Avoid duplicate calculations to optimize time-complexity of nested for loop - javascript

Today I was doing a simple challenge on HackerRank with the code below, which is 100% acceptable and works, but I was wondering if there was a way to even further reduce the loops required by eliminating duplicate calculations.
Let me show you visually what's happening, By the time I'm done, my code example is going to be very far down!
The code takes the first number in an array of numbers and adds it to each subsequent number and checks if its divisible by k = 3.
In an array of 6 numbers, that equates to 15 loops, which would be O(n²), meaning that my loops will grow exponentially to the amount of input. 7 numbers would be 21 loops.
P.S., you might be thinking that 6 should be 21 loops, and 7 should be 28, but keep in mind that I'm always taking the current number and adding it to the next, with the exception of the last number.
Visual Breakdown
input: [1, 3, 2, 6, 1, 2]
1+3, 1+2, 1+6, 1+1, 1+2
3+2, 3+6, 3+1, 3+2
2+6, 2+1, 2+2
6+1, 6+2
1+2
Explanation
If you look at the numbers I've put in bold, you'll see they're duplicate calculations. The italics numbers are numbers divisible by k = 3. Now we're getting to my meat of my question. How can I eliminate this duplicate math, which would bring my loops down from 15 to 8 in this particular example. The algorithm would still have a worse case scenario of O(n²), if all the numbers were different, but this would be an optimization nonetheless.
Code Demo
function divisibleSumPairs(k, a) {
let pairs = 0;
for (let i = 0; i < a.length - 1; i++) {
for (let j = i + 1; j < a.length; j++) {
if ((a[i] + a[j])/k % 1 === 0) pairs++;
}
}
console.log(pairs);
}
divisibleSumPairs(3, [ 1, 3, 2, 6, 1, 2 ])

I spent awhile thinking about how I can preprocess the array of numbers to prevent duplicate calculations, then I stepped away for a bit, and came back to the problem with a clear head and a cold drink of water.
Then I thought "What if I preprocess the divisor instead"?
The downside of this approach is that it creates and array of equal size to the divisor, but it does it in O(n) time complexity (screw space complexity, lol)
For this particular example we have 3 loops for the divisor, and 6 loops for the calculation, for a total of 9 loops, which is a savings of 6 loops over the original solution, and an elimination of O(n²).
This results in my function having an overall time complexity of O(n)
function divisibleSumPairs(k, a) {
const mod = new Array(k).fill(0);
let pairs = 0;
for (let i = 0; i < a.length; i++) {
const position = a[i] % k;
pairs += mod[(k - position) % k];
mod[position]++;
}
console.log(pairs);
}
divisibleSumPairs(3, [ 1, 3, 2, 6, 1, 2 ])
Performance Testing
I ran several iterations of my code through a performance test, I was surprised to see how much better a simple for loop compared to forEach and reduce.
for^2: the original code
for: the code in this post
forEach: this post, using forEach instead
reduce: this post, using reduce instead
https://jsperf.com/for-2-vs-for-vs-foreach-vs-reduce/1

To achieve this dynamic problem
Try to store the result in Object lets say sum_map if found this means we have already calculated this sum if not calculate the sum and store the result in map for future reference.
sample snippet:
let d = [1, 3, 2, 6, 1, 2]
const len = d.length
const sum_map = {}
let pairs = 0
for (let i = 0; i < d.length - 1; i++) {
for (let j = i + 1; j < d.length; j++) {
const key1 = `${d[i]}_${d[j]}`
const key2 = `${d[j]}_${d[i]}`
let result = 0
if (sum_map[key1]) {
result = sum_map[key1]
} else if (sum_map[key2]) {
result = sum_map[key2]
} else {
result = d[j] + d[i]
sum_map[`${d[i]}_${d[j]}`] = result
}
if (result % 3 === 0) {
pairs += 1
}
}
}
console.log(pairs)
In order to avoid O(n^2) simple trick is to know that
Example
lets say number you are checking with is 5 and arr = [1,3,2,6,1,2,5]
you will only find sums divisible by the number if its numbers compliment remainder is present.
like for example number pair divisible by 5 are only ones which gives a compliment remainder i.e. 3 % 5 = 2 and 2 % 5 = 3 so the sum will be divisible by 5
so to solve this just find the compliment remainders and choose from them
like say you are 3 nums giving remainder 2 and 4 nums giving remainder 3
so pairs will choose 1 from those 3 nums * choose 1 from those 4 nums
if number is divisible by 5 but if its only 1 its sum will never be divisible.
code snippet:
let d = [1, 3, 2, 6, 1, 2, 5]
const check_div_num = 5
remainder_map = {}
mod_arr = d.map((i) =>{
const rem = i % 5
if(remainder_map[rem]) {
remainder_map[rem] += 1
} else {
remainder_map[rem] = 1
}
return rem
})
const till = Math.floor(check_div_num / 2)
keys = Object.keys(remainder_map)
let pairs = 0
for (let j = 0; j < keys.length; j++) {
const key = keys[j]
if(key === '0' && remainder_map["0"] > 1) {
pairs += remainder_map[key] / 2
continue
}
if(Number(key) <= till) {
let compliment = remainder_map[check_div_num - Number(key)]
const compliemnt_key = check_div_num - Number(key)
if(compliment) {
pairs += remainder_map[key]*remainder_map[compliemnt_key.toString()]
} else {
continue
}
} else {
break
}
}
console.log(pairs)
mind here I am only looping till half of 5 i.e. Math.floor(5/2) as we are already checking for their compliment

Related

Codewars division Kata using Javascript is producing results that are not divisble by 6

I am trying to solve this Kata from Codewars: https://www.codewars.com/kata/simple-fun-number-258-is-divisible-by-6/train/javascript
The idea is that a number (expressed as a string) with one digit replaced with *, such as "1047*66", will be inserted into a function. You must return an array in which the values are the original number with the * replaced with any digit that will produce a number divisive by 6. So given "1*0", the correct resulting array should be [120, 150, 180].
I have some code that is producing some correct results but erroring for others, and I can't figure out why. Here's the code:
function isDivisibleBy6(s) {
var results = [];
for(i=0;i<10;i++) {
var string = i.toString(); // Convert i to string, ready to be inserted into s
var array = Array.from(s); // Make an array from s
var index = array.indexOf("*"); // Find where * is in the array of s
array[index] = string; // Replace * with the string of i
var number = array.join(""); // Join all indexes of the s array back together. Now we should have
// a single number expressed as a string, with * replaced with i
parseInt(number, 10); // Convert the string to an integer
if((number % 6) == 0) {
results.push(number);
} // If the integer is divisible by 6, add the integer into the results array
}
return(results);
};
This code works with the above example and generally with all smaller numbers. But it is producing errors for larger numbers. For example, when s is "29070521868839*57", the output should be []. However, I am getting ['29070521868839257', '29070521868839557', '29070521868839857']. I can't figure out where this would be going wrong. Is anyone able to help?
The problem is that these numbers are larger than the Number.MAX_SAFE_INTEGER - the point when JavaScript numbers break down in terms of reliability:
var num = 29070521868839257;
console.log(num > Number.MAX_SAFE_INTEGER);
console.log(num % 6);
console.log(num)
The last log shows that the num actually has a different value than what we gave it. This is because 29070521868839257 simply cannot be represented by a JavaScript number, hence you get the closest possible value that can be represented and that's 29070521868839256.
So, after some point in numbers, all mathematical operations become unreliable as the very numbers are imprecise.
What you can do instead is ignore treating this whole as a number - treat it as a string and only apply the principles of divisibility. This makes the task vastly easier.
For a number to be divisible by 6 it has to cover two criteria:
it has to be divisible by 2.
to verify this, you can just get the very smallest digit and check if it's divisible by 2. For example in 29070521868839257 if we take 7, and check 7 % 2, we get 1 which means that it's odd. We don't need to consider the whole number.
it has to be divisible by 3.
to verify this, you can sum each of the digits and see if that sum is divisible by 3. If we sum all the digits in 29070521868839257 we get 2 + 9 + 0 + 7 + 0 + 5 + 2 + 1 + 8 + 6 + 8 + 8 + 3 + 9 + 2 + 5 + 7 = 82 which is not divisible by 3. If in doubt, we can sum the digits again, since the rule can be applied to any number with more than two digits: 8 + 2 = 10 and 1 + 0 = 1. That is still not divisible by 3.
So, if we apply these we can get something like:
function isDivisibleBy6(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
};
function isDivisibleBy2(s) {
var lastDigit = Number(s.slice(-1));
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return (sum % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839257"));
console.log(isDivisibleBy6("29070521868839256"));
These can even be recursively defined true to the nature of these rules:
function isDivisibleBy6(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
};
function isDivisibleBy2(s) {
if (s.length === 0) {
return false;
}
if (s.length > 1) {
return isDivisibleBy2(s.slice(-1));
}
var lastDigit = Number(s);
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
if (s.length === 0) {
return false;
}
if (s.length > 1) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return isDivisibleBy3(String(sum));
}
var num = Number(s);
return (num % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839257"));
console.log(isDivisibleBy6("29070521868839256"));
This is purely to demonstrate the rules of division and how they can be applied to strings. You have to create numbers that will be divisible by 6 and to do that, you have to replace an asterisk. The easiest way to do it is like you did - generate all possibilities (e.g., 1*0 will be 100, 110, 120, 130, 140, 150, 160, 170, 180, 190) and then filter out whatever is not divisible by 6:
function isDivisibleBy6(s) {
var allDigits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
var allPossibleNumbers = allDigits.map(function(digit) {
return s.replace("*", digit);
});
var numbersDibisibleBySix = allPossibleNumbers.filter(function(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
})
return numbersDibisibleBySix;
};
function isDivisibleBy2(s) {
var lastDigit = Number(s.slice(-1));
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return (sum % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839*57"));
console.log(isDivisibleBy6("29070521868839*56"));
As a last note, this can be written more concisely by removing intermediate values and using arrow functions:
function isDivisibleBy6(s) {
return [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
.map(digit => s.replace("*", digit))
.filter(s => isDivisibleBy2(s) && isDivisibleBy3(s));
};
const isDivisibleBy2 = s => Number(s.slice(-1)) % 2 === 0;
const isDivisibleBy3 = s => s.split("")
.map(Number)
.reduce((a, b) => a + b) % 3 === 0
console.log(isDivisibleBy6("29070521868839*57"));
console.log(isDivisibleBy6("29070521868839*56"));
Sum of all digits is divisible by three and the last digit is divisible by two.
An approach:
Get the index of the star.
Get left and right string beside of the star.
Return early if the last digit is not divisible by two.
Take the sum of all digits.
Finally create an array with missing digits:
Start loop from either zero (sum has no rest with three) or take the delta of three and the rest (because you want a number which is divisible by three).
Go while value is smaller then ten.
Increase the value either by 3 or by 6, if the index of the star is the last character.
Take left, value and right part for pushing to the result set.
Return result.
function get6(s) {
var index = s.indexOf('*'),
left = s.slice(0, index),
right = s.slice(index + 1),
result = [],
sum = 0,
i, step;
if (s[s.length - 1] % 2) return [];
for (i = 0; i < s.length; i++) if (i !== index) sum += +s[i];
i = sum % 3 && 3 - sum % 3;
step = s.length - 1 === index ? 6 : 3;
for (; i < 10; i += step) result.push(left + i + right);
return result;
}
console.log(get6("*")); // ["0", "6"]
console.log(get6("10*")); // ["102", "108"]
console.log(get6("1*0")); // ["120", "150", "180"]
console.log(get6("*1")); // []
console.log(get6("1234567890123456789012345678*0")); // ["123456789012345678901234567800","123456789012345678901234567830","123456789012345678901234567860","123456789012345678901234567890"]
.as-console-wrapper { max-height: 100% !important; top: 0; }
The problem is with:
parseInt(number, 10);
You can check and see that when number is large enough, this result converted back to string is not equal to the original value of number, due to the limit on floating point precision.
This challenge can be solved without having to convert the given string to number. Instead use a property of numbers that are multiples of 6. They are multiples of 3 and even. Multiples of 3 have the property that the sum of the digits (in decimal representation) are also multiples of 3.
So start by checking that the last digit is not 1, 3, 5, 7, or 9, because in that case there is no solution.
Otherwise, sum up the digits (ignore the asterisk). Determine which value you still need to add to that sum to get to a multiple of 3. This will be 0, 1 or 2. If the asterisk is not at the far right, produce solutions with this digit, and 3, 6, 9 added to it (until you get double digits).
If the asterisk is at the far right, you can do the same, but you must make sure that you exclude odd digits in that position.
If you are desperate, here is a solution. But I hope you can make it work yourself.
function isDivisibleBy6(s) {
// If last digit is odd, it can never be divisable by 6
if ("13579".includes(s[s.length-1])) return [];
let [left, right] = s.split("*");
// Calculate the sum of the digits (ignore the asterisk)
let sum = 0;
for (let ch of s) sum += +ch || 0;
// What value remains to be added to make the digit-sum a multiple of 3?
sum = (3 - sum%3) % 3;
// When asterisk in last position, then solution digit are 6 apart, otherwise 3
let mod = right.length ? 3 : 6;
if (mod === 6 && sum % 2) sum += 3; // Don't allow odd digit at last position
// Build the solutions, by injecting the found digit values
let result = [];
for (; sum < 10; sum += mod) result.push(left + sum + right);
return result;
}
// Demo
console.log(isDivisibleBy6("1234567890123456789012345678*0"));
BigInt
There is also another way to get around the floating point precision problem: use BigInt instead of floating point. However, BigInt is not supported on CodeWars, at least not in that specific Kata, where the available version of Node goes up to 8.1.3, while BigInt was introduced only in Node 10.
function isDivisibleBy6(s) {
let [left, right] = s.split("*");
let result = [];
for (let i = 0; i < 10; i++) {
let k = BigInt(left + i + right);
if (k % 6n === 0n) result.push(k.toString());
}
return result;
}
// Demo
console.log(isDivisibleBy6("1234567890123456789012345678*0"));
This would anyway feel like "cheating" (if it were accepted), as it's clearly not the purpose of the Kata.
As mentioned, the values you are using are above the maximum integer value and therefore unsafe, please see the docmentation about this over here Number.MAX_SAFE_INTEGER. You can use BigInt(string) to use larger values.
Thanks for all the responses. I have now created successful code!
function isDivisibleBy6(s) {
var results = [];
for(i=0;i<10;i++) {
var string = i.toString();
var array = Array.from(s);
var index = array.indexOf("*");
array[index] = string;
var div2 = 0;
var div3 = 0;
if(parseInt((array[array.length-1]),10) % 2 == 0) {
div2 = 1;
}
var numarray = array.map((x) => parseInt(x));
if(numarray.reduce(function myFunc(acc, value) {return acc+value}) % 3 == 0) {
div3 = 1;
}
if(div2 == 1 && div3 == 1) {
results.push(array.join(""));
}
}
return(results);
};
I know this could be factored down quite a bit by merging the if expressions together, but I like to see things split out so that when I look back over previous solutions my thought process is clearer.
Thanks again for all the help!

Finding all possible combined (plus and minus) sums of n arguments?

I'm trying to build a function that takes a variable number of arguments.
The function takes n inputs and calculates all possible sums of addition and subtraction e.g. if the args are 1,2,3
1 + 2 + 3
1 - 2 - 3
1 + 2 - 3
1 - 2 + 3
Finally, the function outputs the sum that is closest to zero. In this case, that answer would just be 0.
I'm having a lot of problems figuring out how to loop n arguments to use all possible combinations of the + and - operators.
I've managed to build a function that either adds all or subtracts all variables, but I'm stuck on how to approach the various +'s and -'s, especially when considering multiple possible variables.
var sub = 0;
var add = 0;
function sumAll() {
var i;
for (i = 0; i < arguments.length; i++) {
sub -= arguments[i];
}
for (i = 0; i < arguments.length; i++) {
add += arguments[i];
}
return add;
return sub;
};
console.log(add, sub); // just to test the outputs
I'd like to calculate all possible arrangements of + and - for any given number of inputs (always integers, both positive and negative). Suggestions on comparing sums to zero are welcome, though I haven't attempted it yet and would rather try before asking on that part. Thanks.
I'd iterate through the possible bits of a number. Eg, if there are 3 arguments, then there are 3 bits, and the highest number representable by those bits is 2 ** 3 - 1, or 7 (when all 3 bits are set, 111, or 1+2+4). Then, iterate from 0 to 7 and check whether each bit index is set or not.
Eg, on the first iteration, when the number is 0, the bits are 000, which corresponds to +++ - add all 3 arguments up.
On the second iteration, when the number is 1, the bits are 001, which corresponds to -++, so subtract the first argument, and add the other two arguments.
The third iteration would have 2, or 010, or +-+.
The third iteration would have 3, or 011, or +--.
The third iteration would have 4, or 100, or -++.
Continue the pattern until the end, while keeping track of the total closest to zero so far.
You can also return immediately if a subtotal of 0 is found, if you want.
const sumAll = (...args) => {
const limit = 2 ** args.length - 1; // eg, 2 ** 3 - 1 = 7
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
// eg '000', or '001', or '010', or '011', or '100', etc
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = 0;
console.log('i:', i, 'bitStr:', bitStr);
args.forEach((arg, bitPos) => {
if (bitStr[args.length - 1 - bitPos] === '0') {
console.log('+', arg);
subtotal += arg;
} else {
console.log('-', arg);
subtotal -= arg;
}
});
console.log('subtotal', subtotal);
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
You can "simplify" by replacing the [args.length - 1 - bitPos] with [bitPos] for the same result, but it'll look a bit more confusing - eg 3 (011, or +--), would become 110 (--+).
It's a lot shorter without all the logs that demonstrate that the code is working as desired:
const sumAll = (...args) => {
const limit = 2 ** args.length - 1;
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = 0;
args.forEach((arg, bitPos) => {
subtotal += (bitStr[bitPos] === '0' ? -1 : 1) * arg;
});
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
You can cut the number of operations in half by arbitrarily choosing a sign for the first digit. Eg. currently, with sumAll(9, 1), both an answer of 8 (9 - 1) and -8 (1 - 9) would be valid, because they're both equally close to 0. No matter the input, if +- produces a number closest to 0, then -+ does as well, only with the opposite sign. Similarly, if ++--- produces a number closest to 0, then --+++ does as well, with the opposite sign. By choosing a sign for the first digit, you might be forcing the calculated result to have just one sign, but that won't affect the algorithm's result's distance from 0.
It's not much of an improvement (eg, 10 arguments, 2 ** 10 - 1 -> 1023 iterations improves to 2 ** 9 - 1 -> 511 iterations), but it's something.
const sumAll = (...args) => {
let initialDigit = args.shift();
const limit = 2 ** args.length - 1;
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = initialDigit;
args.forEach((arg, bitPos) => {
subtotal += (bitStr[bitPos] === '0' ? -1 : 1) * arg;
});
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
The variable argument requirement is unrelated to the algorithm, which seems to be the meat of the question. You can use the spread syntax instead of arguments if you wish.
As for the algorithm, if the parameter numbers can be positive or negative, a good place to start is a naive brute force O(2n) algorithm. For each possible operation location, we recurse on adding a plus sign at that location and recurse separately on adding a minus sign. On the way back up the call tree, pick whichever choice ultimately led to an equation that was closest to zero.
Here's the code:
const closeToZero = (...nums) =>
(function addExpr(nums, total, i=1) {
if (i < nums.length) {
const add = addExpr(nums, total + nums[i], i + 1);
const sub = addExpr(nums, total - nums[i], i + 1);
return Math.abs(add) < Math.abs(sub) ? add : sub;
}
return total;
})(nums, nums[0])
;
console.log(closeToZero(1, 17, 6, 10, 15)); // 1 - 17 - 6 + 10 + 15
Now, the question is whether this is performing extra work. Can we find overlapping subproblems? If so, we can memoize previous answers and look them up in a table. The problem is, in part, the negative numbers: it's not obvious how to determine if we're getting closer or further from the target based on a subproblem we've already solved for a given chunk of the array.
I'll leave this as an exercise for the reader and ponder it myself, but it seems likely that there's room for optimization. Here's a related question that might offer some insight in the meantime.
This is also known as a variation of the partition problem, whereby we are looking for a minimal difference between the two parts we have divided the arguments into (e.g., the difference between [1,2] and [3] is zero). Here's one way to enumerate all the differences we can create and pick the smallest:
function f(){
let diffs = new Set([Math.abs(arguments[0])])
for (let i=1; i<arguments.length; i++){
const diffs2 = new Set
for (let d of Array.from(diffs)){
diffs2.add(Math.abs(d + arguments[i]))
diffs2.add(Math.abs(d - arguments[i]))
}
diffs = diffs2
}
return Math.min(...Array.from(diffs))
}
console.log(f(5,3))
console.log(f(1,2,3))
console.log(f(1,2,3,5))
I like to join in on this riddle :)
the issue can be described as fn = fn - 1 + an * xn , where x is of X and a0,...,an is of {-1, 1}
For a single case: X * A = y
For all cases X (*) TA = Y , TA = [An!,...,A0]
Now we have n! different A
//consider n < 32
// name mapping TA: SIGN_STATE_GENERATOR, Y: RESULT_VECTOR, X: INPUT
const INPUT = [1,2,3,3,3,1]
const SIGN_STATE_GENERATOR = (function*(n){
if(n >= 32) throw Error("Its working on UInt32 - max length is 32 in this implementation")
let uint32State = -1 >>> 32-n;
while(uint32State){
yield uint32State--;
}
})(INPUT.length)
const RESULT_VECTOR = []
let SIGN_STATE = SIGN_STATE_GENERATOR.next().value
while (SIGN_STATE){
RESULT_VECTOR.push(
INPUT.reduce(
(a,b, index) =>
a + ((SIGN_STATE >> index) & 1 ? 1 : -1) * b,
0
)
)
SIGN_STATE = SIGN_STATE_GENERATOR.next().value
}
console.log(RESULT_VECTOR)
I spent time working on the ability so apply signs between each item in an array. This feels like the most natural approach to me.
const input1 = [1, 2, 3]
const input2 = [1, 2, 3, -4]
const input3 = [-3, 6, 0, -5, 9]
const input4 = [1, 17, 6, 10, 15]
const makeMatrix = (input, row = [{ sign: 1, number: input[0] }]) => {
if(row.length === input.length) return [ row ]
const number = input[row.length]
return [
...makeMatrix(input, row.concat({ sign: 1, number })),
...makeMatrix(input, row.concat({ sign: -1, number }))
]
}
const checkMatrix = matrix => matrix.reduce((best, row) => {
const current = {
calculation: row.map((item, i) => `${i > 0 ? item.sign === -1 ? "-" : "+" : ""}(${item.number})`).join(""),
value: row.reduce((sum, item) => sum += (item.number * item.sign), 0)
}
return best.value === undefined || Math.abs(best.value) > Math.abs(current.value) ? current : best
})
const processNumbers = input => {
console.log("Generating matrix for:", JSON.stringify(input))
const matrix = makeMatrix(input)
console.log("Testing the following matrix:", JSON.stringify(matrix))
const winner = checkMatrix(matrix)
console.log("Closest to zero was:", winner)
}
processNumbers(input1)
processNumbers(input2)
processNumbers(input3)
processNumbers(input4)

Array of random numbers optimization

I have a function that generates an array of random numbers. It works, but I feel that it might works slow on big numbers. Is there a way how to optimize it?
function renerateRandomNumbers(maxNumber, randomNumbersCount) {
let i;
const arrResult = [];
for (i = 0; i < randomNumbersCount; i++) {
let rand = Math.random() * (maxNumber);
rand = Math.round(rand);
if (arrResult.indexOf(rand) === -1 ) {
arrResult.push(rand);
} else {
i--;
}
}
return arrResult;
}
EDIT - To any future users, #ScottSauyet's solution should be the accepted answer. It is a more consistently efficient solution than mine.
I think the most algorithmically efficient way to solve this would be to generate the list of all possible numbers from 0-maxNumber, shuffle that array (O(n)), and then take the first randomNumbersCount numbers from the shuffled array. It would look like the following:
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
}
function generateRandomNumbers(maxNumber, randomNumbersCount) {
var possibleNumbers = [];
// populate array with all possible values
for (var i = 0; i <= maxNumber; i++) { possibleNumbers.push(i); }
// shuffle the array to get a random order of the possible numbers O(n)
shuffleArray(possibleNumbers);
// trim the array down to only the first n numbers where n = randomNumbersCount
possibleNumbers.length = randomNumbersCount;
return possibleNumbers;
}
console.log (generateRandomNumbers(10, 5));
console.log (generateRandomNumbers(10, 5));
console.log (generateRandomNumbers(10, 5));
The problem of your code is that complexity grows geometrically because it have a chance generate number that was already picked multiple times.
What we need to achieve is to get number on every iteration to achieve iterations count to be equal to the randomNumbersCount.
How to avoid multiple same random numbers?
let's say you want to have 5 random numbers from 0-10 range
First iteration
Create an array with values var candidates = [0,1...10]
Generate random number let's say 0
Store the number candidates[0] in results
Remove 0 from candidates. To avaoid reindexing of the candidates array we will put candidates[candidates.length - 1] into candidates[0] and remove candidates[candidates.length - 1]
and then will do this operation randomNumbersCount times.
Second iteration
Our candidates array is now [10,1,2,3,4,5,6,7,8,9]
Generate random number let's say 0 again. Wow we generated similar random number, but so what?
we alreay have 0 in our results, but candidates[0] is not a 0 anymore candidates[0] is 10 right now
so we pick candidates[0] that is 10 and will store it and remove it from candidates. Put candidates[candidates.length - 1] (9) into candidates[0] and remove candidates[candidates.length - 1]
our result is [0, 10] right now
Third iteration
Our candidates is now [9,1,2,3,4,5,6,7,8]
Generate random number let's say 0
we are not worring anymore because we know that candidates[0] is 9
add candidates[0] (witch is 9) we are saving to results, and remove it from candidates
our result is [0,10,9], candidates is [8,1,2,3,4,5,6,7]
And so on
BTW implementation is much shorter than explanation:
function renerateRandomNumbers(maxNumber, randomNumbersCount) {
var candidates = [...Array(maxNumber).keys()];
return Array(randomNumbersCount).fill()
.map(() => {
const randomIndex = Math.floor(Math.random() * candidates.length)
const n = candidates[randomIndex]
candidates[randomIndex] = candidates[candidates.length - 1]
candidates.length = candidates.length - 1
return n
})
.sort((a, b) => a - b) // sort if needed
}
console.log (renerateRandomNumbers(10, 5))
The solution from mhodges is reasonably efficient, but only when the sought count is fairly close to the max number. If your count is significantly smaller, this can be a problem, as the solution is O(m + n) where m is the maximum and n is the desired count. It's also O(m) in space. If m is large, this could be a problem.
A variant would make this approximately O(n) in time and space, by doing the same thing, but stopping the shuffle when when we've reached count items and by not pre-filling the array but instead defaulting to its indices.
function venerateRandomNumbers(max, count) {
// todo: error if count > max
const arr = new Array(max + 1)
for (let i = max; i > max - count; i--) {
const j = Math.floor(Math.random() * (i + 1))
const temp = arr[j] || j
arr[j] = arr[i] || i
arr[i] = temp
}
return arr.slice(-count)
}
console.log(venerateRandomNumbers(1000000, 10))
You can see performance comparisons on repl.it

Adding numbers together

I want to loop over an array whilst addding the numbers together.
Whilst looping over the array, I would like to add the current number to the next.
My array looks like
[0,1,0,4,1]
I would like to do the following;
[0,1,0,4,1] - 0+1= 1, 1+0= 1, 0+4=4, 4+1=5
which would then give me [1,1,4,5] to do the following; 1+1 = 2, 1+4=5, 4+5=9
and so on until I get 85.
Could anyone advise on the best way to go about this
This transform follows the specified method of summation, but I also get an end result of 21, so please specify how you get to 85.
var ary = [0,1,0,4,1],
transform = function (ary) {
var length = ary.length;
return ary.reduce(function (acc, val, index, ary) {
if (index + 1 !== length) acc.push(ary[index] + ary[index + 1]);
return acc;
}, []);
};
while (ary.length !== 1) ary = transform(ary);
If you do in fact want the answer to be 21 (as it seems like it should be), what you are really trying to do is closely related to the Binomial Theorem.
I am not familiar with javascript, so I will write an example in c-style pseudocode:
var array = [0,1,0,4,1]
int result = 0;
for (int i = 0; i < array.length; i++)
{
int result += array[i] * nChooseK(array.length - 1, i);
}
This will put the following numbers into result for each respective iteration:
0 += 0 * 1 --> 0
0 += 1 * 4 --> 4
4 += 0 * 6 --> 4
4 += 4 * 4 --> 20
20 += 1 * 1 --> 21
This avoids all the confusing array operations that arise when trying to iterate through creating shorter-and-shorter arrays; it will also be faster if you have a good nChooseK() implementation.
Now, finding an efficient algorithm for a nChooseK() function is a different matter, but it is a relatively common task so it shouldn't be too difficult (Googling "n choose k algorithm" should work just fine). Some languages even have combinatoric functions in standard math libraries.
The result I get is 21 not 85. This code can be optimised to only use single array. Anyway it gets the job done.
var input = [0, 1, 0, 4, 1];
function calc(input) {
if (input.length === 1) {
return input;
}
var result = [];
for (var i = 0; i < input.length - 1; i++) {
result[i] = input[i] + input[i + 1];
}
return calc(result);
}
alert(calc(input));
This is an O(n^2) algorithm.

Generate all combinations for pair of bits set to 1?

I'm trying to generate all possible combinations for pair of 1's within given bit width.
Let's say the bit width is 6, i.e. number 32. This is what I would like to generate:
000000
000011
000110
001100
001111
011000
011011
011110
110000
110011
110110
111100
111111
If I have variables:
var a = 1,
b = 2;
num = a | b;
and create a loop that I'll loop over width - 1 times, and where I shift both a << 1 and b << 1, I'll get all combinations for one pair. After that, I'm pretty much stuck.
Could someone , please, provide some help.
Update: working example
Based on Barmar's mathematical approach, this is what I managed to implement
var arr = [],
arrBits = [];
function getCombs(pairs, startIdx) {
var i, j, val = 0, tmpVal, idx;
if (startIdx + 2 < pairs) {
startIdx = arr.length - 1;
pairs -= 1;
}
if (pairs < 2) {
return;
}
for (i = 0; i < pairs-1; i++) {
idx = startIdx - (i * 2);
val += arr[idx];
}
for (j = 0; j < idx - 1; j++) {
arrBits.push((val + arr[j]).toString(2));
}
getCombs(pairs, startIdx-1);
}
(function initArr(bits) {
var i, val, pairs, startIdx;
for (i = 1; i < bits; i++) {
val = i == 1 ? 3 : val * 2;
arr.push(val);
arrBits.push(val.toString(2));
}
pairs = Math.floor(bits / 2);
startIdx = arr.length - 1;
getCombs(pairs, startIdx);
console.log(arrBits);
}(9));
Working example on JSFiddle
http://jsfiddle.net/zywc5/
The numbers with exactly one pair of 1's are the sequence 3, 6, 12, 24, 48, ...; they start with 3 and just double each time.
The numbers with two pairs of 1's are 12+3, 24+3, 24+6, 48+3, 48+6, 48+12, ...; these are the above sequence starting at 12 + the original sequence up to n/4.
The numbers with three pairs of 1's are 48+12+3, 96+12+3, 96+24+3, 96+24+6, ...
The relationship between each of these suggests a recursive algorithm making use of the original doubling sequence. I don't have time right now to write it, but I think this should get you going.
if the bit width isn't that big then you'll be way better off creating bit representations for all numbers from 0 to 31 in a loop and simply ignore the ones that have an odd number of "ones" in the bit representation.
Maybe start counting normally in binary and replace all 1's with 11's like this:
n = 5
n = n.toString(2) //= "101"
n = n.replace(/1/g, "11") //= "11011"
n = parseInt(n, 2) //= 27
So you'll get:
0 -> 0
1 -> 11
10 -> 110
11 -> 1111
100 -> 1100
101 -> 11011
110 -> 11110
111 -> 111111
And so on. You'll have to count up to 31 or so on the left side, and reject ones longer than 6 bits on the right side.
See http://jsfiddle.net/SBH6R/
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var j=0;j<arr.length;j++){
var k=j;
if(getNum1(arr[j])%2===1){
arr[j]+=1;
}else{
if(i<len-1){
arr.splice(j+1,0,arr[j]+1);
j++;
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.join('<br />'));
Or maybe you will prefer http://jsfiddle.net/SBH6R/1/. It's simpler, but then you will have to sort() the array:
var len=6,
arr=[''];
for(var i=0;i<len;i++){
for(var k=0,l=arr.length;k<l;k++){
if(getNum1(arr[k])%2===1){
arr[k]+=1;
}else{
if(i<len-1){
arr.push(arr[k]+1);
}
arr[k]+=0;
}
}
}
function getNum1(str){
var n=0;
for(var i=str.length-1;i>=0;i--){
if(str.substr(i,1)==='1'){n++;}
else{break;}
}
return n;
}
document.write(arr.sort().join('<br />'));
See http://jsperf.com/generate-all-combinations-for-pair-of-bits-set-to-1 if you want to compare the performance. It seems that the fastest code is the first one on Chrome but the second one on Firefox.
You can also do this with bit twiddling. If the lowest two bits are zero, we need to set them, which is equivalent to adding 3. Otherwise, we need to replace the lowest block of ones by its top bit and a 1-bit to the left of it. This can be done as follows, where x is the current combination:
x3 = x + 3;
return (((x ^ x3) - 2) >> 2) + x3;

Categories

Resources