In javascript, what is the difference between:
var singleton = function(){ ... }
and
var singleton = new function(){ ... }
?
Declaring priviliged functions as described by crockford (http://www.crockford.com/javascript/private.html) only works using the latter.
The difference is mainly that in your second example, you are using the Function Expression as a Constructor, the new operator will cause the function to be automatically executed, and the this value inside that function will refer to a newly created object.
If you don't return anything (or you don't return a non-primitive value) from that function, the this value will be returned and assigned to your singleton variable.
Privileged methods can also be used in your second example, a common pattern is use an immediately invoked function expression, creating a closure where the private members are accessible, then you can return an object that contains your public API, e.g.:
var singleton = (function () {
var privateVar = 1;
function privateMethod () {/*...*/}
return { // public API
publicMethod: function () {
// private members are available here
}
};
})();
I think that a privileged function as described by crockford would look like this:
function Test() {
this.privileged = function() {
alert('apple');
}
function anonymous() {
alert('hello');
}
anonymous();
}
t = new Test; // hello
t.privileged(); // apple
// unlike the anonymous function, the privileged function can be accessed and
// modified after its declaration
t.privileged = function() {
alert('orange');
}
t.privileged(); // orange
Related
I've been reading SO posts all day and I haven't come up with anything that is working for me.
I have a JS object
function MyObject(a,b){
this.member_a = a;
this.member_b = b;
function operation1(){
$('#someDiv1').text(this.a);
}
function operation2(){
$('#someDiv1').text(this.b);
}
MyObject.prototype.PublicFunction1 = function(){
//There is an ajax call here
//success
operation1();
//failure
operation2();
}
}
Roughly like that. That's the pattern I'm at right now. It's in an external JS file. My page creates a MyObject(a,b) and the breakpoints show that member_a and member_b are both initialized correctly. After some other magic happens from my page callsMyObject.PublicFunction1();, the ajax executes and I enter operation1() or operation2() but when I am inside of those member_a and member_b are both undefined and I don't understand why. I'm losing the scope or something. I've had the private function and the prototypes outside the object body declaration, combinations of both. How can I call a private function from an object's prototype to work on the object's data?
I've also tried
ClassBody{
vars
private function
}
prototype{
private function call
}
and have been reading this
operation1 and operation2 do not have a context and are thus executed in the global context (where this == window).
If you want to give them a context, but keep them private, then use apply:
operation1.apply(this);
operation2.apply(this);
Further reading on the apply method https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
EDIT
#FelixKing is correct - your code should more appropriately be written like this (using the Module Pattern):
//encapsulating scope
var MyObject = (function() {
function operation1(){
$('#someDiv1').text(this.a);
}
function operation2(){
$('#someDiv1').text(this.b);
}
var MyObject = function(a,b) {
this.member_a = a;
this.member_b = b;
};
MyObject.prototype.PublicFunction1 = function(){
//There is an ajax call here
//success
operation1.apply(this);
//failure
operation2.apply(this);
}
return MyObject;
}());
I have built a tool to allow you to put private methods onto the prototype chain. This way you'll save on memory allocation when creating multiple instances.
https://github.com/TremayneChrist/ProtectJS
Example:
var MyObject = (function () {
// Create the object
function MyObject() {}
// Add methods to the prototype
MyObject.prototype = {
// This is our public method
public: function () {
console.log('PUBLIC method has been called');
},
// This is our private method, using (_)
_private: function () {
console.log('PRIVATE method has been called');
}
}
return protect(MyObject);
})();
// Create an instance of the object
var mo = new MyObject();
// Call its methods
mo.public(); // Pass
mo._private(); // Fail
Here's a sample of a simple Javascript class with a public and private method (fiddle: http://jsfiddle.net/gY4mh/).
function Example() {
function privateFunction() {
// "this" is window when called.
console.log(this);
}
this.publicFunction = function() {
privateFunction();
}
}
ex = new Example;
ex.publicFunction();
Calling the private function from the public one results in "this" being the window object. How should I ensure my private methods are called with the class context and not window? Would this be undesirable?
Using closure. Basically any variable declared in function, remains available to functions inside that function :
var Example = (function() {
function Example() {
var self = this; // variable in function Example
function privateFunction() {
// The variable self is available to this function even after Example returns.
console.log(self);
}
self.publicFunction = function() {
privateFunction();
}
}
return Example;
})();
ex = new Example;
ex.publicFunction();
Another approach is to use "apply" to explicitly set what the methods "this" should be bound to.
function Test() {
this.name = 'test';
this.logName = function() {
console.log(this.name);
}
}
var foo = {name: 'foo'};
var test = new Test();
test.logName()
// => test
test.logName.apply(foo, null);
// => foo
Yet another approach is to use "call":
function Test() {
this.name = 'test';
this.logName = function() {
console.log(this.name);
}
}
var foo = {name: 'foo'};
var test = new Test();
test.logName()
// => test
test.logName.call(foo, null);
// => foo
both "apply" and "call" take the object that you want to bind "this" to as the first argument and an array of arguments to pass in to the method you are calling as the second arg.
It is worth understanding how the value of this in javascript is determined in addition to just having someone tell you a code fix. In javascript, this is determined the following ways:
If you call a function via an object property as in object.method(), then this will be set to the object inside the method.
If you call a function directly without any object reference such as function(), then this will be set to either the global object (window in a browser) or in strict mode, it will be set to undefined.
If you create a new object with the new operator, then the constructor function for that object will be called with the value of this set to the newly created object instance. You can think of this as the same as item 1 above, the object is created and then the constructor method on it is called.
If you call a function with .call() or .apply() as in function.call(xxx), then you can determine exactly what this is set to by what argument you pass to .call() or .apply(). You can read more about .call() here and .apply() here on MDN.
If you use function.bind(xxx) this creates a small stub function that makes sure your function is called with the desired value of this. Internally, this likely just uses .apply(), but it's a shortcut for when you want a single callback function that will have the right value of this when it's called (when you aren't the direct caller of the function).
In a callback function, the caller of the callback function is responsible for determining the desired value of this. For example, in an event handler callback function, the browser generally sets this to be the DOM object that is handling the event.
There's a nice summary of these various methods here on MDN.
So, in your case, you are making a normal function call when you call privateFunction(). So, as expected the value of this is set as in option 2 above.
If you want to explictly set it to the current value of this in your method, then you can do so like this:
var Example = (function() {
function Example() {
function privateFunction() {
// "this" is window when called.
console.log(this);
}
this.publicFunction = function() {
privateFunction.call(this);
}
}
return Example;
})();
ex = new Example;
ex.publicFunction();
Other methods such as using a closure and defined var that = this are best used for the case of callback functions when you are not the caller of the function and thus can't use 1-4. There is no reason to do it that way in your particular case. I would say that using .call() is a better practice. Then, your function can actually use this and can behave like a private method which appears to be the behavior you seek.
I guess most used way to get this done is by simply caching (storing) the value of this in a local context variable
function Example() {
var that = this;
// ...
function privateFunction() {
console.log(that);
}
this.publicFunction = function() {
privateFunction();
}
}
a more convenient way is to invoke Function.prototype.bind to bind a context to a function (forever). However, the only restriction here is that this requires a ES5-ready browser and bound functions are slightly slower.
var privateFunction = function() {
console.log(this);
}.bind(this);
I would say the proper way is to use prototyping since it was after all how Javascript was designed. So:
var Example = function(){
this.prop = 'whatever';
}
Example.prototype.fn_1 = function(){
console.log(this.prop);
return this
}
Example.prototype.fn_2 = function(){
this.prop = 'not whatever';
return this
}
var e = new Example();
e.fn_1() //whatever
e.fn_2().fn_1() //not whatever
Here's a fiddle http://jsfiddle.net/BFm2V/
If you're not using EcmaScript5, I'd recommend using Underscore's (or LoDash's) bind function.
In addition to the other answers given here, if you don't have an ES5-ready browser, you can create your own "permanently-bound function" quite simply with code like so:
function boundFn(thisobj, fn) {
return function() {
fn.apply(thisobj, arguments);
};
}
Then use it like this:
var Example = (function() {
function Example() {
var privateFunction = boundFn(this, function() {
// "this" inside here is the same "this" that was passed to boundFn.
console.log(this);
});
this.publicFunction = function() {
privateFunction();
}
}
return Example;
}()); // I prefer this order of parentheses
Voilà -- this is magically the outer context's this instead of the inner one!
You can even get ES5-like functionality if it's missing in your browser like so (this does nothing if you already have it):
if (!Function.prototype.bind) {
Function.prototype.bind = function (thisobj) {
var that = this;
return function() {
that.apply(thisobj, arguments);
};
}:
}
Then use var yourFunction = function() {}.bind(thisobj); exactly the same way.
ES5-like code that is fully compliant (as possible), checking parameter types and so on, can be found at mozilla Function.prototype.bind. There are some differences that could trip you up if you're doing a few different advanced things with functions, so read up on it at the link if you want to go that route.
I would say assigning self to this is a common technique:
function Example() {
var self = this;
function privateFunction() {
console.log(self);
}
self.publicFunction = function() {
privateFunction();
};
}
Using apply (as others have suggested) also works, though it's a bit more complex in my opinion.
It might be beyond the scope of this question, but I would also recommend considering a different approach to JavaScript where you actually don't use the this keyword at all. A former colleague of mine at ThoughtWorks, Pete Hodgson, wrote a really helpful article, Class-less JavaScript, explaining one way to do this.
I'm trying to wrap my head around building a custom JavaScript library. I've read a lot about the module pattern, and also read Crockford's articles on private and public members. I know what is an immediately invoked function expression and why we do stuff like
var myLib = (function() {
}())
However, I'm still a little lost in some cases regarding scope and closures in general. The concrete problem I have is:
Why does the following example alert DOMWindow, rather than the myLib object?
http://jsfiddle.net/slavo/xNJtW/1/
It would be great if you can explain what "this" refers to in all of the methods in that example and why.
Inside any function declared (anywhere) and invoked as follows this will be window object
function anyFunc(){
alert(this); // window object
}
anyFunc();
var anyFunc2 = function(){
alert(this); // window object
}
anyFunc2();
If you want to create private functions and access the instance of 'myObject' you can follow either of the following methods
One
module = (function () {
var privateFunc = function() {
alert(this);
}
var myObject = {
publicMethod: function() {
privateFunc.apply(this); // or privateFunc.call(this);
}
};
return myObject;
}());
module.publicMethod();
Two
module = (function () {
var _this; // proxy variable for instance
var privateFunc = function() {
alert(_this);
}
var myObject = {
publicMethod: function() {
privateFunc();
}
};
_this = myObject;
return myObject;
}());
module.publicMethod();
These are solutions to your issue. I would recommend using prototype based objects.
EDIT:
You can use the first method.
In fact here myObject is in the same scope as privateFunc and you can directly use it inside the function
var privateFunc = function() {
alert(myObject);
}
The real scenario were you can use a proxy for this is shown below. You can use call also.
Module = function () {
var _this; // proxy variable for instance
var privateFunc = function() {
alert(this + "," + _this);
}
this.publicMethod = function() {
privateFunc(); // alerts [object Window],[object Object]
privateFunc.call(this); // alerts [object Object],[object Object]
}
_this = this;
return this;
};
var module = new Module();
module.publicMethod();
You need to explicitly state that myPrivateMethod is a member of myLib:
function MyLib ()
{
this._myPrivateField = "private";
this._myPrivateMEthod = function ()
{
alert(this); // Alerts MyLib function;
}
}
var libObject = new MyLib();
Just remember that without using enclosure techniques, nothing in JavaScript is ever truly private!
A better way to do the above is like so:
function MyLib(instanceName)
{
this.name = instanceName;
}
MyLib.prototype.myPrivateFunction()
{
alert(this);
}
To call your method after that:
var libObject = new MyLib();
libObject.myPrivateMethod(); // Alerts info about libObject.
The thing to remember about the module pattern is that it runs once and completes. The methods that are still available to be called are the closures. At the time of creating module, "this" refered to the window and was replaced by its value.
In your linked fiddle, the "this" keyword is never changed by a "new" keyword or other context change, so it still refers to the global window object.
edit: clarification
// i = inner, o = outer, f=function, a=attribute
var singleton = function() {
var iF = function() {
return this.oA; // returns undefined
}
return {
oF: function() {
this.oA = true;
return iF();
},
oA: false
};
}();
singleton.oF();
If singleton were a class (as in a class-based language), shouldn't I be able to access oA through this.oA?
The only way I've found of accessing oA from iF is by doing:
return singleton.oA; // returns true (as it should)
I don't know why, but accessing oA through the singleton base object makes me feel kind of... dirty. What am I missing? What is this.oA actually referring to (in a scope sense of view)?
The main point here is that there are no classes in javascript. You need to live without them. You can only emulate some of their characteristics.
The this keyword in javascript refers to the object which invoked the function. If it is a function in the global object this will refer to window. If it is a constructor function and you invoke it with the new keyword, this will refer to the current instance.
There is a simple thing you can do, if you want to keep oA public, and access it from a private function.
// i = inner, o = outer, f=function, a=attribute
var singleton = (function() {
// public interface
var pub = {
oF: function() {
this.oA = true;
return iF();
},
oA: false
};
// private function
var iF = function() {
return pub.oA; // returns public oA variable
}
// return public interface
return pub;
})();
Notice that I wrapped the whole singleton function in parens. The reason this convention is so popular is that it helps you to know if a function will be executed immediately (as in this case). Imagine if your function gets bigger, and when you look at the code it wouldn't be obvious if singleton is a function or an object that a self-invoking function returns. If you've got the parens however, it is obvious that singleton will be something that the function returns immediately.
I just read a few threads on the discussion of singleton design in javascript. I'm 100% new to the Design Pattern stuff but as I see since a Singleton by definition won't have the need to be instantiated, conceptually if it's not to be instantiated, in my opinion it doesn't have to be treated like conventional objects which are created from a blueprint(classes). So my wonder is why not just think of a singleton just as something statically available that is wrapped in some sort of scope and that should be all.
From the threads I saw, most of them make a singleton though traditional javascript
new function(){}
followed by making a pseudo constructor.
Well I just think an object literal is enough enough:
var singleton = {
dothis: function(){},
dothat: function(){}
}
right? Or anybody got better insights?
[update] : Again my point is why don't people just use a simpler way to make singletons in javascript as I showed in the second snippet, if there's an absolute reason please tell me. I'm usually afraid of this kind of situation that I simplify things to much :D
I agree with you, the simplest way is to use a object literal, but if you want private members, you could implement taking advantage of closures:
var myInstance = (function() {
var privateVar;
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
},
publicMethod2: function () {
// ...
}
};
})();
About the new function(){} construct, it will simply use an anonymous function as a constructor function, the context inside that function will be a new object that will be returned.
Edit: In response to the #J5's comment, that is simple to do, actually I think that this can be a nice example for using a Lazy Function Definition pattern:
function singleton() {
var instance = (function() {
var privateVar;
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
},
publicMethod2: function () {
// ...
}
};
})();
singleton = function () { // re-define the function for subsequent calls
return instance;
};
return singleton(); // call the new function
}
When the function is called the first time, I make the object instance, and reassign singleton to a new function which has that object instance in it's closure.
Before the end of the first time call I execute the re-defined singleton function that will return the created instance.
Following calls to the singleton function will simply return the instance that is stored in it's closure, because the new function is the one that will be executed.
You can prove that by comparing the object returned:
singleton() == singleton(); // true
The == operator for objects will return true only if the object reference of both operands is the same, it will return false even if the objects are identical but they are two different instances:
({}) == ({}); // false
new Object() == new Object(); // false
I have used the second version (var singleton = {};) for everything from Firefox extensions to websites, and it works really well. One good idea is to not define things inside the curly brackets, but outside it using the name of the object, like so:
var singleton = {};
singleton.dothis = function(){
};
singleton.someVariable = 5;
The ES5 spec lets us use Object.create():
var SingletonClass = (function() {
var instance;
function SingletonClass() {
if (instance == null) {
instance = Object.create(SingletonClass.prototype);
}
return instance;
}
return {
getInstance: function() {
return new SingletonClass();
}
};
})();
var x = SingletonClass.getInstance();
var y = SingletonClass.getInstance();
var z = new x.constructor();
This is nice, since we don't have to worry about our constructor leaking, we still always end up with the same instance.
This structure also has the advantage that our Singleton doesn't construct itself until it is required. Additionally, using the closure as we do here prevents external code from using our "instance" variable, accidentally or otherwise. We can build more private variables in the same place and we can define anything we care to export publically on our class prototype.
The singleton pattern is implemented by creating a class with a method that creates a new instance of the class if one does not exist. If an instance already exists, it simply returns a reference to that object. 1
(function (global) {
var singleton;
function Singleton () {
// singleton does have a constructor that should only be used once
this.foo = "bar";
delete Singleton; // disappear the constructor if you want
}
global.singleton = function () {
return singleton || (singleton = new Singleton());
};
})(window);
var s = singleton();
console.log(s.foo);
var y = singleton();
y.foo = "foo";
console.log(s.foo);
You don't just declare the singleton as an object because that instantiates it, it doesn't declare it. It also doesn't provide a mechanism for code that doesn't know about a previous reference to the singleton to retrieve it. The singleton is not the object/class that is returned by the singleton, it's a structure. This is similar to how closured variables are not closures, the function scope providing the closure is the closure.
I am just posting this answer for people who are looking for a reliable source.
according to patterns.dev by Lydia Hallie, Addy Osmani
Singletons are actually considered an anti-pattern, and can (or.. should) be avoided in JavaScript.
In many programming languages, such as Java or C++, it's not possible to directly create objects the way we can in JavaScript. In those object-oriented programming languages, we need to create a class, which creates an object. That created object has the value of the instance of the class, just like the value of instance in the JavaScript example.
Since we can directly create objects in JavaScript, we can simply use
a regular object to achieve the exact same result.
I've wondered about this too, but just defining an object with functions in it seems reasonable to me. No sense creating a constructor that nobody's ever supposed to call, to create an object with no prototype, when you can just define the object directly.
On the other hand, if you want your singleton to be an instance of some existing "class" -- that is, you want it to have some other object as its prototype -- then you do need to use a constructor function, so that you can set its prototype property before calling it.
The latter code box shows what I've seen JS devs call their version of OO design in Javascript.
Singetons are meant to be singular objects that can't be constructed (except, I suppose, in the initial definition. You have one, global instance of a singleton.
The point of using the "pseudo constructor" is that it creates a new variable scope. You can declare local variables inside the function that are available inside any nested functions but not from the global scope.
There are actually two ways of doing it. You can call the function with new like in your example, or just call the function directly. There are slight differences in how you would write the code, but they are essentially equivalent.
Your second example could be written like this:
var singleton = new function () {
var privateVariable = 42; // This can be accessed by dothis and dothat
this.dothis = function () {
return privateVariable;
};
this.dothat = function () {};
}; // Parentheses are allowed, but not necessary unless you are passing parameters
or
var singleton = (function () {
var privateVariable = 42; // This can be accessed by dothis and dothat
return {
dothis: function () {
return privateVariable;
},
dothat: function () {}
};
})(); // Parentheses are required here since we are calling the function
You could also pass arguments to either function (you would need to add parentheses to the first example).
Crockford (seems to) agree that the object literal is all you need for a singleton in JavaScript:
http://webcache.googleusercontent.com/search?q=cache:-j5RwC92YU8J:www.crockford.com/codecamp/The%2520Good%2520Parts%2520ppt/5%2520functional.ppt+singleton+site:www.crockford.com&cd=1&hl=en&ct=clnk
How about this:
function Singleton() {
// ---------------
// Singleton part.
// ---------------
var _className = null;
var _globalScope = null;
if ( !(this instanceof arguments.callee) ) {
throw new Error("Constructor called as a function.");
}
if ( !(_className = arguments.callee.name) ) {
throw new Error("Unable to determine class name.")
}
_globalScope = (function(){return this;}).call(null);
if ( !_globalScope.singletons ) {
_globalScope.singletons = [];
}
if ( _globalScope.singletons[_className] ) {
return _globalScope.singletons[_className];
} else {
_globalScope.singletons[_className] = this;
}
// ------------
// Normal part.
// ------------
var _x = null;
this.setx = function(val) {
_x = val;
}; // setx()
this.getx = function() {
return _x;
}; // getx()
function _init() {
_x = 0; // Whatever initialisation here.
} // _init()
_init();
} // Singleton()
var p = new Singleton;
var q = new Singleton;
p.setx(15);
q.getx(); // returns 15
I stole this from CMS / CMS' answer, and changed it so it can be invoked as:
MySingleton.getInstance().publicMethod1();
With the slight alternation:
var MySingleton = { // These two lines
getInstance: function() { // These two lines
var instance = (function() {
var privateVar;
function privateMethod () {
// ...
console.log( "b" );
}
return { // public interface
publicMethod1: function () {
// private members can be accessed here
console.log( "a" );
},
publicMethod2: function () {
// ...
privateMethod();
}
};
})();
singleton = function () { // re-define the function for subsequent calls
return instance;
};
return singleton(); // call the new function
}
}