Translating math to JavaScript; convergent/divergent series - javascript

I am trying calculate the following series in JavaScript:
My code is as follows:
var res = []
for(var i=0; i<1000; i++) {
res.push(i / ((i * Math.sqrt(i + 1)) + ((i + 1) * Math.sqrt(i))))
}
But this makes the series possibly converge towards 0 rather than approach 1. Here's the first 150 steps:
Is there something wrong with my translation from math to JavaScript? Maybe my parentheses?
UPDATE
As per #Barmar 's answer, the correct code shows convergence to 1 only for small values of infinity, diverging after 4 steps:

You need to add each element of the series to the previous sum.
You also need to start at i = 1 to avoid dividing by 0.
console.config({
maxEntries: Infinity
});
var res = [];
var sum = 0;
for (var i = 1; i < 1000; i++) {
sum += i / ((i * Math.sqrt(i + 1)) + ((i + 1) * Math.sqrt(i)));
res.push(sum);
}
console.log(res);
.as-console-wrapper {
max-height: 100% !important;
}
Note that this shows that the series doesn't actually converge to 1. Which is also apparent from your incorrect graph, since you can see that the first 5 elements are between 0.195 and 0.293, and these add up to more than 1.

Related

Big-O cost of pyramid algorithm

I'm working through trying to understand big-O notation, and I was wondering: what would be the big-O cost of a pyramid algorithm?
pyramid(2) results in:
#
###
I know one way of solving it is using nested for-loops like:
function pyramid(n) {
const totalLengthOfRow = n * 2 - 1
for (let row = 0; row < n; row++) {
var line = ''
var middleCol = Math.floor(totalLengthOfRow / 2)
for (let col = 0; col < totalLengthOfRow; col++) {
if (col >= middleCol - row && col <= middleCol + row) {
line += '#'
} else {
line += ' '
}
}
console.log(line)
}
}
So that should be O(n2) right? Since both for-loops grow as n grows. But what if I use string.repeat and get rid of the inner for loop?
Something like:
const numberOfHashes = 1 + row * 2
const numberOfSpaces = n * 2 - 1 - numberOfHashes
var line = ' '.repeat(numberOfSpaces / 2) + '#'.repeat(numberOfHashes) + ' '.repeat(numberOfSpaces / 2)
Is repeat just like a for-loop, since it also repeats based on the size of n?
Let's say the second algorithm is a bit smarter, because at each step you don't need to check (with the conditional statement) which character you have to print.
Nevertheless, the JS repeat function is no more than syntactic sugar for a loop. Thus, the two algorithms are (not only semantically, but also asymptotically) equivalent and, in particular, both are O(n^2).

Trying to optimize my code to either remove nested loop or make it more efficient

A friend of mine takes a sequence of numbers from 1 to n (where n > 0)
Within that sequence, he chooses two numbers, a and b
He says that the product of a and b should be equal to the sum of all numbers in the sequence, excluding a and b
Given a number n, could you tell me the numbers he excluded from the sequence?
Have found the solution to this Kata from Code Wars but it times out (After 12 seconds) in the editor when I run it; any ideas as too how I should further optimize the nested for loop and or remove it?
function removeNb(n) {
var nArray = [];
var sum = 0;
var answersArray = [];
for (let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
var length = nArray.length;
for (let i = Math.round(n / 2); i < length; i++) {
for (let y = Math.round(n / 2); y < length; y++) {
if (i != y) {
if (i * y === sum - i - y) {
answersArray.push([i, y]);
break;
}
}
}
}
return answersArray;
}
console.log(removeNb(102));
.as-console-wrapper { max-height: 100% !important; top: 0; }
I think there is no reason for calculating the sum after you fill the array, you can do that while filling it.
function removeNb(n) {
let nArray = [];
let sum = 0;
for(let i = 1; i <= n; i++) {
nArray.push(i);
sum += i;
}
}
And since there could be only two numbers a and b as the inputs for the formula a * b = sum - a - b, there could be only one possible value for each of them. So, there's no need to continue the loop when you find them.
if(i*y === sum - i - y) {
answersArray.push([i,y]);
break;
}
I recommend looking at the problem in another way.
You are trying to find two numbers a and b using this formula a * b = sum - a - b.
Why not reduce the formula like this:
a * b + a = sum - b
a ( b + 1 ) = sum - b
a = (sum - b) / ( b + 1 )
Then you only need one for loop that produces the value of b, check if (sum - b) is divisible by ( b + 1 ) and if the division produces a number that is less than n.
for(let i = 1; i <= n; i++) {
let eq1 = sum - i;
let eq2 = i + 1;
if (eq1 % eq2 === 0) {
let a = eq1 / eq2;
if (a < n && a != i) {
return [[a, b], [b, a]];
}
}
}
You can solve this in linear time with two pointers method (page 77 in the book).
In order to gain intuition towards a solution, let's start thinking about this part of your code:
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
...
You already figured out this is the part of your code that is slow. You are trying every combination of i and y, but what if you didn't have to try every single combination?
Let's take a small example to illustrate why you don't have to try every combination.
Suppose n == 10 so we have 1 2 3 4 5 6 7 8 9 10 where sum = 55.
Suppose the first combination we tried was 1*10.
Does it make sense to try 1*9 next? Of course not, since we know that 1*10 < 55-10-1 we know we have to increase our product, not decrease it.
So let's try 2*10. Well, 20 < 55-10-2 so we still have to increase.
3*10==30 < 55-3-10==42
4*10==40 < 55-4-10==41
But then 5*10==50 > 55-5-10==40. Now we know we have to decrease our product. We could either decrease 5 or we could decrease 10, but we already know that there is no solution if we decrease 5 (since we tried that in the previous step). So the only choice is to decrease 10.
5*9==45 > 55-5-9==41. Same thing again: we have to decrease 9.
5*8==40 < 55-5-8==42. And now we have to increase again...
You can think about the above example as having 2 pointers which are initialized to the beginning and end of the sequence. At every step we either
move the left pointer towards right
or move the right pointer towards left
In the beginning the difference between pointers is n-1. At every step the difference between pointers decreases by one. We can stop when the pointers cross each other (and say that no solution can be obtained if one was not found so far). So clearly we can not do more than n computations before arriving at a solution. This is what it means to say that the solution is linear with respect to n; no matter how large n grows, we never do more than n computations. Contrast this to your original solution, where we actually end up doing n^2 computations as n grows large.
Hassan is correct, here is a full solution:
function removeNb (n) {
var a = 1;
var d = 1;
// Calculate the sum of the numbers 1-n without anything removed
var S = 0.5 * n * (2*a + (d *(n-1)));
// For each possible value of b, calculate a if it exists.
var results = [];
for (let numB = a; numB <= n; numB++) {
let eq1 = S - numB;
let eq2 = numB + 1;
if (eq1 % eq2 === 0) {
let numA = eq1 / eq2;
if (numA < n && numA != numB) {
results.push([numA, numB]);
results.push([numB, numA]);
}
}
}
return results;
}
In case it's of interest, CY Aries pointed this out:
ab + a + b = n(n + 1)/2
add 1 to both sides
ab + a + b + 1 = (n^2 + n + 2) / 2
(a + 1)(b + 1) = (n^2 + n + 2) / 2
so we're looking for factors of (n^2 + n + 2) / 2 and have some indication about the least size of the factor. This doesn't necessarily imply a great improvement in complexity for the actual search but still it's kind of cool.
This is part comment, part answer.
In engineering terms, the original function posted is using "brute force" to solve the problem, iterating every (or more than needed) possible combinations. The number of iterations is n is large - if you did all possible it would be
n * (n-1) = bazillio n
Less is More
So lets look at things that can be optimized, first some minor things, I'm a little confused about the first for loop and nArray:
// OP's code
for(let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
??? You don't really use nArray for anything? Length is just n .. am I so sleep deprived I'm missing something? And while you can sum a consecutive sequence of integers 1-n by using a for loop, there is a direct and easy way that avoids a loop:
sum = ( n + 1 ) * n * 0.5 ;
THE LOOPS
// OP's loops, not optimized
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
if(i != y) {
if(i*y === sum - i - y) {
Optimization Considerations:
I see you're on the right track in a way, cutting the starting i, y values in half since the factors . But you're iterating both of them in the same direction : UP. And also, the lower numbers look like they can go a little below half of n (perhaps not because the sequence start at 1, I haven't confirmed that, but it seems the case).
Plus we want to avoid division every time we start an instantiation of the loop (i.e set the variable once, and also we're going to change it). And finally, with the IF statements, i and y will never be equal to each other the way we're going to create the loops, so that's a conditional that can vanish.
But the more important thing is the direction of transversing the loops. The smaller factor low is probably going to be close to the lowest loop value (about half of n) and the larger factor hi is probably going to be near the value of n. If we has some solid math theory that said something like "hi will never be less than 0.75n" then we could make a couple mods to take advantage of that knowledge.
The way the loops are show below, they break and iterate before the hi and low loops meet.
Moreover, it doesn't matter which loop picks the lower or higher number, so we can use this to shorten the inner loop as number pairs are tested, making the loop smaller each time. We don't want to waste time checking the same pair of numbers more than once! The lower factor's loop will start a little below half of n and go up, and the higher factor's loop will start at n and go down.
// Code Fragment, more optimized:
let nHi = n;
let low = Math.trunc( n * 0.49 );
let sum = ( n + 1 ) * n * 0.5 ;
// While Loop for the outside (incrementing) loop
while( low < nHi ) {
// FOR loop for the inside decrementing loop
for(let hi = nHi; hi > low; hi--) {
// If we're higher than the sum, we exit, decrement.
if( hi * low + hi + low > sum ) {
continue;
}
// If we're equal, then we're DONE and we write to array.
else if( hi * low + hi + low === sum) {
answersArray.push([hi, low]);
low = nHi; // Note this is if we want to end once finding one pair
break; // If you want to find ALL pairs for large numbers then replace these low = nHi; with low++;
}
// And if not, we increment the low counter and restart the hi loop from the top.
else {
low++;
break;
}
} // close for
} // close while
Tutorial:
So we set the few variables. Note that low is set slightly less than half of n, as larger numbers look like they could be a few points less. Also, we don't round, we truncate, which is essentially "always rounding down", and is slightly better for performance, (though it dosenit matter in this instance with just the single assignment).
The while loop starts at the lowest value and increments, potentially all the way up to n-1. The hi FOR loop starts at n (copied to nHi), and then decrements until the factor are found OR it intercepts at low + 1.
The conditionals:
First IF: If we're higher than the sum, we exit, decrement, and continue at a lower value for the hi factor.
ELSE IF: If we are EQUAL, then we're done, and break for lunch. We set low = nHi so that when we break out of the FOR loop, we will also exit the WHILE loop.
ELSE: If we get here it's because we're less than the sum, so we need to increment the while loop and reset the hi FOR loop to start again from n (nHi).

Calculating Pi in JavaScript using Gregory-Leibniz Series

I have to calculate value of Pi using Gregory-Leibniz series:
pi = 4 * ((1/1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + ...)
I want to write a function in JavaScript that would take the number of digits that needs to be displayed as an argument. But I'm not sure if my way of thinking is fine here.
This is what I got so far:
function pi(n) {
var pi = 0;
for (i=1; i <= n; i+2) {
pi = 4 * ((1/i) + (1/(i+2)))
}
return pi;
}
How do I write the pi calculation so it calculates values till n?
You could use an increment of 4 and multiply at the end of the function with 4.
n is not the number of digits, but the counter of the value of the series.
function pi(n) {
var v = 0;
for (i = 1; i <= n; i += 4) { // increment by 4
v += 1 / i - 1 / (i + 2); // add the value of the series
}
return 4 * v; // apply the factor at last
}
console.log(pi(1000000000));
You may also do as follows; The function will iterate 10M times and will return you PI with n significant digits after the decimal point.
function getPI(n){
var i = 1,
p = 0;
while (i < 50000000){
p += 1/i - 1/(i+2);
i += 4;
}
return +(4*p).toFixed(n);
}
var myPI = getPI(10);
console.log("myPI #n:100M:", myPI);
console.log("Math.PI :", Math.PI);
console.log("The Diff :", Math.PI-myPI);

Get a random number focused on center

Is it possible to get a random number between 1-100 and keep the results mainly within the 40-60 range? I mean, it will go out of that range rarely, but I want it to be mainly within that range... Is it possible with JavaScript/jQuery?
Right now I'm just using the basic Math.random() * 100 + 1.
The simplest way would be to generate two random numbers from 0-50 and add them together.
This gives a distribution biased towards 50, in the same way rolling two dice biases towards 7.
In fact, by using a larger number of "dice" (as #Falco suggests), you can make a closer approximation to a bell-curve:
function weightedRandom(max, numDice) {
let num = 0;
for (let i = 0; i < numDice; i++) {
num += Math.random() * (max/numDice);
}
return num;
}
JSFiddle: http://jsfiddle.net/797qhcza/1/
You have some good answers here that give specific solutions; let me describe for you the general solution. The problem is:
I have a source of more-or-less uniformly distributed random numbers between 0 and 1.
I wish to produce a sequence of random numbers that follow a different distribution.
The general solution to this problem is to work out the quantile function of your desired distribution, and then apply the quantile function to the output of your uniform source.
The quantile function is the inverse of the integral of your desired distribution function. The distribution function is the function where the area under a portion of the curve is equal to the probability that the randomly-chosen item will be in that portion.
I give an example of how to do so here:
http://ericlippert.com/2012/02/21/generating-random-non-uniform-data/
The code in there is in C#, but the principles apply to any language; it should be straightforward to adapt the solution to JavaScript.
Taking arrays of numbers, etc. isn't efficient. You should take a mapping which takes a random number between 0 to 100 and maps to the distribution you need. So in your case, you could take f(x)=-(1/25)x2+4x to get a distribution with the most values in the middle of your range.
I might do something like setup a "chance" for the number to be allowed to go "out of bounds". In this example, a 20% chance the number will be 1-100, otherwise, 40-60:
$(function () {
$('button').click(function () {
var outOfBoundsChance = .2;
var num = 0;
if (Math.random() <= outOfBoundsChance) {
num = getRandomInt(1, 100);
} else {
num = getRandomInt(40, 60);
}
$('#out').text(num);
});
function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
});
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<button>Generate</button>
<div id="out"></div>
fiddle: http://jsfiddle.net/kbv39s9w/
I needed to solve this problem a few years ago and my solution was easier than any of the other answers.
I generated 3 randoms between the bounds and averaged them. This pulls the result towards the centre but leaves it completely possible to reach the extremities.
It looks stupid but you can use rand twice:
var choice = Math.random() * 3;
var result;
if (choice < 2){
result = Math.random() * 20 + 40; //you have 2/3 chance to go there
}
else {
result = Math.random() * 100 + 1;
}
Sure it is possible. Make a random 1-100. If the number is <30 then generate number in range 1-100 if not generate in range 40-60.
There is a lot of different ways to generate such random numbers. One way to do it is to compute the sum of multiple uniformly random numbers. How many random numbers you sum and what their range is will determine how the final distribution will look.
The more numbers you sum up, the more it will be biased towards the center. Using the sum of 1 random number was already proposed in your question, but as you notice is not biased towards the center of the range. Other answers have propose using the sum of 2 random numbers or the sum of 3 random numbers.
You can get even more bias towards the center of the range by taking the sum of more random numbers. At the extreme you could take the sum of 99 random numbers which each were either 0 or 1. That would be a binomial distribution. (Binomial distributions can in some sense be seen as the discrete version of normal distributions). This can still in theory cover the full range, but it has so much bias towards the center that you should never expect to see it reach the endpoints.
This approach means you can tweak just how much bias you want.
What about using something like this:
var loops = 10;
var tries = 10;
var div = $("#results").html(random());
function random() {
var values = "";
for(var i=0; i < loops; i++) {
var numTries = tries;
do {
var num = Math.floor((Math.random() * 100) + 1);
numTries--;
}
while((num < 40 || num >60) && numTries > 1)
values += num + "<br/>";
}
return values;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<div id="results"></div>
The way I've coded it allows you to set a couple of variables:
loops = number of results
tries = number of times the function will try to get a number between 40-60 before it stops running through the while loop
Added bonus: It uses do while!!! Awesomeness at its best
You can write a function that maps random values between [0, 1) to [1, 100] according to weight. Consider this example:
Here, the value 0.95 maps to value between [61, 100].
In fact we have .05 / .1 = 0.5, which, when mapped to [61, 100], yields 81.
Here is the function:
/*
* Function that returns a function that maps random number to value according to map of probability
*/
function createDistributionFunction(data) {
// cache data + some pre-calculations
var cache = [];
var i;
for (i = 0; i < data.length; i++) {
cache[i] = {};
cache[i].valueMin = data[i].values[0];
cache[i].valueMax = data[i].values[1];
cache[i].rangeMin = i === 0 ? 0 : cache[i - 1].rangeMax;
cache[i].rangeMax = cache[i].rangeMin + data[i].weight;
}
return function(random) {
var value;
for (i = 0; i < cache.length; i++) {
// this maps random number to the bracket and the value inside that bracket
if (cache[i].rangeMin <= random && random < cache[i].rangeMax) {
value = (random - cache[i].rangeMin) / (cache[i].rangeMax - cache[i].rangeMin);
value *= cache[i].valueMax - cache[i].valueMin + 1;
value += cache[i].valueMin;
return Math.floor(value);
}
}
};
}
/*
* Example usage
*/
var distributionFunction = createDistributionFunction([
{ weight: 0.1, values: [1, 40] },
{ weight: 0.8, values: [41, 60] },
{ weight: 0.1, values: [61, 100] }
]);
/*
* Test the example and draw results using Google charts API
*/
function testAndDrawResult() {
var counts = [];
var i;
var value;
// run the function in a loop and count the number of occurrences of each value
for (i = 0; i < 10000; i++) {
value = distributionFunction(Math.random());
counts[value] = (counts[value] || 0) + 1;
}
// convert results to datatable and display
var data = new google.visualization.DataTable();
data.addColumn("number", "Value");
data.addColumn("number", "Count");
for (value = 0; value < counts.length; value++) {
if (counts[value] !== undefined) {
data.addRow([value, counts[value]]);
}
}
var chart = new google.visualization.ColumnChart(document.getElementById("chart"));
chart.draw(data);
}
google.load("visualization", "1", { packages: ["corechart"] });
google.setOnLoadCallback(testAndDrawResult);
<script src="https://www.google.com/jsapi"></script>
<div id="chart"></div>
Here's a weighted solution at 3/4 40-60 and 1/4 outside that range.
function weighted() {
var w = 4;
// number 1 to w
var r = Math.floor(Math.random() * w) + 1;
if (r === 1) { // 1/w goes to outside 40-60
var n = Math.floor(Math.random() * 80) + 1;
if (n >= 40 && n <= 60) n += 40;
return n
}
// w-1/w goes to 40-60 range.
return Math.floor(Math.random() * 21) + 40;
}
function test() {
var counts = [];
for (var i = 0; i < 2000; i++) {
var n = weighted();
if (!counts[n]) counts[n] = 0;
counts[n] ++;
}
var output = document.getElementById('output');
var o = "";
for (var i = 1; i <= 100; i++) {
o += i + " - " + (counts[i] | 0) + "\n";
}
output.innerHTML = o;
}
test();
<pre id="output"></pre>
Ok, so I decided to add another answer because I felt like my last answer, as well as most answers here, use some sort of half-statistical way of obtaining a bell-curve type result return. The code I provide below works the same way as when you roll a dice. Therefore, it is hardest to get 1 or 99, but easiest to get 50.
var loops = 10; //Number of numbers generated
var min = 1,
max = 50;
var div = $("#results").html(random());
function random() {
var values = "";
for (var i = 0; i < loops; i++) {
var one = generate();
var two = generate();
var ans = one + two - 1;
var num = values += ans + "<br/>";
}
return values;
}
function generate() {
return Math.floor((Math.random() * (max - min + 1)) + min);
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<div id="results"></div>
I'd recommend using the beta distribution to generate a number between 0-1, then scale it up. It's quite flexible and can create many different shapes of distributions.
Here's a quick and dirty sampler:
rbeta = function(alpha, beta) {
var a = 0
for(var i = 0; i < alpha; i++)
a -= Math.log(Math.random())
var b = 0
for(var i = 0; i < beta; i++)
b -= Math.log(Math.random())
return Math.ceil(100 * a / (a+b))
}
var randNum;
// generate random number from 1-5
var freq = Math.floor(Math.random() * (6 - 1) + 1);
// focus on 40-60 if the number is odd (1,3, or 5)
// this should happen %60 of the time
if (freq % 2){
randNum = Math.floor(Math.random() * (60 - 40) + 40);
}
else {
randNum = Math.floor(Math.random() * (100 - 1) + 1);
}
The best solution targeting this very problem is the one proposed by BlueRaja - Danny Pflughoeft but I think a somewhat faster and more general solution is also worth mentioning.
When I have to generate random numbers (strings, coordinate pairs, etc.) satisfying the two requirements of
The result set is quite small. (not larger than 16K numbers)
The result set is discreet. (like integer numbers only)
I usually start by creating an array of numbers (strings, coordinate pairs, etc.) fulfilling the requirement (In your case: an array of numbers containing the more probable ones multiple times.), then choose a random item of that array. This way, you only have to call the expensive random function once per item.
Distribution
5% for [ 0,39]
90% for [40,59]
5% for [60,99]
Solution
var f = Math.random();
if (f < 0.05) return random(0,39);
else if (f < 0.95) return random(40,59);
else return random(60,99);
Generic Solution
random_choose([series(0,39),series(40,59),series(60,99)],[0.05,0.90,0.05]);
function random_choose (collections,probabilities)
{
var acc = 0.00;
var r1 = Math.random();
var r2 = Math.random();
for (var i = 0; i < probabilities.length; i++)
{
acc += probabilities[i];
if (r1 < acc)
return collections[i][Math.floor(r2*collections[i].length)];
}
return (-1);
}
function series(min,max)
{
var i = min; var s = [];
while (s[s.length-1] < max) s[s.length]=i++;
return s;
}
You can use a helper random number to whether generate random numbers in 40-60 or 1-100:
// 90% of random numbers should be between 40 to 60.
var weight_percentage = 90;
var focuse_on_center = ( (Math.random() * 100) < weight_percentage );
if(focuse_on_center)
{
// generate a random number within the 40-60 range.
alert (40 + Math.random() * 20 + 1);
}
else
{
// generate a random number within the 1-100 range.
alert (Math.random() * 100 + 1);
}
If you can use the gaussian function, use it. This function returns normal number with average 0 and sigma 1.
95% of this number are within average +/- 2*sigma. Your average = 50, and sigma = 5 so
randomNumber = 50 + 5*gaussian()
The best way to do that is generating a random number that is distributed equally in a certain set of numbers, and then apply a projection function to the set between 0 and a 100 where the projection is more likely to hit the numbers you want.
Typically the mathematical way of achieving this is plotting a probability function of the numbers you want. We could use the bell curve, but let's for the sake of easier calculation just work with a flipped parabola.
Let's make a parabola such that its roots are at 0 and 100 without skewing it. We get the following equation:
f(x) = -(x-0)(x-100) = -x * (x-100) = -x^2 + 100x
Now, all the area under the curve between 0 and 100 is representative of our first set where we want the numbers generated. There, the generation is completely random. So, all we need to do is find the bounds of our first set.
The lower bound is, of course, 0. The upper bound is the integral of our function at 100, which is
F(x) = -x^3/3 + 50x^2
F(100) = 500,000/3 = 166,666.66666 (let's just use 166,666, because rounding up would make the target out of bounds)
So we know that we need to generate a number somewhere between 0 and 166,666. Then, we simply need to take that number and project it to our second set, which is between 0 and 100.
We know that the random number we generated is some integral of our parabola with an input x between 0 and 100. That means that we simply have to assume that the random number is the result of F(x), and solve for x.
In this case, F(x) is a cubic equation, and in the form F(x) = ax^3 + bx^2 + cx + d = 0, the following statements are true:
a = -1/3
b = 50
c = 0
d = -1 * (your random number)
Solving this for x yields you the actual random number your are looking for, which is guaranteed to be in the [0, 100] range and a much higher likelihood to be close to the center than the edges.
This answer is really good. But I would like to post implementation instructions (I'm not into JavaScript, so I hope you will understand) for different situation.
Assume you have ranges and weights for every range:
ranges - [1, 20], [21, 40], [41, 60], [61, 100]
weights - {1, 2, 100, 5}
Initial Static Information, could be cached:
Sum of all weights (108 in sample)
Range selection boundaries. It basically this formula: Boundary[n] = Boundary[n - 1] + weigh[n - 1] and Boundary[0] = 0. Sample has Boundary = {0, 1, 3, 103, 108}
Number generation:
Generate random number N from range [0, Sum of all weights).
for (i = 0; i < size(Boundary) && N > Boundary[i + 1]; ++i)
Take ith range and generate random number in that range.
Additional note for performance optimizations. Ranges don't have to be ordered neither ascending nor descending order, so for faster range look-up range that has highest weight should go first and one with lowest weight should go last.

Generate all combinations for pair of bits set to 1?

I'm trying to generate all possible combinations for pair of 1's within given bit width.
Let's say the bit width is 6, i.e. number 32. This is what I would like to generate:
000000
000011
000110
001100
001111
011000
011011
011110
110000
110011
110110
111100
111111
If I have variables:
var a = 1,
b = 2;
num = a | b;
and create a loop that I'll loop over width - 1 times, and where I shift both a << 1 and b << 1, I'll get all combinations for one pair. After that, I'm pretty much stuck.
Could someone , please, provide some help.
Update: working example
Based on Barmar's mathematical approach, this is what I managed to implement
var arr = [],
arrBits = [];
function getCombs(pairs, startIdx) {
var i, j, val = 0, tmpVal, idx;
if (startIdx + 2 < pairs) {
startIdx = arr.length - 1;
pairs -= 1;
}
if (pairs < 2) {
return;
}
for (i = 0; i < pairs-1; i++) {
idx = startIdx - (i * 2);
val += arr[idx];
}
for (j = 0; j < idx - 1; j++) {
arrBits.push((val + arr[j]).toString(2));
}
getCombs(pairs, startIdx-1);
}
(function initArr(bits) {
var i, val, pairs, startIdx;
for (i = 1; i < bits; i++) {
val = i == 1 ? 3 : val * 2;
arr.push(val);
arrBits.push(val.toString(2));
}
pairs = Math.floor(bits / 2);
startIdx = arr.length - 1;
getCombs(pairs, startIdx);
console.log(arrBits);
}(9));
Working example on JSFiddle
http://jsfiddle.net/zywc5/
The numbers with exactly one pair of 1's are the sequence 3, 6, 12, 24, 48, ...; they start with 3 and just double each time.
The numbers with two pairs of 1's are 12+3, 24+3, 24+6, 48+3, 48+6, 48+12, ...; these are the above sequence starting at 12 + the original sequence up to n/4.
The numbers with three pairs of 1's are 48+12+3, 96+12+3, 96+24+3, 96+24+6, ...
The relationship between each of these suggests a recursive algorithm making use of the original doubling sequence. I don't have time right now to write it, but I think this should get you going.
if the bit width isn't that big then you'll be way better off creating bit representations for all numbers from 0 to 31 in a loop and simply ignore the ones that have an odd number of "ones" in the bit representation.
Maybe start counting normally in binary and replace all 1's with 11's like this:
n = 5
n = n.toString(2) //= "101"
n = n.replace(/1/g, "11") //= "11011"
n = parseInt(n, 2) //= 27
So you'll get:
0 -> 0
1 -> 11
10 -> 110
11 -> 1111
100 -> 1100
101 -> 11011
110 -> 11110
111 -> 111111
And so on. You'll have to count up to 31 or so on the left side, and reject ones longer than 6 bits on the right side.
See http://jsfiddle.net/SBH6R/
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var j=0;j<arr.length;j++){
var k=j;
if(getNum1(arr[j])%2===1){
arr[j]+=1;
}else{
if(i<len-1){
arr.splice(j+1,0,arr[j]+1);
j++;
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.join('<br />'));
Or maybe you will prefer http://jsfiddle.net/SBH6R/1/. It's simpler, but then you will have to sort() the array:
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var k=0,l=arr.length;k<l;k++){
if(getNum1(arr[k])%2===1){
arr[k]+=1;
}else{
if(i<len-1){
arr.push(arr[k]+1);
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.sort().join('<br />'));
See http://jsperf.com/generate-all-combinations-for-pair-of-bits-set-to-1 if you want to compare the performance. It seems that the fastest code is the first one on Chrome but the second one on Firefox.
You can also do this with bit twiddling. If the lowest two bits are zero, we need to set them, which is equivalent to adding 3. Otherwise, we need to replace the lowest block of ones by its top bit and a 1-bit to the left of it. This can be done as follows, where x is the current combination:
x3 = x + 3;
return (((x ^ x3) - 2) >> 2) + x3;

Categories

Resources