can be used to keep the global or enclosing namespace clean, to use less memory long-term, or to get some "privacy".
It is an "anonymous self executing function" or "immediately-invoked-function-expression". Nice explanation from Ben Alman here.
I use the pattern when creating namespaces
var APP = {};
(function(context){
})(APP);
Such a construct is useful when you want to make a closure - a construct helps create a private "room" for variables inaccessible from outside. See more in this chapter of "JavaScript: the good parts" book:
http://books.google.com/books?id=PXa2bby0oQ0C&pg=PA37&lpg=PA37&dq=crockford+closure+called+immediately&source=bl&ots=HIlku8x4jL&sig=-T-T0jTmf7_p_6twzaCq5_5aj3A&hl=lv&ei=lSa5TaXeDMyRswa874nrAw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBUQ6AEwAA#v=onepage&q&f=false
In the example shown on top of page 38, you see that the variable "status" is hidden within a closure and cannot be accessed anyway else than calling the get_status() method.
I'm not sure if this question is answered already, so apologies if I'm just repeating stuff.
In JavaScript, only functions introduce new scope. By wrapping your code in an immediate function, all variables you define exist only in this or lower scope, but not in global scope.
So this is a good way to not pollute the global scope.
There should be only a few global variables. Remember that every global is a property of the window object, which already has a lot of properties by default. Introducing a new scope also avoids collisions with default properties of the window object.
I have a script with a similar structure to this
$(function(){
var someVariable;
function doSomething(){
//here
}
$('#something').click(function(){
//here
})
});
My question is;
From the doSomething function, and the click handler
how can I access the someVariable without passing it in?
Just use it. No need for this.
$(function(){
var someVariable = 3;
function doSomething(){
alert(someVariable);
}
});
You can use it without any special syntax. someVariable is available in closure scope of doSomething.
Read more on JavaScript closures
When ECMA- / Javascript methods are invoked (called), several things happen. To make a long story short, when a function is called a such called Activation object is created for that function. In that object you'll find things like arguments, local variables and function declarations and the arguments object. The "Context" of the invoked function has a [[Scope]] property. That is the place where all parent context's are stored when the function is invoked.
That concept (which I pretty much shrinked together here) is the basic thing to have closures. That means if you call doSomething() in your example, the function will copy the parent Context into it's [[Scope]], which includes someVariable. The anonymous function from your event listener does the same thing, both methods share the same scope.
Short answer: You can just use and access someVariable in all of methods.
(function() {})() and its jQuery-specific cousin (function($) {})(jQuery) pop up all the time in Javascript code.
How do these constructs work, and what problems do they solve?
Examples appreciated
With the increasing popularity of JavaScript frameworks, the $ sign was used in many different occasions. So, to alleviate possible clashes, you can use those constructs:
(function ($){
// Your code using $ here.
})(jQuery);
Specifically, that's an anonymous function declaration which gets executed immediately passing the main jQuery object as parameter. Inside that function, you can use $ to refer to that object, without worrying about other frameworks being in scope as well.
This is a technique used to limit variable scope; it's the only way to prevent variables from polluting the global namespace.
var bar = 1; // bar is now part of the global namespace
alert(bar);
(function () {
var foo = 1; // foo has function scope
alert(foo);
// code to be executed goes here
})();
1) It defines an anonymous function and executes it straight away.
2) It's usually done so as not to pollute the global namespace with unwanted code.
3) You need to expose some methods from it, anything declared inside will be "private", for example:
MyLib = (function(){
// other private stuff here
return {
init: function(){
}
};
})();
Or, alternatively:
MyLib = {};
(function({
MyLib.foo = function(){
}
}));
The point is, there are many ways you can use it, but the result stays the same.
It's just an anonymous function that is called immediately. You could first create the function and then call it, and you get the same effect:
(function(){ ... })();
works as:
temp = function(){ ... };
temp();
You can also do the same with a named function:
function temp() { ... }
temp();
The code that you call jQuery-specific is only that in the sense that you use the jQuery object in it. It's just an anonymous function with a parameter, that is called immediately.
You can do the same thing in two steps, and you can do it with any parameters you like:
temp = function(answer){ ... };
temp(42);
The problem that this solves is that it creates a closuse for the code in the function. You can declare variables in it without polluting the global namespace, thus reducing the risk of conflicts when using one script along with another.
In the specific case for jQuery you use it in compatibility mode where it doesn't declare the name $ as an alias for jQuery. By sending in the jQuery object into the closure and naming the parameter $ you can still use the same syntax as without compatibility mode.
It explains here that your first construct provides scope for variables.
Variables are scoped at the function level in javascript. This is different to what you might be used to in a language like C# or Java where the variables are scoped to the block. What this means is if you declare a variable inside a loop or an if statement, it will be available to the entire function.
If you ever find yourself needing to explicitly scope a variable inside a function you can use an anonymous function to do this. You can actually create an anonymous function and then execute it straight away and all the variables inside will be scoped to the anonymous function:
(function() {
var myProperty = "hello world";
alert(myProperty);
})();
alert(typeof(myProperty)); // undefined
Another reason to do this is to remove any confusion over which framework's $ operator you are using. To force jQuery, for instance, you can do:
;(function($){
... your jQuery code here...
})(jQuery);
By passing in the $ operator as a parameter and invoking it on jQuery, the $ operator within the function is locked to jQuery even if you have other frameworks loaded.
Another use for this construct is to "capture" the values of local variables that will be used in a closure. For example:
for (var i = 0; i < 3; i++) {
$("#button"+i).click(function() {
alert(i);
});
}
The above code will make all three buttons pop up "3". On the other hand:
for (var i = 0; i < 3; i++) {
(function(i) {
$("#button"+i).click(function() {
alert(i);
});
})(i);
}
This will make the three buttons pop up "0", "1", and "2" as expected.
The reason for this is that a closure keeps a reference to its enclosing stack frame, which holds the current values of its variables. If those variables change before the closure executes, then the closure will see only the latest values, not the values as they were at the time the closure was created. By wrapping the closure creation inside another function as in the second example above, the current value of the variable i is saved in the stack frame of the anonymous function.
This is considered a closure. It means the code contained will run within its own lexical scope. This means you can define new variables and functions and they won't collide with the namespace used in code outside of the closure.
var i = 0;
alert("The magic number is " + i);
(function() {
var i = 99;
alert("The magic number inside the closure is " + i);
})();
alert("The magic number is still " + i);
This will generate three popups, demonstrating that the i in the closure does not alter the pre-existing variable of the same name:
The magic number is 0
The magic number inside the closure is 99
The magic number is still 0
They are often used in jQuery plugins. As explained in the jQuery Plugins Authoring Guide all variables declared inside { } are private and are not visible to the outside which allows for better encapsulation.
As others have said, they both define anonymous functions that are invoked immediately. I generally wrap my JavaScript class declarations in this structure in order to create a static private scope for the class. I can then place constant data, static methods, event handlers, or anything else in that scope and it will only be visible to instances of the class:
// Declare a namespace object.
window.MyLibrary = {};
// Wrap class declaration to create a private static scope.
(function() {
var incrementingID = 0;
function somePrivateStaticMethod() {
// ...
}
// Declare the MyObject class under the MyLibrary namespace.
MyLibrary.MyObject = function() {
this.id = incrementingID++;
};
// ...MyObject's prototype declaration goes here, etc...
MyLibrary.MyObject.prototype = {
memberMethod: function() {
// Do some stuff
// Maybe call a static private method!
somePrivateStaticMethod();
}
};
})();
In this example, the MyObject class is assigned to the MyLibrary namespace, so it is accessible. incrementingID and somePrivateStaticMethod() are not directly accessible outside of the anonymous function scope.
That is basically to namespace your JavaScript code.
For example, you can place any variables or functions within there, and from the outside, they don't exist in that scope. So when you encapsulate everything in there, you don't have to worry about clashes.
The () at the end means to self invoke. You can also add an argument there that will become the argument of your anonymous function. I do this with jQuery often, and you can see why...
(function($) {
// Now I can use $, but it won't affect any other library like Prototype
})(jQuery);
Evan Trimboli covers the rest in his answer.
It's a self-invoking function. Kind of like shorthand for writing
function DoSomeStuff($)
{
}
DoSomeStuff(jQuery);
What the above code is doing is creating an anonymous function on line 1, and then calling it on line 3 with 0 arguments. This effectively encapsulates all functions and variables defined within that library, because all of the functions will be accessible only inside that anonymous function.
This is good practice, and the reasoning behind it is to avoid polluting the global namespace with variables and functions, which could be clobbered by other pieces of Javascript throughout the site.
To clarify how the function is called, consider the simple example:
If you have this single line of Javascript included, it will invoke automatically without explicitly calling it:
alert('hello');
So, take that idea, and apply it to this example:
(function() {
alert('hello')
//anything I define in here is scoped to this function only
}) (); //here, the anonymous function is invoked
The end result is similar, because the anonymous function is invoked just like the previous example.
Because the good code answers are already taken :) I'll throw in a suggestion to watch some John Resig videos video 1 , video 2 (inventor of jQuery & master at JavaScript).
Some really good insights and answers provided in the videos.
That is what I happened to be doing at the moment when I saw your question.
function(){ // some code here }
is the way to define an anonymous function in javascript. They can give you the ability to execute a function in the context of another function (where you might not have that ability otherwise).
(function() {})() and its jQuery-specific cousin (function($) {})(jQuery) pop up all the time in Javascript code.
How do these constructs work, and what problems do they solve?
Examples appreciated
With the increasing popularity of JavaScript frameworks, the $ sign was used in many different occasions. So, to alleviate possible clashes, you can use those constructs:
(function ($){
// Your code using $ here.
})(jQuery);
Specifically, that's an anonymous function declaration which gets executed immediately passing the main jQuery object as parameter. Inside that function, you can use $ to refer to that object, without worrying about other frameworks being in scope as well.
This is a technique used to limit variable scope; it's the only way to prevent variables from polluting the global namespace.
var bar = 1; // bar is now part of the global namespace
alert(bar);
(function () {
var foo = 1; // foo has function scope
alert(foo);
// code to be executed goes here
})();
1) It defines an anonymous function and executes it straight away.
2) It's usually done so as not to pollute the global namespace with unwanted code.
3) You need to expose some methods from it, anything declared inside will be "private", for example:
MyLib = (function(){
// other private stuff here
return {
init: function(){
}
};
})();
Or, alternatively:
MyLib = {};
(function({
MyLib.foo = function(){
}
}));
The point is, there are many ways you can use it, but the result stays the same.
It's just an anonymous function that is called immediately. You could first create the function and then call it, and you get the same effect:
(function(){ ... })();
works as:
temp = function(){ ... };
temp();
You can also do the same with a named function:
function temp() { ... }
temp();
The code that you call jQuery-specific is only that in the sense that you use the jQuery object in it. It's just an anonymous function with a parameter, that is called immediately.
You can do the same thing in two steps, and you can do it with any parameters you like:
temp = function(answer){ ... };
temp(42);
The problem that this solves is that it creates a closuse for the code in the function. You can declare variables in it without polluting the global namespace, thus reducing the risk of conflicts when using one script along with another.
In the specific case for jQuery you use it in compatibility mode where it doesn't declare the name $ as an alias for jQuery. By sending in the jQuery object into the closure and naming the parameter $ you can still use the same syntax as without compatibility mode.
It explains here that your first construct provides scope for variables.
Variables are scoped at the function level in javascript. This is different to what you might be used to in a language like C# or Java where the variables are scoped to the block. What this means is if you declare a variable inside a loop or an if statement, it will be available to the entire function.
If you ever find yourself needing to explicitly scope a variable inside a function you can use an anonymous function to do this. You can actually create an anonymous function and then execute it straight away and all the variables inside will be scoped to the anonymous function:
(function() {
var myProperty = "hello world";
alert(myProperty);
})();
alert(typeof(myProperty)); // undefined
Another reason to do this is to remove any confusion over which framework's $ operator you are using. To force jQuery, for instance, you can do:
;(function($){
... your jQuery code here...
})(jQuery);
By passing in the $ operator as a parameter and invoking it on jQuery, the $ operator within the function is locked to jQuery even if you have other frameworks loaded.
Another use for this construct is to "capture" the values of local variables that will be used in a closure. For example:
for (var i = 0; i < 3; i++) {
$("#button"+i).click(function() {
alert(i);
});
}
The above code will make all three buttons pop up "3". On the other hand:
for (var i = 0; i < 3; i++) {
(function(i) {
$("#button"+i).click(function() {
alert(i);
});
})(i);
}
This will make the three buttons pop up "0", "1", and "2" as expected.
The reason for this is that a closure keeps a reference to its enclosing stack frame, which holds the current values of its variables. If those variables change before the closure executes, then the closure will see only the latest values, not the values as they were at the time the closure was created. By wrapping the closure creation inside another function as in the second example above, the current value of the variable i is saved in the stack frame of the anonymous function.
This is considered a closure. It means the code contained will run within its own lexical scope. This means you can define new variables and functions and they won't collide with the namespace used in code outside of the closure.
var i = 0;
alert("The magic number is " + i);
(function() {
var i = 99;
alert("The magic number inside the closure is " + i);
})();
alert("The magic number is still " + i);
This will generate three popups, demonstrating that the i in the closure does not alter the pre-existing variable of the same name:
The magic number is 0
The magic number inside the closure is 99
The magic number is still 0
They are often used in jQuery plugins. As explained in the jQuery Plugins Authoring Guide all variables declared inside { } are private and are not visible to the outside which allows for better encapsulation.
As others have said, they both define anonymous functions that are invoked immediately. I generally wrap my JavaScript class declarations in this structure in order to create a static private scope for the class. I can then place constant data, static methods, event handlers, or anything else in that scope and it will only be visible to instances of the class:
// Declare a namespace object.
window.MyLibrary = {};
// Wrap class declaration to create a private static scope.
(function() {
var incrementingID = 0;
function somePrivateStaticMethod() {
// ...
}
// Declare the MyObject class under the MyLibrary namespace.
MyLibrary.MyObject = function() {
this.id = incrementingID++;
};
// ...MyObject's prototype declaration goes here, etc...
MyLibrary.MyObject.prototype = {
memberMethod: function() {
// Do some stuff
// Maybe call a static private method!
somePrivateStaticMethod();
}
};
})();
In this example, the MyObject class is assigned to the MyLibrary namespace, so it is accessible. incrementingID and somePrivateStaticMethod() are not directly accessible outside of the anonymous function scope.
That is basically to namespace your JavaScript code.
For example, you can place any variables or functions within there, and from the outside, they don't exist in that scope. So when you encapsulate everything in there, you don't have to worry about clashes.
The () at the end means to self invoke. You can also add an argument there that will become the argument of your anonymous function. I do this with jQuery often, and you can see why...
(function($) {
// Now I can use $, but it won't affect any other library like Prototype
})(jQuery);
Evan Trimboli covers the rest in his answer.
It's a self-invoking function. Kind of like shorthand for writing
function DoSomeStuff($)
{
}
DoSomeStuff(jQuery);
What the above code is doing is creating an anonymous function on line 1, and then calling it on line 3 with 0 arguments. This effectively encapsulates all functions and variables defined within that library, because all of the functions will be accessible only inside that anonymous function.
This is good practice, and the reasoning behind it is to avoid polluting the global namespace with variables and functions, which could be clobbered by other pieces of Javascript throughout the site.
To clarify how the function is called, consider the simple example:
If you have this single line of Javascript included, it will invoke automatically without explicitly calling it:
alert('hello');
So, take that idea, and apply it to this example:
(function() {
alert('hello')
//anything I define in here is scoped to this function only
}) (); //here, the anonymous function is invoked
The end result is similar, because the anonymous function is invoked just like the previous example.
Because the good code answers are already taken :) I'll throw in a suggestion to watch some John Resig videos video 1 , video 2 (inventor of jQuery & master at JavaScript).
Some really good insights and answers provided in the videos.
That is what I happened to be doing at the moment when I saw your question.
function(){ // some code here }
is the way to define an anonymous function in javascript. They can give you the ability to execute a function in the context of another function (where you might not have that ability otherwise).