Generate all combinations for pair of bits set to 1? - javascript

I'm trying to generate all possible combinations for pair of 1's within given bit width.
Let's say the bit width is 6, i.e. number 32. This is what I would like to generate:
000000
000011
000110
001100
001111
011000
011011
011110
110000
110011
110110
111100
111111
If I have variables:
var a = 1,
b = 2;
num = a | b;
and create a loop that I'll loop over width - 1 times, and where I shift both a << 1 and b << 1, I'll get all combinations for one pair. After that, I'm pretty much stuck.
Could someone , please, provide some help.
Update: working example
Based on Barmar's mathematical approach, this is what I managed to implement
var arr = [],
arrBits = [];
function getCombs(pairs, startIdx) {
var i, j, val = 0, tmpVal, idx;
if (startIdx + 2 < pairs) {
startIdx = arr.length - 1;
pairs -= 1;
}
if (pairs < 2) {
return;
}
for (i = 0; i < pairs-1; i++) {
idx = startIdx - (i * 2);
val += arr[idx];
}
for (j = 0; j < idx - 1; j++) {
arrBits.push((val + arr[j]).toString(2));
}
getCombs(pairs, startIdx-1);
}
(function initArr(bits) {
var i, val, pairs, startIdx;
for (i = 1; i < bits; i++) {
val = i == 1 ? 3 : val * 2;
arr.push(val);
arrBits.push(val.toString(2));
}
pairs = Math.floor(bits / 2);
startIdx = arr.length - 1;
getCombs(pairs, startIdx);
console.log(arrBits);
}(9));
Working example on JSFiddle
http://jsfiddle.net/zywc5/

The numbers with exactly one pair of 1's are the sequence 3, 6, 12, 24, 48, ...; they start with 3 and just double each time.
The numbers with two pairs of 1's are 12+3, 24+3, 24+6, 48+3, 48+6, 48+12, ...; these are the above sequence starting at 12 + the original sequence up to n/4.
The numbers with three pairs of 1's are 48+12+3, 96+12+3, 96+24+3, 96+24+6, ...
The relationship between each of these suggests a recursive algorithm making use of the original doubling sequence. I don't have time right now to write it, but I think this should get you going.

if the bit width isn't that big then you'll be way better off creating bit representations for all numbers from 0 to 31 in a loop and simply ignore the ones that have an odd number of "ones" in the bit representation.

Maybe start counting normally in binary and replace all 1's with 11's like this:
n = 5
n = n.toString(2) //= "101"
n = n.replace(/1/g, "11") //= "11011"
n = parseInt(n, 2) //= 27
So you'll get:
0 -> 0
1 -> 11
10 -> 110
11 -> 1111
100 -> 1100
101 -> 11011
110 -> 11110
111 -> 111111
And so on. You'll have to count up to 31 or so on the left side, and reject ones longer than 6 bits on the right side.

See http://jsfiddle.net/SBH6R/
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var j=0;j<arr.length;j++){
var k=j;
if(getNum1(arr[j])%2===1){
arr[j]+=1;
}else{
if(i<len-1){
arr.splice(j+1,0,arr[j]+1);
j++;
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.join('<br />'));
Or maybe you will prefer http://jsfiddle.net/SBH6R/1/. It's simpler, but then you will have to sort() the array:
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var k=0,l=arr.length;k<l;k++){
if(getNum1(arr[k])%2===1){
arr[k]+=1;
}else{
if(i<len-1){
arr.push(arr[k]+1);
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.sort().join('<br />'));
See http://jsperf.com/generate-all-combinations-for-pair-of-bits-set-to-1 if you want to compare the performance. It seems that the fastest code is the first one on Chrome but the second one on Firefox.

You can also do this with bit twiddling. If the lowest two bits are zero, we need to set them, which is equivalent to adding 3. Otherwise, we need to replace the lowest block of ones by its top bit and a 1-bit to the left of it. This can be done as follows, where x is the current combination:
x3 = x + 3;
return (((x ^ x3) - 2) >> 2) + x3;

Related

JavaScript: Generate a unique 'x' numbers base on the range & set given [duplicate]

How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}​
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)

How to make a string palindrome?

Create a function which takes a string as parameter. Return the shortest palindrome formed by adding the letter to that string.
"abc" // cbabc
"21234" // 4321234
"321234" // 4321234
"a" // a
What I have tried so far is below.
function isPal(str){
return [...str].reverse().join('') === str;
}
function palindrome(s){
if(isPal(s)) return s;
for(let i = 0;i<s.length;i++){
if(isPal(s)) return s;
s = s.slice(0,i) + s[s.length - 1 - i] + s.slice(i)
}
return s;
}
console.log(palindrome('abc'))
console.log(palindrome('321234'))
console.log(palindrome('21234'))
console.log(palindrome('a'))
The code works fine but its not efficient because its checking for isPal during each iteration.
I would like to know the efficient solution for the problem. I can't calculate the time-complexity of the solution but its clears it not linear. I want to know the solution with linear time-complexity or better than mine.
Make r = reversed string (s)
Find the longest suffix of r equal to prefix of s (checking char by char)
a b c
c b a
for another example
2 1 2 3 4
4 3 2 1 2
but better variant does exist:
2 1 2 3 4
4 3 2 1 2
Note that you really don't need to build reversed string - just use corresponding indexes
Both operations should be linear.
Edit: Modified code exploiting z-function
(thanks #Kalido for pointing to abcdba test case)
It is possible to use z-function mentioned in your earlier theme. I am not familiar with JS (enough to properly make result strings), so just made z-array for comparison of string suffix with prefix of reversed one (note index mangling in the right part here s[z[i]] == s[n - 1 - i - z[i]])
Code looks for the largest value z[maxi] except for the first item. The first item is used only if it is equal to n (string already is palindrome). Result is length of prefix to add.
For example, 21234 gives z[maxi]=3, so function returns 2 (we add prefix of 43212of length 5-3=2), ie 43 = > 43 21234
cabac gives z[0] = 5 = n, result is zero, so we don't need to add anything
abcdba gives z[0] = 2 < n, so we choose maximum among other items
function ex_z_function(s) {
var n = s.length;
var z = Array(n).fill(0);
var i, l, r, maxi = 1;
for (i = 0, l = 0, r = 0; i < n; ++i) {
if (i <= r)
z[i] = Math.min(r - i + 1, z[i - l]);
while (i + z[i] < n && s[z[i]] == s[n - 1 - i - z[i]])
++z[i];
if ((i > 0) && (z[i] > z[maxi]))
maxi = i;
if (i + z[i] - 1 > r)
l = i, r = i + z[i] - 1;
}
if (z[0] == n) {
return 0;
}
return n - z[maxi];
}
console.log(ex_z_function("a"));
console.log(ex_z_function("abc"));
console.log(ex_z_function("abac"));
console.log(ex_z_function("cabac"));
console.log(ex_z_function("21234"));
console.log(ex_z_function("abcdba"));
console.log(ex_z_function("abacaba"));
console.log(ex_z_function("vfvcabgvcvfv"));
You could already gain a lot of time on your isPal function by just checking half the string, or return if the check fails early:
function isPal(str){
for (let i = 0, l = str.length; i < l / 2; i++) {
if (str[i] != str[l-i-1]) {
return false
}
}
return true
}
console.log(isPal('kayak'))
console.log(isPal('toot'))
console.log(isPal('john'))
https://jsperf.com/palindrome-detection
Note: the complexity of isPal remains linear but the best case is far better.

Trying to optimize my code to either remove nested loop or make it more efficient

A friend of mine takes a sequence of numbers from 1 to n (where n > 0)
Within that sequence, he chooses two numbers, a and b
He says that the product of a and b should be equal to the sum of all numbers in the sequence, excluding a and b
Given a number n, could you tell me the numbers he excluded from the sequence?
Have found the solution to this Kata from Code Wars but it times out (After 12 seconds) in the editor when I run it; any ideas as too how I should further optimize the nested for loop and or remove it?
function removeNb(n) {
var nArray = [];
var sum = 0;
var answersArray = [];
for (let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
var length = nArray.length;
for (let i = Math.round(n / 2); i < length; i++) {
for (let y = Math.round(n / 2); y < length; y++) {
if (i != y) {
if (i * y === sum - i - y) {
answersArray.push([i, y]);
break;
}
}
}
}
return answersArray;
}
console.log(removeNb(102));
.as-console-wrapper { max-height: 100% !important; top: 0; }
I think there is no reason for calculating the sum after you fill the array, you can do that while filling it.
function removeNb(n) {
let nArray = [];
let sum = 0;
for(let i = 1; i <= n; i++) {
nArray.push(i);
sum += i;
}
}
And since there could be only two numbers a and b as the inputs for the formula a * b = sum - a - b, there could be only one possible value for each of them. So, there's no need to continue the loop when you find them.
if(i*y === sum - i - y) {
answersArray.push([i,y]);
break;
}
I recommend looking at the problem in another way.
You are trying to find two numbers a and b using this formula a * b = sum - a - b.
Why not reduce the formula like this:
a * b + a = sum - b
a ( b + 1 ) = sum - b
a = (sum - b) / ( b + 1 )
Then you only need one for loop that produces the value of b, check if (sum - b) is divisible by ( b + 1 ) and if the division produces a number that is less than n.
for(let i = 1; i <= n; i++) {
let eq1 = sum - i;
let eq2 = i + 1;
if (eq1 % eq2 === 0) {
let a = eq1 / eq2;
if (a < n && a != i) {
return [[a, b], [b, a]];
}
}
}
You can solve this in linear time with two pointers method (page 77 in the book).
In order to gain intuition towards a solution, let's start thinking about this part of your code:
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
...
You already figured out this is the part of your code that is slow. You are trying every combination of i and y, but what if you didn't have to try every single combination?
Let's take a small example to illustrate why you don't have to try every combination.
Suppose n == 10 so we have 1 2 3 4 5 6 7 8 9 10 where sum = 55.
Suppose the first combination we tried was 1*10.
Does it make sense to try 1*9 next? Of course not, since we know that 1*10 < 55-10-1 we know we have to increase our product, not decrease it.
So let's try 2*10. Well, 20 < 55-10-2 so we still have to increase.
3*10==30 < 55-3-10==42
4*10==40 < 55-4-10==41
But then 5*10==50 > 55-5-10==40. Now we know we have to decrease our product. We could either decrease 5 or we could decrease 10, but we already know that there is no solution if we decrease 5 (since we tried that in the previous step). So the only choice is to decrease 10.
5*9==45 > 55-5-9==41. Same thing again: we have to decrease 9.
5*8==40 < 55-5-8==42. And now we have to increase again...
You can think about the above example as having 2 pointers which are initialized to the beginning and end of the sequence. At every step we either
move the left pointer towards right
or move the right pointer towards left
In the beginning the difference between pointers is n-1. At every step the difference between pointers decreases by one. We can stop when the pointers cross each other (and say that no solution can be obtained if one was not found so far). So clearly we can not do more than n computations before arriving at a solution. This is what it means to say that the solution is linear with respect to n; no matter how large n grows, we never do more than n computations. Contrast this to your original solution, where we actually end up doing n^2 computations as n grows large.
Hassan is correct, here is a full solution:
function removeNb (n) {
var a = 1;
var d = 1;
// Calculate the sum of the numbers 1-n without anything removed
var S = 0.5 * n * (2*a + (d *(n-1)));
// For each possible value of b, calculate a if it exists.
var results = [];
for (let numB = a; numB <= n; numB++) {
let eq1 = S - numB;
let eq2 = numB + 1;
if (eq1 % eq2 === 0) {
let numA = eq1 / eq2;
if (numA < n && numA != numB) {
results.push([numA, numB]);
results.push([numB, numA]);
}
}
}
return results;
}
In case it's of interest, CY Aries pointed this out:
ab + a + b = n(n + 1)/2
add 1 to both sides
ab + a + b + 1 = (n^2 + n + 2) / 2
(a + 1)(b + 1) = (n^2 + n + 2) / 2
so we're looking for factors of (n^2 + n + 2) / 2 and have some indication about the least size of the factor. This doesn't necessarily imply a great improvement in complexity for the actual search but still it's kind of cool.
This is part comment, part answer.
In engineering terms, the original function posted is using "brute force" to solve the problem, iterating every (or more than needed) possible combinations. The number of iterations is n is large - if you did all possible it would be
n * (n-1) = bazillio n
Less is More
So lets look at things that can be optimized, first some minor things, I'm a little confused about the first for loop and nArray:
// OP's code
for(let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
??? You don't really use nArray for anything? Length is just n .. am I so sleep deprived I'm missing something? And while you can sum a consecutive sequence of integers 1-n by using a for loop, there is a direct and easy way that avoids a loop:
sum = ( n + 1 ) * n * 0.5 ;
THE LOOPS
// OP's loops, not optimized
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
if(i != y) {
if(i*y === sum - i - y) {
Optimization Considerations:
I see you're on the right track in a way, cutting the starting i, y values in half since the factors . But you're iterating both of them in the same direction : UP. And also, the lower numbers look like they can go a little below half of n (perhaps not because the sequence start at 1, I haven't confirmed that, but it seems the case).
Plus we want to avoid division every time we start an instantiation of the loop (i.e set the variable once, and also we're going to change it). And finally, with the IF statements, i and y will never be equal to each other the way we're going to create the loops, so that's a conditional that can vanish.
But the more important thing is the direction of transversing the loops. The smaller factor low is probably going to be close to the lowest loop value (about half of n) and the larger factor hi is probably going to be near the value of n. If we has some solid math theory that said something like "hi will never be less than 0.75n" then we could make a couple mods to take advantage of that knowledge.
The way the loops are show below, they break and iterate before the hi and low loops meet.
Moreover, it doesn't matter which loop picks the lower or higher number, so we can use this to shorten the inner loop as number pairs are tested, making the loop smaller each time. We don't want to waste time checking the same pair of numbers more than once! The lower factor's loop will start a little below half of n and go up, and the higher factor's loop will start at n and go down.
// Code Fragment, more optimized:
let nHi = n;
let low = Math.trunc( n * 0.49 );
let sum = ( n + 1 ) * n * 0.5 ;
// While Loop for the outside (incrementing) loop
while( low < nHi ) {
// FOR loop for the inside decrementing loop
for(let hi = nHi; hi > low; hi--) {
// If we're higher than the sum, we exit, decrement.
if( hi * low + hi + low > sum ) {
continue;
}
// If we're equal, then we're DONE and we write to array.
else if( hi * low + hi + low === sum) {
answersArray.push([hi, low]);
low = nHi; // Note this is if we want to end once finding one pair
break; // If you want to find ALL pairs for large numbers then replace these low = nHi; with low++;
}
// And if not, we increment the low counter and restart the hi loop from the top.
else {
low++;
break;
}
} // close for
} // close while
Tutorial:
So we set the few variables. Note that low is set slightly less than half of n, as larger numbers look like they could be a few points less. Also, we don't round, we truncate, which is essentially "always rounding down", and is slightly better for performance, (though it dosenit matter in this instance with just the single assignment).
The while loop starts at the lowest value and increments, potentially all the way up to n-1. The hi FOR loop starts at n (copied to nHi), and then decrements until the factor are found OR it intercepts at low + 1.
The conditionals:
First IF: If we're higher than the sum, we exit, decrement, and continue at a lower value for the hi factor.
ELSE IF: If we are EQUAL, then we're done, and break for lunch. We set low = nHi so that when we break out of the FOR loop, we will also exit the WHILE loop.
ELSE: If we get here it's because we're less than the sum, so we need to increment the while loop and reset the hi FOR loop to start again from n (nHi).

Unique random number generator in JavaScript [duplicate]

How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}​
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)

Adding numbers together

I want to loop over an array whilst addding the numbers together.
Whilst looping over the array, I would like to add the current number to the next.
My array looks like
[0,1,0,4,1]
I would like to do the following;
[0,1,0,4,1] - 0+1= 1, 1+0= 1, 0+4=4, 4+1=5
which would then give me [1,1,4,5] to do the following; 1+1 = 2, 1+4=5, 4+5=9
and so on until I get 85.
Could anyone advise on the best way to go about this
This transform follows the specified method of summation, but I also get an end result of 21, so please specify how you get to 85.
var ary = [0,1,0,4,1],
transform = function (ary) {
var length = ary.length;
return ary.reduce(function (acc, val, index, ary) {
if (index + 1 !== length) acc.push(ary[index] + ary[index + 1]);
return acc;
}, []);
};
while (ary.length !== 1) ary = transform(ary);
If you do in fact want the answer to be 21 (as it seems like it should be), what you are really trying to do is closely related to the Binomial Theorem.
I am not familiar with javascript, so I will write an example in c-style pseudocode:
var array = [0,1,0,4,1]
int result = 0;
for (int i = 0; i < array.length; i++)
{
int result += array[i] * nChooseK(array.length - 1, i);
}
This will put the following numbers into result for each respective iteration:
0 += 0 * 1 --> 0
0 += 1 * 4 --> 4
4 += 0 * 6 --> 4
4 += 4 * 4 --> 20
20 += 1 * 1 --> 21
This avoids all the confusing array operations that arise when trying to iterate through creating shorter-and-shorter arrays; it will also be faster if you have a good nChooseK() implementation.
Now, finding an efficient algorithm for a nChooseK() function is a different matter, but it is a relatively common task so it shouldn't be too difficult (Googling "n choose k algorithm" should work just fine). Some languages even have combinatoric functions in standard math libraries.
The result I get is 21 not 85. This code can be optimised to only use single array. Anyway it gets the job done.
var input = [0, 1, 0, 4, 1];
function calc(input) {
if (input.length === 1) {
return input;
}
var result = [];
for (var i = 0; i < input.length - 1; i++) {
result[i] = input[i] + input[i + 1];
}
return calc(result);
}
alert(calc(input));
This is an O(n^2) algorithm.

Categories

Resources