JavaScript - Get RGBA values from bitmap buffer - javascript

Hello I'm using NodeJs and a package named "Jimp".
I'm trying to get the Red, Green, Blue, and Alpha values for each pixel but am having trouble.
Here's my code:
Jimp.read("https://i.imgur.com/eOu89DY.png").then((image) => {
console.log(image)
for (var y = 0; y < image.bitmap.height; y = y + 3) {
for (var x = 0; x < image.bitmap.width; x = x + 3) {
//--Returns the whole bitmap buffer
console.log(red)
var red = image.bitmap.data;
}
}
and here's the example usage from https://www.npmjs.com/package/jimp :
image.scan(0, 0, image.bitmap.width, image.bitmap.height, function(x, y, idx) {
// x, y is the position of this pixel on the image
// idx is the position start position of this rgba tuple in the bitmap Buffer
// this is the image
var red = this.bitmap.data[idx + 0];
var green = this.bitmap.data[idx + 1];
var blue = this.bitmap.data[idx + 2];
var alpha = this.bitmap.data[idx + 3];
// rgba values run from 0 - 255
// e.g. this.bitmap.data[idx] = 0; // removes red from this pixel
});
Using my code, how could I get the red, green, blue values using variables from the buffer? How do I define IDX like the example usage from the npmjs site???

If you look down a little in the linked page.
Alternatively, you can manipulate individual pixels using the
following these functions:
image.getPixelColor(x, y); // returns the colour of that pixel e.g. 0xFFFFFFFF
...
...
Two static helper functions exist to convert RGBA values into single integer (hex) values:
Jimp.rgbaToInt(r, g, b, a); // e.g. converts 255, 255, 255, 255 to
Jimp.intToRGBA(hex); // e.g. converts 0xFFFFFFFF to {r: 255, g: 255, b: 255, a:255}

Related

Threejs points - set gradient color to points

I am using threejs to create and render a point cloud. What I would like to do is give each point a specific color based on its Z coordinate. This color should be mapped from some color like green having the smallest Z coordinate, throughout blue, yellow and red having the largest Z values. What is the simplest way to give each point a specific color that follows this gradient approach?
My script is quite long, so I have simplified it to only these few lines of code:
function drawCloud(){
for(i = 0; i < totalPoints * 3; i = i + 3){
//Setting the new Z value of each point
//Each third value is the Z value, therefore using i+2
points.geometry.attributes.position.array[i+2] = theNewZValueForThisPoint;
//Now setting the color of each point
// i, i+1 AND i+2 is the R,G, B value of each point
//here each point is set to a green color
points.geometry.attributes.color.array[i] = 0;
points.geometry.attributes.color.array[i+1] = 1;
points.geometry.attributes.color.array[i+2] = 0;
}
}
function animate() {
requestAnimationFrame( animate );
drawCloud();
render();
}
function render() {
renderer.render( scene, camera );
}
I have already created a kind of segmentation approach where each point gets a fixed color within a range. Something like this:
function getColor() {
if(ZValue > 0 && ZValue < 100){
color = green;
}
if(ZValue > 100 && ZValue < 200){
color = blue;
}
}
This is not what I want, as there would be a region where the color is drastically changed. I would like it to have a more gradient approach that changes slowly as the Z value increases.
Keep in mind that this code has been simplified to a great extent to keep it simple and only show the basic idea. Any recommendations on other improvements would also be appreciated.
Given that you have the minimum z-value and maximum z-value of your point cloud, you can use this function to get the color of each point. You can customize the colors and breakpoints of your gradient in the gradient-array accordingly:
function getColor(z, zMin, zMax) {
// normalize v in the range of vMin and vMax
function normalize(v, vMin, vMax) {
return ((v - vMin) / (vMax - vMin));
}
// clamp a value between min and max inclusive
function clamp(value, min, max) {
if (value >= max) return max;
if (value <= min) return min;
return value;
}
// calculates the linear interpolation of two numbers
function lerp(a, b, alpha) {
return a + (b - a) * clamp(alpha, 0, 1);
}
const zNorm = normalize(z, zMin, zMax);
// gradient definition. Each element defines a breakpoint within the normalized z-range (0 - 1) and color
// important: has to be sorted ascendingly by bp
const gradient = [
{bp: 0, r: 0, g: 1, b: 0},
{bp: 1/3, r: 0, g: 0, b: 1},
{bp: 2/3, r: 1, g: 1, b: 0},
{bp: 1, r: 1, g: 0, b: 0}
];
let red, green, blue;
// find the color segment (between breakpoints), interpolate the color between breakpoints
for(let i = 0, g = gradient.length; i < g; i++) {
if(zNorm < gradient[i].bp || gradient[i].bp === 1) {
red = lerp(gradient[i-1].r, gradient[i].r, normalize(zNorm, gradient[i-1].bp, gradient[i].bp));
green = lerp(gradient[i-1].g, gradient[i].g, normalize(zNorm, gradient[i-1].bp, gradient[i].bp));
blue = lerp(gradient[i-1].b, gradient[i].b, normalize(zNorm, gradient[i-1].bp, gradient[i].bp));
break;
}
}
return {r: red, g: green, b: blue};
}

Find Hex Colors and X,Y in Images

I am trying to find all the hex colors in an image and if possible, circle or highlight the X, Y position of where the hex color(s) are. My current code is attempting to find all colors and almost crashes my browser and my attempt to find the X,Y coordinates of each image isn't going good either.
I have two functions doing different things, it's what I have tried to work with to give an example of what has been attempted... Any help would be great!
Any assistance would be amazing!
<canvas id="myCanvas" width="240" height="297" style="border:1px solid #d3d3d3;">
Your browser does not support the HTML5 canvas tag.
</canvas>
<img id="origImage" width="220" height="277" src="loggraph.PNG">
<script>
function getPixel(imgData, index) {
var i = index*4, d = imgData.data;
return [d[i],d[i+1],d[i+2],d[i+3]] // [R,G,B,A]
}
function getPixelXY(imgData, x, y) {
return getPixel(imgData, y*imgData.width+x);
}
function goCheck() {
var cvs = document.createElement('canvas'),
img = document.getElementsByTagName("img")[0];
cvs.width = img.width; cvs.height = img.height;
var ctx = cvs.getContext("2d");
ctx.drawImage(img,0,0,cvs.width,cvs.height);
var idt = ctx.getImageData(0,0,cvs.width,cvs.height);
console.log(getPixel(idt, 852)); // returns array [red, green, blue, alpha]
console.log(getPixelXY(idt,1,1)); // same pixel using x,y
}
function getColors(){
var canvas = document.getElementById("myCanvas");
var devices = canvas.getContext("2d");
var imageData = devices.getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;
// iterate over all pixels
for(var i = 0, n = data.length; i < n; i += 4) {
var r = data[i];
var g = data[i + 1];
var b = data[i + 2];
var rgb = "("+r+","+g+","+b+")";
var incoming = i*4, d = imageData.data;
var bah = [d[incoming],d[incoming+1],d[incoming+2],d[incoming+3]];
$('#list').append("<li>"+rgb+"</li>");
colorList.push(rgb);
}
$('#list').append("<li>"+[d[incoming],d[incoming+1],d[incoming+2],d[incoming+3]]+"</li>");
}
}
Must check all pixels
To find a pixel that matches a color will require, in the worst case (pixel of that color not in image), that you step over every pixel in the image.
How not to do it
Converting every pixel to a DOM string is about the worst way to do it, as DOM string use a lot of memory and CPU overhead, especially if instantiated using jQuery (which has its own additional baggage)
Hex color to array
To find the pixel you need only check each pixels color data against the HEX value. You convert the hex value to an array of 3 Bytes.
The following function will convert from CSS Hex formats "#HHH" "#HHHH", "#HHHHHH" and "#HHHHHHHH" ignoring the alpha part if included, to an array of integers 0-255
const hex2RGB = h => {
if(h.length === 4 || h.length === 5) {
return [parseInt(h[1] + h[1], 16), parseInt(h[2] + h[2], 16), parseInt(h[3] + h[3], 16)];
}
return [parseInt(h[1] + h[2], 16), parseInt(h[3] + h[4], 16), parseInt(h[5] + h[6], 16)];
}
Finding the pixel
I do not know how you plan to use such a feature so the example below is a general purpose method that will help and can be modified as needed
It will always find a pixel if you let it even if there is no perfect match. It does this by finding the closest color to the color you are looking for.
The reason that of finds the closest match is that when you draw an image onto a 2D canvas the pixel values are modified slightly if the image has transparent pixels (pre-multiplied alpha)
The function finds the pixel by measuring the spacial distance between the pixel and the hex color (simple geometry Pythagoras). The closest color is the one that is the smallest distance.
It will return the object
{
x, // the x coordinate of the match
y, // the y coordinate of the match
distance, // how closely the color matches the requested color.
// 0 means a perfect match
// to 441 completely different eg black and white
// value is floored to an integer value
}
If the image is tainted (cross origin, local device storage), or you pass something that can not be converted to pixels the function will return undefined
The function keeps a canvas that it uses to get pixel data as it assumes that it will be use many times. If the image is tainted it will catch the error (add a warning to the console), cleanup the tainted canvas and be ready for another image.
Usage
To use the function add it to your code base, it will setup automatically.
Get an image and a hex value and call the function with the image, CSS hex color, and optionally the threshold distance for the color match.
Eg find exact match for #FF0000
const result = findPixel(origImage, "#FF0000", 0); // find exact match for red
if (result) { // only if found
console.log("Found color #FF0000 at pixel " + result.x + ", " + result.y);
} else {
console.log("The color #FF0000 is not in the image");
}
or find color close to
const result = findPixel(origImage, "#FF0000", 20); // find a match for red
// within 20 units.
// A unit is 1 of 256
if (result) { // only if found
console.log("Found closest color within " + result.distance + "units of #FF0000 at pixel " + result.x + ", " + result.y);
}
or find closest
// find the closest, no threshold ensures a result
const result = findPixel(origImage, "#FF0000");
console.log("Found closest color within " + result.distance + "units of #FF0000 at pixel " + result.x + ", " + result.y);
Code
The function is as follows.
const findPixel = (() => {
var can, ctx;
function createCanvas(w, h) {
if (can === undefined){
can = document.createElement("canvas");
ctx = can.getContext("2d");
}
can.width = w;
can.height = h;
}
function getPixels(img) {
const w = img.naturalWidth || img.width, h = img.naturalHeight || img.height;
createCanvas(w, h);
ctx.drawImage(img, 0, 0);
try {
const imgData = ctx.getImageData(0, 0, w, h);
can.width = can.height = 1; // make canvas as small as possible so it wont
// hold memory. Leave in place to avoid instantiation overheads
return imgData;
} catch(e) {
console.warn("Image is un-trusted and pixel access is blocked");
ctx = can = undefined; // canvas and context can no longer be used so dump them
}
return {width: 0, height: 0, data: []}; // return empty pixel data
}
const hex2RGB = h => { // Hex color to array of 3 values
if(h.length === 4 || h.length === 5) {
return [parseInt(h[1] + h[1], 16), parseInt(h[2] + h[2], 16), parseInt(h[3] + h[3], 16)];
}
return [parseInt(h[1] + h[2], 16), parseInt(h[3] + h[4], 16), parseInt(h[5] + h[6], 16)];
}
const idx2Coord = (idx, w) => ({x: idx % w, y: idx / w | 0});
return function (img, hex, minDist = Infinity) {
const [r, g, b] = hex2RGB(hex);
const {width, height, data} = getPixels(img);
var idx = 0, found;
while (idx < data.length) {
const R = data[idx] - r;
const G = data[idx + 1] - g;
const B = data[idx + 2] - b;
const d = R * R + G * G + B * B;
if (d === 0) { // found exact match
return {...idx2Coord(idx / 4, width), distance: 0};
}
if (d < minDist) {
minDist = d;
found = idx;
}
idx += 4;
}
return found ? {...idx2Coord(found / 4, width), distance: minDist ** 0.5 | 0 } : undefined;
}
})();
This function has been tested and works as described above.
Note Going by the code in the your question the alpha value of the image and CSS hex color is ignored.
Note that if you intend to find many colors from the same image this function is not the best suited for you needs. If this is the case let me know in the comment and I can make changes or instruct you how to optimism the code for such uses.
Note It is not well suited for single use only. However if this is the case change the line const findPixel = (() => { to var findPixel = (() => { and after you have used it remove the reference findpixel = undefined; and JS will clean up any resources it holds.
Note If you also want to get the actual color of the closest found color that is trivial to add as well. Ask in the comments.
Note It is reasonably quick (you will be hard pressed to get a quicker result) but be warned that for very large images 4K and above it may take a bit, and on very low end devices it may cause a out of memory error. If this is a problem then another solution is possible but is far slower.

Finding the closest indexed color value to the current color in javascript / p5.js

I have an array of "indexed" RGBA color values, and for any given image that I load, I want to be able to run through all the color values of the loaded pixels, and match them to the closest of my indexed color values. So, if the pixel in the image had a color of, say, RGBA(0,0,10,1), and the color RGBA(0,0,0,1) was my closest indexed value, it would adjust the loaded pixel to RGBA(0,0,0,1).
I know PHP has a function imagecolorclosest
int imagecolorclosest( $image, $red, $green, $blue )
Does javascript / p5.js / processing have anything similar? What's the easiest way to compare one color to another. Currently I can read the pixels of the image with this code (using P5.js):
let img;
function preload() {
img = loadImage('assets/00.jpg');
}
function setup() {
image(img, 0, 0, width, height);
let d = pixelDensity();
let fullImage = 4 * (width * d) * (height * d);
loadPixels();
for (let i = 0; i < fullImage; i+=4) {
let curR = pixels[i];
let curG = pixels[i]+1;
let curB = pixels[i+2];
let curA = pixels[i+3];
}
updatePixels();
}
Each color consists 3 color channels. Imagine the color as a point in a 3 dimensional space, where each color channel (red, green, blue) is associated to one dimension. You've to find the closest color (point) by the Euclidean distance. The color with the lowest distance is the "closest" color.
In p5.js you can use p5.Vector for vector arithmetic. The Euclidean distance between to points can be calculated by .dist(). So the distance between points respectively "colors" a and b can be expressed by:
let a = createVector(r1, g1, b1);
let b = createVector(r2, g2, b2);
let distance = a.dist(b);
Use the expression somehow like this:
colorTable = [[r0, g0, b0], [r1, g1, b1] ... ];
int closesetColor(r, g, b) {
let a = createVector(r, g, b);
let minDistance;
let minI;
for (let i=0; i < colorTable; ++i) {
let b = createVector(...colorTable[i]);
let distance = a.dist(b);
if (!minDistance || distance < minDistance) {
minI = i; minDistance = distance;
}
}
return minI;
}
function setup() {
image(img, 0, 0, width, height);
let d = pixelDensity();
let fullImage = 4 * (width * d) * (height * d);
loadPixels();
for (let i = 0; i < fullImage; i+=4) {
let closestI = closesetColor(pixels[i], pixels[i+1], pixels[i+2])
pixels[i] = colorTable[closestI][0];
pixels[i+1] = colorTable[closestI][1];
pixels[i+2] = colorTable[closestI][2];
}
updatePixels();
}
If I understand you correctly you want to keep the colors of an image within a certain limited pallet. If so, you should apply this function to each pixel of your image. It will give you the closest color value to a supplied pixel from a set of limited colors (indexedColors).
// example color pallet (no alpha)
indexedColors = [
[0, 10, 0],
[0, 50, 0]
];
// Takes pixel with no alpha value
function closestIndexedColor(color) {
var closest = {};
var dist;
for (var i = 0; i < indexedColors.length; i++) {
dist = Math.pow(indexedColors[i][0] - color[0], 2);
dist += Math.pow(indexedColors[i][1] - color[1], 2);
dist += Math.pow(indexedColors[i][2] - color[2], 2);
dist = Math.sqrt(dist);
if(!closest.dist || closest.dist > dist){
closest.dist = dist;
closest.color = indexedColors[i];
}
}
// returns closest match as RGB array without alpha
return closest.color;
}
// example usage
closestIndexedColor([0, 20, 0]); // returns [0, 10, 0]
It works the way that the PHP function you mentioned does. If you treat the color values as 3d coordinate points then the closet colors will be the ones with the smallest 3d "distance" between them. This 3d distance is calculated using the distance formula:

Find specific color in image

I have an image like this:
and like to find a specific color in the image (#ffa400 / #ffffff) and get their percentage occurrence value (orange maybe: 75%, white: 25%)
NOTE: Keep in mind that I don't like to get the average color (in this case: orange) like Color Thief does, but I'D like to find a SPECIFIC color.
Below is a snippet, so this is all that I got so far, but the code doesn't seem working & my idea also doesn't seem like an efficient & fast way.
function extract_colors(img) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c);
}
function getColors(c) {
var col, colors = {};
var pixels, r, g, b, a;
r = g = b = a = 0;
pixels = c.getImageData(0, 0, c.width, c.height);
for (var i = 0, data = pixels.data; i < data.length; i + = 4) {
r = data[i];
g = data[i + 1];
b = data[i + 2];
a = data[i + 3];
if (a < (255 / 2))
continue;
col = rgbToHex(r, g, b);
if (col == 'ffa400') { // find color #ffa400
if (!colors[col])
colors[col] = 0;
colors[col] + +;
}
}
return colors;
}
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
var img = document.getElementById('img');
out.innerHTML = extract_colors(img)
<img id='img' width=100 src='https://i.stack.imgur.com/EPDlQ.png'>
<p id='out'>...</p>
EDIT 1.0
I'm trying to use a code like this, but it doesn't seems to work either.
var orangeMatches=0, whiteMatches=0
Jimp.read("https://i.stack.imgur.com/EPDlQ.png").then(function (image) {
image.scan(0, 0, image.bitmap.width, image.bitmap.height, function (x, y, idx) {
var red = this.bitmap.data[ idx + 0 ];
var green = this.bitmap.data[ idx + 1 ];
var blue = this.bitmap.data[ idx + 2 ];
var alpha = this.bitmap.data[ idx + 3 ];
if (red == 255 && green == 164 && blue == 0 && alpha == 1){
orangeMatches++;
}
if (red == 255 && green == 255 && blue == 255 && alpha == 1){
whiteMatches++;
}
});
console.log(orangeMatches, whiteMatches)
});
Edit 2.0
I'd like to have some kind of tolerant value (10%) so that there is not every color to be counted, but the colors (e.g #ffa400 #ffa410) that are matching together are counted together.
A few notes
The main color in your picture is actually ffa500, not ffa400. There are in fact no occurances of ffa400 at all.
Also keep in mind that this is an anti-aliased bitmap graphic. Visually we see only two colors, but to smoothen the transition from one color to another a set of "in-between-colors" are generated. In other words, the sum of ffffff and ffa500 will not be exactly 100%. (This is why the output from my function below will display a lot more colors than the two in question)
Solution 1
The basic idea of this solution is to get every color in the picture, store these in one common object where the occurrence of each color is counted. When this object is returned, we can later count the occurrence of some specific color from the output.
This will return something like:
{
ffa500: 7802,
ffa501: 4,
ffa502: 2,
...,
ffffff: 1919,
total: 10000
}
Now you can access the occurences of a given color this way:
var imageData = extract_colors(img),
white = imageData.ffffff,
total = imageData.total;
And to display how many percent of the image a given color covers, do something like this (toFixed() is simply to limit the value to two decimals):
whitePct = (white / total * 100).toFixed(2);
Working sample
function getColors(ctx) {
// Get the canvas data
var pixels = ctx.getImageData(0, 0, ctx.width, ctx.height),
data = pixels.data,
// Set up our output object to collect color data
output = {};
// For each color we encounter, check the
// output object. If the color already exists
// there, simply increase its counted value.
// If it does not, create a new key.
for (var i = 0; i < data.length; i+=4) {
var r = data[i],
g = data[i + 1],
b = data[i + 2],
col = rgbToHex(r, g, b);
if( output[col] )
output[col]++
else
output[col] = 1
}
// Count total
var total = 0;
for(var key in output) {
total = total + parseInt(output[key])
}
output.total = total;
// Return the color data as an object
return output;
}
// Our elements
var img = document.getElementById('img'),
out = document.getElementById('out');
// Retrieve the image data
var imageData = extract_colors(img),
// Count our given colors
white = imageData.ffffff,
orange = imageData.ffa500,
total = imageData.total,
// Calculate percentage value
whitePct = (white / total * 100).toFixed(2),
orangePct = (orange / total * 100).toFixed(2);
out.innerHTML = `White: ${whitePct}%<br/>Orange: ${orangePct}%`;
// See the console for all colors identified
console.log(extract_colors(img))
// ----- These functions are left untouched ----- \\
function extract_colors(img) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c);
}
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
p, img {
margin: 10px 5px;
float: left
}
<!-- Image converted to base64 to keep it locally availible -->
<img id='img' width=100 src=''>
<p id='out'>...</p>
Solution 2
(Consider this solution a draft. It might need some tweaking if to be used for a live website, but at least it should work!)
The idea here is to call extract_colors() with the colors we want to map as arguments. A common object is built to hold the output, and this is populated with one object for each color. The color objects consists of a counter and an rgb value. Using the isNeighborColor() function, the rgb value is used to match not only the specific color but also any color close to it. Adjust the tolerance level as you want. (Ideally this would be another argument I guess).
Call the function specifying the image and what colors to count the occurrence of:
var imageData = extract_colors(img, 'ffffff', 'ffa500'),
This will output an object for each color:
{
"ffffff": {
"counter": 1979,
"rgb": {
"r": 255,
"g": 255,
"b": 255
}
},
"ffa500": {
"counter": 7837,
"rgb": {
"r": 255,
"g": 165,
"b": 0
}
},
"total": 9816
}
What we want is to access the counter values:
var white = imageData.ffffff.counter;
Working sample
// Added a rest parameter for unlimited color input
function extract_colors(img, ...colors) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c, ...colors);
}
// Unchanged
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
// From: https://stackoverflow.com/a/5624139/2311559
function hexToRgb(hex) {
var result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex);
return result ? {
r: parseInt(result[1], 16),
g: parseInt(result[2], 16),
b: parseInt(result[3], 16)
} : null;
}
// From: https://stackoverflow.com/a/11506531/2311559
// Slightly modified
function isNeighborColor(color1, color2, tolerance) {
tolerance = tolerance || 32;
return Math.abs(color1.r - color2.r) <= tolerance
&& Math.abs(color1.g - color2.g) <= tolerance
&& Math.abs(color1.b - color2.b) <= tolerance;
}
function getColors(ctx, ...colors) {
var pixels = ctx.getImageData(0, 0, ctx.width, ctx.height),
data = pixels.data,
output = {};
// Build an 'output' object. This will hold one object for
// each color we want to check. The color objects will
// each consist of a counter and an rgb value. The counter
// is used to count the occurrence of each color. The rgb
// value is used to match colors with a certain tolerance
// using the 'isNeighborColor()' function above.
for (var i = 0; i < colors.length; i++) {
output[colors[i]] = {
counter: 0,
rgb: hexToRgb(colors[i])
};
}
// For each pixel, match its color against the colors in our
// 'output' object. Using the 'isNeighborColor()' function
// we will also match colors close to our input, given the
// tolerance defined.
for (var i = 0; i < data.length; i+=4) {
var r = data[i],
g = data[i + 1],
b = data[i + 2],
colobj = {r, g, b},
col = rgbToHex(r, g, b);
Object.keys(output).map(function(objectKey, index) {
var rgb = output[objectKey].rgb,
count = output[objectKey].counter;
if(isNeighborColor(rgb, colobj)) {
output[objectKey].counter = count+1;
}
});
}
// Count total
var total = 0;
for(var key in output) {
total = total + parseInt(output[key].counter)
}
output.total = total;
// Return the color data as an object
return output;
}
// Our elements
var img = document.getElementById('img'),
out = document.getElementById('out');
// Retrieve the image data
var imageData = extract_colors(img,'ffffff','ffa500'),
// Count our given colors
white = imageData.ffffff.counter,
orange = imageData.ffa500.counter,
total = imageData.total,
// Calculate percentage value
whitePct = (white / total * 100).toFixed(2),
orangePct = (orange / total * 100).toFixed(2);
out.innerHTML = `White: ${whitePct}%<br/>Orange: ${orangePct}%`;
// Optional console output
console.log(extract_colors(img,'ffffff','ffa500'));
p, img {
margin: 10px 5px;
float: left
}
<!-- Image converted to base64 to keep it locally availible -->
<img id='img' width=100 src=''>
<p id='out'>...</p>

Canvas - Get position of colour if available

Is it possible to get the position of a colour on canvas.
I know you can get the colour at a position like this
context.getImageData( arguments ).data
But I would like to try and find a colour in canvas, so say I would have this colour black.
rgb(0, 0, 0);
I would like to get the position of that colour if it exists on canvas, I've asked Google but I only get the Get colour at position which is the opposite of what I need.
As mentioned already you need to iterate over the pixel buffer.
Here is one way you can do it:
(Online demo here)
function getPositionFromColor(ctx, color) {
var w = ctx.canvas.width,
h = ctx.canvas.height,
data = ctx.getImageData(0, 0, w, h), /// get image data
buffer = data.data, /// and its pixel buffer
len = buffer.length, /// cache length
x, y = 0, p, px; /// for iterating
/// iterating x/y instead of forward to get position the easy way
for(;y < h; y++) {
/// common value for all x
p = y * 4 * w;
for(x = 0; x < w; x++) {
/// next pixel (skipping 4 bytes as each pixel is RGBA bytes)
px = p + x * 4;
/// if red component match check the others
if (buffer[px] === color[0]) {
if (buffer[px + 1] === color[1] &&
buffer[px + 2] === color[2]) {
return [x, y];
}
}
}
}
return null;
}
This will return the x/y position of the first match of the color you give (color = [r, g, b]). If color is not found the function returns null.
(the code can be optimized in various ways by I haven't addressed that here).
You would need to iterate over the data property and check the RGB values. Basically you would iterate in groups of 4, as each pixel is stored as 4 indices, and compare the values accordingly.

Categories

Resources