I have an image like this:
and like to find a specific color in the image (#ffa400 / #ffffff) and get their percentage occurrence value (orange maybe: 75%, white: 25%)
NOTE: Keep in mind that I don't like to get the average color (in this case: orange) like Color Thief does, but I'D like to find a SPECIFIC color.
Below is a snippet, so this is all that I got so far, but the code doesn't seem working & my idea also doesn't seem like an efficient & fast way.
function extract_colors(img) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c);
}
function getColors(c) {
var col, colors = {};
var pixels, r, g, b, a;
r = g = b = a = 0;
pixels = c.getImageData(0, 0, c.width, c.height);
for (var i = 0, data = pixels.data; i < data.length; i + = 4) {
r = data[i];
g = data[i + 1];
b = data[i + 2];
a = data[i + 3];
if (a < (255 / 2))
continue;
col = rgbToHex(r, g, b);
if (col == 'ffa400') { // find color #ffa400
if (!colors[col])
colors[col] = 0;
colors[col] + +;
}
}
return colors;
}
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
var img = document.getElementById('img');
out.innerHTML = extract_colors(img)
<img id='img' width=100 src='https://i.stack.imgur.com/EPDlQ.png'>
<p id='out'>...</p>
EDIT 1.0
I'm trying to use a code like this, but it doesn't seems to work either.
var orangeMatches=0, whiteMatches=0
Jimp.read("https://i.stack.imgur.com/EPDlQ.png").then(function (image) {
image.scan(0, 0, image.bitmap.width, image.bitmap.height, function (x, y, idx) {
var red = this.bitmap.data[ idx + 0 ];
var green = this.bitmap.data[ idx + 1 ];
var blue = this.bitmap.data[ idx + 2 ];
var alpha = this.bitmap.data[ idx + 3 ];
if (red == 255 && green == 164 && blue == 0 && alpha == 1){
orangeMatches++;
}
if (red == 255 && green == 255 && blue == 255 && alpha == 1){
whiteMatches++;
}
});
console.log(orangeMatches, whiteMatches)
});
Edit 2.0
I'd like to have some kind of tolerant value (10%) so that there is not every color to be counted, but the colors (e.g #ffa400 #ffa410) that are matching together are counted together.
A few notes
The main color in your picture is actually ffa500, not ffa400. There are in fact no occurances of ffa400 at all.
Also keep in mind that this is an anti-aliased bitmap graphic. Visually we see only two colors, but to smoothen the transition from one color to another a set of "in-between-colors" are generated. In other words, the sum of ffffff and ffa500 will not be exactly 100%. (This is why the output from my function below will display a lot more colors than the two in question)
Solution 1
The basic idea of this solution is to get every color in the picture, store these in one common object where the occurrence of each color is counted. When this object is returned, we can later count the occurrence of some specific color from the output.
This will return something like:
{
ffa500: 7802,
ffa501: 4,
ffa502: 2,
...,
ffffff: 1919,
total: 10000
}
Now you can access the occurences of a given color this way:
var imageData = extract_colors(img),
white = imageData.ffffff,
total = imageData.total;
And to display how many percent of the image a given color covers, do something like this (toFixed() is simply to limit the value to two decimals):
whitePct = (white / total * 100).toFixed(2);
Working sample
function getColors(ctx) {
// Get the canvas data
var pixels = ctx.getImageData(0, 0, ctx.width, ctx.height),
data = pixels.data,
// Set up our output object to collect color data
output = {};
// For each color we encounter, check the
// output object. If the color already exists
// there, simply increase its counted value.
// If it does not, create a new key.
for (var i = 0; i < data.length; i+=4) {
var r = data[i],
g = data[i + 1],
b = data[i + 2],
col = rgbToHex(r, g, b);
if( output[col] )
output[col]++
else
output[col] = 1
}
// Count total
var total = 0;
for(var key in output) {
total = total + parseInt(output[key])
}
output.total = total;
// Return the color data as an object
return output;
}
// Our elements
var img = document.getElementById('img'),
out = document.getElementById('out');
// Retrieve the image data
var imageData = extract_colors(img),
// Count our given colors
white = imageData.ffffff,
orange = imageData.ffa500,
total = imageData.total,
// Calculate percentage value
whitePct = (white / total * 100).toFixed(2),
orangePct = (orange / total * 100).toFixed(2);
out.innerHTML = `White: ${whitePct}%<br/>Orange: ${orangePct}%`;
// See the console for all colors identified
console.log(extract_colors(img))
// ----- These functions are left untouched ----- \\
function extract_colors(img) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c);
}
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
p, img {
margin: 10px 5px;
float: left
}
<!-- Image converted to base64 to keep it locally availible -->
<img id='img' width=100 src=''>
<p id='out'>...</p>
Solution 2
(Consider this solution a draft. It might need some tweaking if to be used for a live website, but at least it should work!)
The idea here is to call extract_colors() with the colors we want to map as arguments. A common object is built to hold the output, and this is populated with one object for each color. The color objects consists of a counter and an rgb value. Using the isNeighborColor() function, the rgb value is used to match not only the specific color but also any color close to it. Adjust the tolerance level as you want. (Ideally this would be another argument I guess).
Call the function specifying the image and what colors to count the occurrence of:
var imageData = extract_colors(img, 'ffffff', 'ffa500'),
This will output an object for each color:
{
"ffffff": {
"counter": 1979,
"rgb": {
"r": 255,
"g": 255,
"b": 255
}
},
"ffa500": {
"counter": 7837,
"rgb": {
"r": 255,
"g": 165,
"b": 0
}
},
"total": 9816
}
What we want is to access the counter values:
var white = imageData.ffffff.counter;
Working sample
// Added a rest parameter for unlimited color input
function extract_colors(img, ...colors) {
var canvas = document.createElement("canvas");
var c = canvas.getContext('2d');
c.width = canvas.width = img.width;
c.height = canvas.height = img.height;
c.clearRect(0, 0, c.width, c.height);
c.drawImage(img, 0, 0, img.width, img.height);
return getColors(c, ...colors);
}
// Unchanged
function rgbToHex(r, g, b) {
return ((r << 16) | (g << 8) | b).toString(16);
}
// From: https://stackoverflow.com/a/5624139/2311559
function hexToRgb(hex) {
var result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex);
return result ? {
r: parseInt(result[1], 16),
g: parseInt(result[2], 16),
b: parseInt(result[3], 16)
} : null;
}
// From: https://stackoverflow.com/a/11506531/2311559
// Slightly modified
function isNeighborColor(color1, color2, tolerance) {
tolerance = tolerance || 32;
return Math.abs(color1.r - color2.r) <= tolerance
&& Math.abs(color1.g - color2.g) <= tolerance
&& Math.abs(color1.b - color2.b) <= tolerance;
}
function getColors(ctx, ...colors) {
var pixels = ctx.getImageData(0, 0, ctx.width, ctx.height),
data = pixels.data,
output = {};
// Build an 'output' object. This will hold one object for
// each color we want to check. The color objects will
// each consist of a counter and an rgb value. The counter
// is used to count the occurrence of each color. The rgb
// value is used to match colors with a certain tolerance
// using the 'isNeighborColor()' function above.
for (var i = 0; i < colors.length; i++) {
output[colors[i]] = {
counter: 0,
rgb: hexToRgb(colors[i])
};
}
// For each pixel, match its color against the colors in our
// 'output' object. Using the 'isNeighborColor()' function
// we will also match colors close to our input, given the
// tolerance defined.
for (var i = 0; i < data.length; i+=4) {
var r = data[i],
g = data[i + 1],
b = data[i + 2],
colobj = {r, g, b},
col = rgbToHex(r, g, b);
Object.keys(output).map(function(objectKey, index) {
var rgb = output[objectKey].rgb,
count = output[objectKey].counter;
if(isNeighborColor(rgb, colobj)) {
output[objectKey].counter = count+1;
}
});
}
// Count total
var total = 0;
for(var key in output) {
total = total + parseInt(output[key].counter)
}
output.total = total;
// Return the color data as an object
return output;
}
// Our elements
var img = document.getElementById('img'),
out = document.getElementById('out');
// Retrieve the image data
var imageData = extract_colors(img,'ffffff','ffa500'),
// Count our given colors
white = imageData.ffffff.counter,
orange = imageData.ffa500.counter,
total = imageData.total,
// Calculate percentage value
whitePct = (white / total * 100).toFixed(2),
orangePct = (orange / total * 100).toFixed(2);
out.innerHTML = `White: ${whitePct}%<br/>Orange: ${orangePct}%`;
// Optional console output
console.log(extract_colors(img,'ffffff','ffa500'));
p, img {
margin: 10px 5px;
float: left
}
<!-- Image converted to base64 to keep it locally availible -->
<img id='img' width=100 src=''>
<p id='out'>...</p>
Related
I am trying to find all the hex colors in an image and if possible, circle or highlight the X, Y position of where the hex color(s) are. My current code is attempting to find all colors and almost crashes my browser and my attempt to find the X,Y coordinates of each image isn't going good either.
I have two functions doing different things, it's what I have tried to work with to give an example of what has been attempted... Any help would be great!
Any assistance would be amazing!
<canvas id="myCanvas" width="240" height="297" style="border:1px solid #d3d3d3;">
Your browser does not support the HTML5 canvas tag.
</canvas>
<img id="origImage" width="220" height="277" src="loggraph.PNG">
<script>
function getPixel(imgData, index) {
var i = index*4, d = imgData.data;
return [d[i],d[i+1],d[i+2],d[i+3]] // [R,G,B,A]
}
function getPixelXY(imgData, x, y) {
return getPixel(imgData, y*imgData.width+x);
}
function goCheck() {
var cvs = document.createElement('canvas'),
img = document.getElementsByTagName("img")[0];
cvs.width = img.width; cvs.height = img.height;
var ctx = cvs.getContext("2d");
ctx.drawImage(img,0,0,cvs.width,cvs.height);
var idt = ctx.getImageData(0,0,cvs.width,cvs.height);
console.log(getPixel(idt, 852)); // returns array [red, green, blue, alpha]
console.log(getPixelXY(idt,1,1)); // same pixel using x,y
}
function getColors(){
var canvas = document.getElementById("myCanvas");
var devices = canvas.getContext("2d");
var imageData = devices.getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;
// iterate over all pixels
for(var i = 0, n = data.length; i < n; i += 4) {
var r = data[i];
var g = data[i + 1];
var b = data[i + 2];
var rgb = "("+r+","+g+","+b+")";
var incoming = i*4, d = imageData.data;
var bah = [d[incoming],d[incoming+1],d[incoming+2],d[incoming+3]];
$('#list').append("<li>"+rgb+"</li>");
colorList.push(rgb);
}
$('#list').append("<li>"+[d[incoming],d[incoming+1],d[incoming+2],d[incoming+3]]+"</li>");
}
}
Must check all pixels
To find a pixel that matches a color will require, in the worst case (pixel of that color not in image), that you step over every pixel in the image.
How not to do it
Converting every pixel to a DOM string is about the worst way to do it, as DOM string use a lot of memory and CPU overhead, especially if instantiated using jQuery (which has its own additional baggage)
Hex color to array
To find the pixel you need only check each pixels color data against the HEX value. You convert the hex value to an array of 3 Bytes.
The following function will convert from CSS Hex formats "#HHH" "#HHHH", "#HHHHHH" and "#HHHHHHHH" ignoring the alpha part if included, to an array of integers 0-255
const hex2RGB = h => {
if(h.length === 4 || h.length === 5) {
return [parseInt(h[1] + h[1], 16), parseInt(h[2] + h[2], 16), parseInt(h[3] + h[3], 16)];
}
return [parseInt(h[1] + h[2], 16), parseInt(h[3] + h[4], 16), parseInt(h[5] + h[6], 16)];
}
Finding the pixel
I do not know how you plan to use such a feature so the example below is a general purpose method that will help and can be modified as needed
It will always find a pixel if you let it even if there is no perfect match. It does this by finding the closest color to the color you are looking for.
The reason that of finds the closest match is that when you draw an image onto a 2D canvas the pixel values are modified slightly if the image has transparent pixels (pre-multiplied alpha)
The function finds the pixel by measuring the spacial distance between the pixel and the hex color (simple geometry Pythagoras). The closest color is the one that is the smallest distance.
It will return the object
{
x, // the x coordinate of the match
y, // the y coordinate of the match
distance, // how closely the color matches the requested color.
// 0 means a perfect match
// to 441 completely different eg black and white
// value is floored to an integer value
}
If the image is tainted (cross origin, local device storage), or you pass something that can not be converted to pixels the function will return undefined
The function keeps a canvas that it uses to get pixel data as it assumes that it will be use many times. If the image is tainted it will catch the error (add a warning to the console), cleanup the tainted canvas and be ready for another image.
Usage
To use the function add it to your code base, it will setup automatically.
Get an image and a hex value and call the function with the image, CSS hex color, and optionally the threshold distance for the color match.
Eg find exact match for #FF0000
const result = findPixel(origImage, "#FF0000", 0); // find exact match for red
if (result) { // only if found
console.log("Found color #FF0000 at pixel " + result.x + ", " + result.y);
} else {
console.log("The color #FF0000 is not in the image");
}
or find color close to
const result = findPixel(origImage, "#FF0000", 20); // find a match for red
// within 20 units.
// A unit is 1 of 256
if (result) { // only if found
console.log("Found closest color within " + result.distance + "units of #FF0000 at pixel " + result.x + ", " + result.y);
}
or find closest
// find the closest, no threshold ensures a result
const result = findPixel(origImage, "#FF0000");
console.log("Found closest color within " + result.distance + "units of #FF0000 at pixel " + result.x + ", " + result.y);
Code
The function is as follows.
const findPixel = (() => {
var can, ctx;
function createCanvas(w, h) {
if (can === undefined){
can = document.createElement("canvas");
ctx = can.getContext("2d");
}
can.width = w;
can.height = h;
}
function getPixels(img) {
const w = img.naturalWidth || img.width, h = img.naturalHeight || img.height;
createCanvas(w, h);
ctx.drawImage(img, 0, 0);
try {
const imgData = ctx.getImageData(0, 0, w, h);
can.width = can.height = 1; // make canvas as small as possible so it wont
// hold memory. Leave in place to avoid instantiation overheads
return imgData;
} catch(e) {
console.warn("Image is un-trusted and pixel access is blocked");
ctx = can = undefined; // canvas and context can no longer be used so dump them
}
return {width: 0, height: 0, data: []}; // return empty pixel data
}
const hex2RGB = h => { // Hex color to array of 3 values
if(h.length === 4 || h.length === 5) {
return [parseInt(h[1] + h[1], 16), parseInt(h[2] + h[2], 16), parseInt(h[3] + h[3], 16)];
}
return [parseInt(h[1] + h[2], 16), parseInt(h[3] + h[4], 16), parseInt(h[5] + h[6], 16)];
}
const idx2Coord = (idx, w) => ({x: idx % w, y: idx / w | 0});
return function (img, hex, minDist = Infinity) {
const [r, g, b] = hex2RGB(hex);
const {width, height, data} = getPixels(img);
var idx = 0, found;
while (idx < data.length) {
const R = data[idx] - r;
const G = data[idx + 1] - g;
const B = data[idx + 2] - b;
const d = R * R + G * G + B * B;
if (d === 0) { // found exact match
return {...idx2Coord(idx / 4, width), distance: 0};
}
if (d < minDist) {
minDist = d;
found = idx;
}
idx += 4;
}
return found ? {...idx2Coord(found / 4, width), distance: minDist ** 0.5 | 0 } : undefined;
}
})();
This function has been tested and works as described above.
Note Going by the code in the your question the alpha value of the image and CSS hex color is ignored.
Note that if you intend to find many colors from the same image this function is not the best suited for you needs. If this is the case let me know in the comment and I can make changes or instruct you how to optimism the code for such uses.
Note It is not well suited for single use only. However if this is the case change the line const findPixel = (() => { to var findPixel = (() => { and after you have used it remove the reference findpixel = undefined; and JS will clean up any resources it holds.
Note If you also want to get the actual color of the closest found color that is trivial to add as well. Ask in the comments.
Note It is reasonably quick (you will be hard pressed to get a quicker result) but be warned that for very large images 4K and above it may take a bit, and on very low end devices it may cause a out of memory error. If this is a problem then another solution is possible but is far slower.
I have an array of "indexed" RGBA color values, and for any given image that I load, I want to be able to run through all the color values of the loaded pixels, and match them to the closest of my indexed color values. So, if the pixel in the image had a color of, say, RGBA(0,0,10,1), and the color RGBA(0,0,0,1) was my closest indexed value, it would adjust the loaded pixel to RGBA(0,0,0,1).
I know PHP has a function imagecolorclosest
int imagecolorclosest( $image, $red, $green, $blue )
Does javascript / p5.js / processing have anything similar? What's the easiest way to compare one color to another. Currently I can read the pixels of the image with this code (using P5.js):
let img;
function preload() {
img = loadImage('assets/00.jpg');
}
function setup() {
image(img, 0, 0, width, height);
let d = pixelDensity();
let fullImage = 4 * (width * d) * (height * d);
loadPixels();
for (let i = 0; i < fullImage; i+=4) {
let curR = pixels[i];
let curG = pixels[i]+1;
let curB = pixels[i+2];
let curA = pixels[i+3];
}
updatePixels();
}
Each color consists 3 color channels. Imagine the color as a point in a 3 dimensional space, where each color channel (red, green, blue) is associated to one dimension. You've to find the closest color (point) by the Euclidean distance. The color with the lowest distance is the "closest" color.
In p5.js you can use p5.Vector for vector arithmetic. The Euclidean distance between to points can be calculated by .dist(). So the distance between points respectively "colors" a and b can be expressed by:
let a = createVector(r1, g1, b1);
let b = createVector(r2, g2, b2);
let distance = a.dist(b);
Use the expression somehow like this:
colorTable = [[r0, g0, b0], [r1, g1, b1] ... ];
int closesetColor(r, g, b) {
let a = createVector(r, g, b);
let minDistance;
let minI;
for (let i=0; i < colorTable; ++i) {
let b = createVector(...colorTable[i]);
let distance = a.dist(b);
if (!minDistance || distance < minDistance) {
minI = i; minDistance = distance;
}
}
return minI;
}
function setup() {
image(img, 0, 0, width, height);
let d = pixelDensity();
let fullImage = 4 * (width * d) * (height * d);
loadPixels();
for (let i = 0; i < fullImage; i+=4) {
let closestI = closesetColor(pixels[i], pixels[i+1], pixels[i+2])
pixels[i] = colorTable[closestI][0];
pixels[i+1] = colorTable[closestI][1];
pixels[i+2] = colorTable[closestI][2];
}
updatePixels();
}
If I understand you correctly you want to keep the colors of an image within a certain limited pallet. If so, you should apply this function to each pixel of your image. It will give you the closest color value to a supplied pixel from a set of limited colors (indexedColors).
// example color pallet (no alpha)
indexedColors = [
[0, 10, 0],
[0, 50, 0]
];
// Takes pixel with no alpha value
function closestIndexedColor(color) {
var closest = {};
var dist;
for (var i = 0; i < indexedColors.length; i++) {
dist = Math.pow(indexedColors[i][0] - color[0], 2);
dist += Math.pow(indexedColors[i][1] - color[1], 2);
dist += Math.pow(indexedColors[i][2] - color[2], 2);
dist = Math.sqrt(dist);
if(!closest.dist || closest.dist > dist){
closest.dist = dist;
closest.color = indexedColors[i];
}
}
// returns closest match as RGB array without alpha
return closest.color;
}
// example usage
closestIndexedColor([0, 20, 0]); // returns [0, 10, 0]
It works the way that the PHP function you mentioned does. If you treat the color values as 3d coordinate points then the closet colors will be the ones with the smallest 3d "distance" between them. This 3d distance is calculated using the distance formula:
I have a following task that I'm trying to accomplish the most efficient way possible: I have varying number of pictures of varying size as pixel arrays that I need to add to canvas pixel by pixel. Each pixel's value has to be added to canvas's ImageData so that the result is a blend of two or more images.
My current solution is to retrieve ImageData from the location where the picture needs to be blended with the size of the picture. Then I add the picture's ImageData to the retrieved ImageData and copy it back to the same location.
In a sense this is a manual implementation of canvas globalCompositeOperation "lighter".
"use strict";
let canvas = document.getElementById("canvas");
let width = canvas.width = window.innerWidth;
let height = canvas.height = window.innerHeight;
let ctx = canvas.getContext("2d");
ctx.fillStyle="black";
ctx.fillRect(0, 0, width, height);
let imageData = ctx.getImageData(0,0,width,height);
let data = imageData.data;
function random(min, max) {
let num = Math.floor(Math.random() * (max - min + 1)) + min;
return num;
}
function createColorArray(size, color) {
let arrayLength = (size*size)*4;
let array = new Uint8ClampedArray(arrayLength);
for (let i = 0; i < arrayLength; i+=4) {
switch (color) {
case 1:
array[i+0] = 255; // r
array[i+1] = 0; // g
array[i+2] = 0; // b
array[i+3] = 255; // a
break;
case 2:
array[i+0] = 0; // r
array[i+1] = 255; // g
array[i+2] = 0; // b
array[i+3] = 255; // a
break;
case 3:
array[i+0] = 0; // r
array[i+1] = 0; // g
array[i+2] = 255; // b
array[i+3] = 255; // a
}
}
return array;
}
function picture() {
this.size = random(10, 500);
this.x = random(0, width);
this.y = random(0, height);
this.color = random(1,3);
this.colorArray = createColorArray(this.size, this.color);
}
picture.prototype.updatePixels = function() {
let imageData = ctx.getImageData(this.x, this.y, this.size, this.size);
let data = imageData.data;
for (let i = 0; i < data.length; ++i) {
data[i]+=this.colorArray[i];
}
ctx.putImageData(imageData, this.x, this.y);
}
let pictures = [];
let numPictures = 50;
for (let i = 0; i < numPictures; ++i) {
let pic = new picture();
pictures.push(pic);
}
function drawPictures() {
for (let i = 0; i < pictures.length; ++i) {
pictures[i].updatePixels();
}
}
drawPictures();
<!DOCTYPE html>
<html>
<head>
<title>...</title>
<style type="text/css">
body {margin: 0px}
#canvas {position: absolute}
</style>
</head>
<body>
<div>
<canvas id="canvas"></canvas>
</div>
<script type="text/javascript" src="js\script.js"></script>
</body>
</html>
This solution works fine but it's very slow. I don't know if pixel by pixel blending can even be made very efficient, but one reason for slow performance might be that I need to get the ImageData and put it back each time a new image is blended into canvas.
Therefore the main question is how could I get whole canvas ImageData once in the beginning and then look correct pixels to update based on location and size of each picture that needs to blended into canvas and finally put updated ImageData back to canvas? Also, any other ideas on how to make blending more efficient are greatly appreciated.
Use the array methods.
The fastest way to fill an array is with the Array.fill function
const colors = new Uint32Array([0xFF0000FF,0xFF00FF00,0xFFFF00]); // red, green, blue
function createColorArray(size, color) {
const array32 = new Uint32Array(size*size);
array32.fill(colors[color]);
return array32;
}
Quick clamped add with |
If you are adding 0xFF to any channel and 0 to the others you can use | and a 32 bit array. For the updatePixels function
var imageData = ctx.getImageData(this.x, this.y, this.size, this.size);
var data = new Uint32Array(imageData.data.buffer);
var i = 0;
var pic = this.colorArray; // use a local scope for faster access
do{
data[i] |= pic[i] ; // only works for 0 and FF chanel values
}while(++i < data.length);
ctx.putImageData(imageData, this.x, this.y);
Bitwise or | is similar to arithmetic add and can be used to increase values using 32bit words. The values will be clamped as part of the bitwise operation.
// dark
var red = 0xFF000088;
var green = 0xFF008800;
var yellow = red | green; // 0xFF008888
There are many other ways to use 32bit operations to increase performance as long as you use only 1 or 2 operators. More and you are better off using bytes.
You can also add if you know that each channel will not overflow a bit
a = 0xFF101010; // very dark gray
b = 0xFF000080; // dark red
// non overflowing add
c = a + b; // result is 0xFF000090 correct
// as 0x90 + 0x80 will overflow = 0x110 the add will not work
c += b; // result overflows bit to green 0xFF000110 // incorrect
Uint8Array V Uint8ClampedArray
Uint8Array is slightly faster than Uint8ClampedArray as the clamping is skipped for the Uint8Array so use it if you don't need to clamp the result. Also the int typedArrays do not need you to round values when assigning to them.
var data = Uint8Array(1);
data[0] = Math.random() * 255; // will floor for you
var data = Uint8Array(1);
data[0] = 256; // result is 0
data[0] = -1; // result is 255
var data = Uint8ClampedArray(1);
data[0] = 256; // result is 255
data[0] = -1; // result is 0
You can copy data from array to array
var imageDataSource = // some other source
var dataS = new Uint32Array(imageData.data.buffer);
var imageData = ctx.getImageData(this.x, this.y, this.size, this.size);
var data = new Uint32Array(imageData.data.buffer);
data.set(dataS); // copies all data
// or to copy a row of pixels
// from coords
var x = 10;
var y = 10;
var width = 20; // number of pixels to copy
// to coords
var xx = 30
var yy = 30
var start = y * this.size + x;
data.set(dataS.subArray(start, start + width), xx + yy * this.size);
Dont dump buffers
Don't keep fetching pixel data if not needed. If it does not change between putImageData and getImageData then there is no need to get the data again. It is better to keep the one buffer than continuously creating a new one. This will also relieve the memory stress and reduce the workload on GC.
Are you sure you can not use the GPU
And you can perform a wide range of operations on pixel data using global composite operations. Add, subtract, multiply, divide, invert These are much faster and so far in your code I can see no reason why you need to access the pixel data.
I am attempting to build a simple HTML5 canvas based image processor that takes an image and generates a tiled version of it with each tile being the average color of the underlying image area.
This is easy enough to do outside the context of a Web Worker but I'd like to use a worker so as not to block the ui processing thread. The Uint8ClampedArray form the data takes is giving me a headache with regards to how to process it tile by tile.
Below is a plunk demonstrating what I've done so far and how it's not working.
http://plnkr.co/edit/AiHmLM1lyJGztk8GHrso?p=preview
The relevant code is in worker.js
Here it is:
onmessage = function (e) {
var i,
j = 0,
k = 0,
data = e.data,
imageData = data.imageData,
tileWidth = Math.floor(data.tileWidth),
tileHeight = Math.floor(data.tileHeight),
width = imageData.width,
height = imageData.height,
tile = [],
len = imageData.data.length,
offset,
processedData = [],
tempData = [],
timesLooped = 0,
tileIncremented = 1;
function sampleTileData(tileData) {
var blockSize = 20, // only visit every x pixels
rgb = {r:0,g:0,b:0},
i = -4,
count = 0,
length = tileData.length;
while ((i += blockSize * 4) < length) {
if (tileData[i].r !== 0 && tileData[i].g !== 0 && tileData[i].b !== 0) {
++count;
rgb.r += tileData[i].r;
rgb.g += tileData[i].g;
rgb.b += tileData[i].b;
}
}
// ~~ used to floor values
rgb.r = ~~(rgb.r/count);
rgb.g = ~~(rgb.g/count);
rgb.b = ~~(rgb.b/count);
processedData.push(rgb);
}
top:
for (; j <= len; j += (width * 4) - (tileWidth * 4), timesLooped++) {
if (k === (tileWidth * 4) * tileHeight) {
k = 0;
offset = timesLooped - 1 < tileHeight ? 4 : 0;
j = ((tileWidth * 4) * tileIncremented) - offset;
timesLooped = 0;
tileIncremented++;
sampleTileData(tempData);
tempData = [];
//console.log('continue "top" loop for new tile');
continue top;
}
for (i = 0; i < tileWidth * 4; i++) {
k++;
tempData.push({r: imageData.data[j+i], g: imageData.data[j+i+1], b: imageData.data[j+i+2], a: imageData.data[j+i+3]});
}
//console.log('continue "top" loop for new row per tile');
}
postMessage(processedData);
};
I'm sure there's a better way of accomplishing what I'm trying to do starting at the labeled for loop. So any alternative methods or suggestions would be much appreciated.
Update:
I've taken a different approach to solving this:
http://jsfiddle.net/TunMn/425/
Close, but no.
I know what the problem is but I have no idea how to go about amending it. Again, any help would be much appreciated.
Approach 1: Manually calculating average per tile
Here is one approach you can try:
There is only need for reading, update can be done later using HW acceleration
Use async calls for every row (or tile if the image is very wide)
This gives an accurate result but is slower and depends on CORS restrictions.
Example
You can see the original image for a blink below. This shows the asynchronous approach works as it allows the UI to update while processing the tiles in chunks.
window.onload = function() {
var img = document.querySelector("img"),
canvas = document.querySelector("canvas"),
ctx = canvas.getContext("2d"),
w = img.naturalWidth, h = img.naturalHeight,
// store average tile colors here:
tileColors = [];
// draw in image
canvas.width = w; canvas.height = h;
ctx.drawImage(img, 0, 0);
// MAIN CALL: calculate, when done the callback function will be invoked
avgTiles(function() {console.log("done!")});
// The tiling function
function avgTiles(callback) {
var cols = 8, // number of tiles (make sure it produce integer value
rows = 8, // for tw/th below:)
tw = (w / cols)|0, // pixel width/height of each tile
th = (h / rows)|0,
x = 0, y = 0;
(function process() { // for async processing
var data, len, count, r, g, b, i;
while(x < cols) { // get next tile on x axis
r = g = b = i = 0;
data = ctx.getImageData(x * tw, y * th, tw, th).data; // single tile
len = data.length;
count = len / 4;
while(i < len) { // calc this tile's color average
r += data[i++]; // add values for each component
g += data[i++];
b += data[i++];
i++
}
// store average color to array, no need to write back at this point
tileColors.push({
r: (r / count)|0,
g: (g / count)|0,
b: (b / count)|0
});
x++; // next tile
}
y++; // next row, but do an async break below:
if (y < rows) {
x = 0;
setTimeout(process, 9); // call it async to allow browser UI to update
}
else {
// draw tiles with average colors, fillRect is faster than setting each pixel:
for(y = 0; y < rows; y++) {
for(x = 0; x < cols; x++) {
var col = tileColors[y * cols + x]; // get stored color
ctx.fillStyle = "rgb(" + col.r + "," + col.g + "," + col.b + ")";
ctx.fillRect(x * tw, y * th, tw, th);
}
}
// we're done, invoke callback
callback()
}
})(); // to self-invoke process()
}
};
<canvas></canvas>
<img src="http://i.imgur.com/X7ZrRkn.png" crossOrigin="anonymous">
Approach 2: Letting the browser do the job
We can also let the browser do the whole job exploiting interpolation and sampling.
When the browser scales an image down it will calculate the average for each new pixel. If we then turn off linear interpolation when we scale up we will get each of those average pixels as square blocks:
Scale down image at a ratio producing number of tiles as number of pixels
Turn off image smoothing
Scale the small image back up to the desired size
This will be many times faster than the first approach, and you will be able to use CORS-restricted images. Just note it may not be as accurate as the first approach, however, it is possible to increase the accuracy by scaling down the image in several step, each half the size.
Example
window.onload = function() {
var img = document.querySelector("img"),
canvas = document.querySelector("canvas"),
ctx = canvas.getContext("2d"),
w = img.naturalWidth, h = img.naturalHeight;
// draw in image
canvas.width = w; canvas.height = h;
// scale down image so number of pixels represent number of tiles,
// here use two steps so we get a more accurate result:
ctx.drawImage(img, 0, 0, w, h, 0, 0, w*0.5, h*0.5); // 50%
ctx.drawImage(canvas, 0, 0, w*0.5, h*0.5, 0, 0, 8, 8); // 8 tiles
// turn off image-smoothing
ctx.imageSmoothingEnabled =
ctx.msImageSmoothingEnabled =
ctx.mozImageSmoothingEnabled =
ctx.webkitImageSmoothingEnabled = false;
// scale image back up
ctx.drawImage(canvas, 0, 0, 8, 8, 0, 0, w, h);
};
<canvas></canvas>
<img src="http://i.imgur.com/X7ZrRkn.png" crossOrigin="anonymous">
I have a 2d RTS HTML5 / Javascript game. I use images to display the player's units and buildings. I provide the image and then use a script to replace certain colors in the images with other color, to get different versions of an image with different colors (so the soldier of player 1 has a red sword and the soldier of player 2 has a blue sword and so on...).
The problem is, for maybe ~20% of the users this replacing thing doesnt work and they see all units in the same (default) color. Im now wondering why this is. Heres the function i use to replayce the colors:
// returns a image with some colors replaced, specified by search and replace, which are arrays of color arrays ([[255, 255, 255], [...], ...], )
ImageTransformer.replaceColors = function(img, search, replace)
{
var canv = document.createElement('canvas');
canv.height = img.height;
canv.width = img.width
var ctx = canv.getContext('2d');
ctx.drawImage(img, 0, 0);
var imgData = ctx.getImageData(0, 0, canv.width, canv.height);
for(var i = 0; i < imgData.data.length; i += 4)
for(var k = 0; k < search.length; k++)
if(imgData.data[i] == search[k][0] && imgData.data[i + 1] == search[k][1] && imgData.data[i + 2] == search[k][2])
{
imgData.data[i] = replace[k][0];
imgData.data[i + 1] = replace[k][1];
imgData.data[i + 2] = replace[k][2];
}
ctx.putImageData(imgData, 0, 0);
return canv;
}
Browsers may or may not apply a gamma to the image prior to drawing them, the intent is to have more natural colors (...).
I bet this is the Browsers which apply a gama that fool your algorithm.
Rather than test for strict equality, you might use a color distance, and decide of a threshold to decide wether to switch or not :
var imgData = ctx.getImageData(0, 0, canv.width, canv.height);
var data = imgData.data, length = imgData.data.length ;
for(var k = 0; k < search.length; k++) {
var thisCol = search[k];
for(var i = 0; i < length; i += 4) {
var colDist = Math.abs(data[i] - thisCol[0] )
+ Math.abs(data[i+1] - thisCol[1] )
+ Math.abs(data[i+2] - thisCol[2] );
if( colDist < 5 )
{
data[i] = thisCol[0];
data[i + 1] = thisCol[1];
data[i + 2] = thisCol[2];
}
}
}
ctx.putImageData(imgData, 0, 0);
return canv;
(here i used as distance the sum of absolute differences in between r,g,b ; as #MarkE suggest, you can choose others, euclidian being this:
var colDist = sq(data[i] - thisCol[0] )
+ sq(data[i+1] - thisCol[1] )
+ sq(data[i+2] - thisCol[2] );
// notice this is the squared euclidian distance.
// whith function sq(x) { return x*x }
test several pictures / distances, and see what fits.
test several threshold also.
).