Calculate angle of reach for projectile given velocity and distance - javascript

I've been trying to implement projectile motion in Javascript and I'm stuck at figuring out the angle (from which to derive the x and y velocity)
var v = 1;
var d = 10;
var g = -1;
var angle = 0.5 * Math.asin((g*d)/(v*v));
I would've expected someting like this to work, since it's coming from here Here.
The values I seem to get are either NaN or a very small number.
To give a bit more context; The projectile has to go from point A to point B (the distance is d in my code) where A and B are at the same height. Later on I would like to randomize the distance and angle a bit, but I assume that's not going to be an issue once this angle problem is solved.
EDIT:
As for a better example:
var v = 100;
var d = 100;
var g = 1; // I've made this positive now
var angle = 0.5 * Math.asin((g*d)/(v*v));
This says that angle is now 0.005

Im not really good at this physics problrm but i'll try
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/asin
the arg for Math.asin() should be between -1 and 1. Otherwise it returns NaN
from your example you run Math.asin(-10/1) maybe the velocity has max distance that it could cover. No matter the angle, 1m/s wont reach 500m distance for example
in your link there is a formula to count the max distance from given velocity and angle. Use that to confirm your variables are relevant.
angles are represented in values between -1 to 1 in cos, sin, tan. It makes sense that NaN (or values outside the range) means no angle can cover the distance
Hope it helps a bit

Note from the same wikipedia page you linked d_max = v*v/g. Given your inputs this evaluates to 1. Therefore a distance of 10 is impossible.
Another way to notice this is the range of sin is (-1,1). Therefore asin of any number outside of this range is undefined. (g*d)/(v*v) is 10, so Math.asin returns NaN

Related

how does atan2 work? which angle is actually calculated?

As you can see in the picture, I have a line and two points(p1 and p4). what I need to do is to get snapped point of p1/p4 on the line and then use atan2 to calculate the angle between (p1 and p2) and (p3 and p4). Now, I have two formulas:
var anglep1p2 = Math.atan2(p2[1] - p1[1], p2[0] - p1[0]) * 180 / Math.PI;
var anglep4p3 = Math.atan2(p4[1] - p3[1], p4[0] - p3[0]) * 180 / Math.PI;
anglep1p2 is calculated 103.66797855556482
anglep4p3 is calculated -76.74971541138642
I wonder how does atan2 calculate those values?
thanks for any help
These answers do make sense. You are sort of calculating a the angle of a single line, starting from the positive x-axis. The way you calculate anglep1p2, it corresponds to the line drawn from p1 to p2.
If you plunk the origin of a coordinate system at the starting point p1 (you put it at p2 in your diagram), then the number you get should be the rotation from the positive x-axis to the line you drew - a bit over 90 degrees makes intuitive sense.
Your second result is flipped from your first (notice you used p4/p3 in the same order as your variable name, whereas you reversed this order in the p1/p2 case). To avoid confusion, I'd use the p1/p2 case to gain understanding, then apply it the same way to the other case once you know what you want.
If you have a specific geometry/relationship problem you need to figure out, you can provide the details and I might be able to help more specifically.

How to get an angle for a projectile such that it will hit a vector 2 target while factoring in gravity

I have an enemy that can shoot projectiles, but my issue is I am trying to find the angle required to hit the player, but the projectile has to be shot at an exact velocity (i.e can't shoot the projectile more slowly). I have tried the range equation, but I can not simplify it such that I get the theta (angle), that factors in the y distance, the x distance, the velocity, and the gravity.
Sorry for the sprawling question,
Teh Cosmic Sloth
Well... You have:
D - distance to target
g = 9.8 - g- force
v - your firing velocity
Your velocity along X is v*cos(a)
Your velocity along Y is v*sin(a)
you need to travel distance D, hence your time of flight is
t = D/v*cos(a)
in that time you need to reach the maximum height of your flight and fall back. At maximum point your vertical speed will be 0, at the end of flight your vertical speed will equal to the starting vertical speed, if we ignore the air resistance.
So, bearing in mind that the equation for speed is v = acc*t (where acc is g for you) t = v/acc. In your case you have to drop speed to 0 and get it back to original, so you have factor of 2.
t = 2*(v*sin(a)/g)
Lets sum it up:
t = D/v*cos(a)
t = 2*(v*sin(a)/g)
2*(vsin(a)/g) = D/vcos(a)
You know everything but angle a.
So, by doing some variable transfers you get
2sin(a)cos(a) = Dg / v^2
which is:
sin(2a) = D*g/v^2
2a = arcsin( D*g/ v^2)
So, this must be the answer.
a = arcsin( D * g / (v^2) ) / 2

How do I calculate the angle of a right triangle using the Javascript Math library?

Consider the following triangle :
I want to calculate angle X
I have the following :
var opposite = 2.5;
var hypotenuse = 5;
var sinOfAngleX = opposite / hypotenuse; // 0.5
So now I know that Math.sin(valueofAngleX) would return 0.5.
But how do I get the value of an angle if I know the sine of the angle, using the Math() library?
According to this tutorial, I need to do :
var angleX = sin to the power of negative one of 0.5
but I don't know how to translate that into JS.
I tried :
var angleX = Math.pow(Math.sin(sinOfAngleX), -1);
but it returns 2.085829642933488 which is obviously wrong. The correct answer should be 30
And in case all of the above is wrong to begin with, does anyone know how I can calculate angle X correctly using the JS Math() library?
Thanks!
You can know the angle of any sin with this formula:
Math.asin(sinOfAngleX) * 180/Math.PI
With sinOfAngleX = 0.5, Math.asin(sinOfAngleX) would give 0.5235987755982989. This is expressed in radians. To pass it to degrees you can multiply by 180/Math.PI, which results in 30º
In ES6 you can use the build it method from Math Object
Math.hypot(3, 4)

How to calculate bezier curve control points that avoid objects?

Specifically, I'm working in canvas with javascript.
Basically, I have objects which have boundaries that I want to avoid, but still surround with a bezier curve. However, I'm not even sure where to begin to write an algorithm that would move control points to avoid colliding.
The problem is in the image below, even if you're not familiar with music notation, the problem should still be fairly clear. The points of the curve are the red dots
Also, I have access to the bounding boxes of each note, which includes the stem.
So naturally, collisions must be detected between the bounding boxes and the curves (some direction here would be good, but I've been browsing and see that there's a decent amount of info on this). But what happens after collisions have been detected? What would have to happen to calculate control points locations to make something that looked more like:
Bezier approach
Initially the question is a broad one - perhaps even to broad for SO as there are many different scenarios that needs to be taken into consideration to make a "one solution that fits them all". It's a whole project in its self. Therefor I will present a basis for a solution which you can build upon - it's not a complete solution (but close to one..). I added some suggestions for additions at the end.
The basic steps for this solutions are:
Group the notes into two groups, a left and a right part.
The control points are then based on the largest angle from the first (end) point and distance to any of the other notes in that group, and the last end point to any point in the second group.
The resulting angles from the two groups are then doubled (max 90°) and used as basis to calculate the control points (basically a point rotation). The distance can be further trimmed using a tension value.
The angle, doubling, distance, tension and padding offset will allow for fine-tuning to get the best over-all result. There might be special cases which need additional conditional checks but that is out of scope here to cover (it won't be a full key-ready solution but provide a good basis to work further upon).
A couple of snapshots from the process:
The main code in the example is split into two section, two loops that parses each half to find the maximum angle as well as the distance. This could be combined into a single loop and have a second iterator to go from right to middle in addition to the one going from left to middle, but for simplicity and better understand what goes on I split them into two loops (and introduced a bug in the second half - just be aware. I'll leave it as an exercise):
var dist1 = 0, // final distance and angles for the control points
dist2 = 0,
a1 = 0,
a2 = 0;
// get min angle from the half first points
for(i = 2; i < len * 0.5 - 2; i += 2) {
var dx = notes[i ] - notes[0], // diff between end point and
dy = notes[i+1] - notes[1], // current point.
dist = Math.sqrt(dx*dx + dy*dy), // get distance
a = Math.atan2(dy, dx); // get angle
if (a < a1) { // if less (neg) then update finals
a1 = a;
dist1 = dist;
}
}
if (a1 < -0.5 * Math.PI) a1 = -0.5 * Math.PI; // limit to 90 deg.
And the same with the second half but here we flip around the angles so they are easier to handle by comparing current point with end point instead of end point compared with current point. After the loop is done we flip it 180°:
// get min angle from the half last points
for(i = len * 0.5; i < len - 2; i += 2) {
var dx = notes[len-2] - notes[i],
dy = notes[len-1] - notes[i+1],
dist = Math.sqrt(dx*dx + dy*dy),
a = Math.atan2(dy, dx);
if (a > a2) {
a2 = a;
if (dist2 < dist) dist2 = dist; //bug here*
}
}
a2 -= Math.PI; // flip 180 deg.
if (a2 > -0.5 * Math.PI) a2 = -0.5 * Math.PI; // limit to 90 deg.
(the bug is that longest distance is used even if a shorter distance point has greater angle - I'll let it be for now as this is meant as an example. It can be fixed by reversing the iteration.).
The relationship I found works good is the angle difference between the floor and the point times two:
var da1 = Math.abs(a1); // get angle diff
var da2 = a2 < 0 ? Math.PI + a2 : Math.abs(a2);
a1 -= da1*2; // double the diff
a2 += da2*2;
Now we can simply calculate the control points and use a tension value to fine tune the result:
var t = 0.8, // tension
cp1x = notes[0] + dist1 * t * Math.cos(a1),
cp1y = notes[1] + dist1 * t * Math.sin(a1),
cp2x = notes[len-2] + dist2 * t * Math.cos(a2),
cp2y = notes[len-1] + dist2 * t * Math.sin(a2);
And voila:
ctx.moveTo(notes[0], notes[1]);
ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, notes[len-2], notes[len-1]);
ctx.stroke();
Adding tapering effect
To create the curve more visually pleasing a tapering can be added simply by doing the following instead:
Instead of stroking the path after the first Bezier curve has been added adjust the control points with a slight angle offset. Then continue the path by adding another Bezier curve going from right to left, and finally fill it (fill() will close the path implicit):
// first path from left to right
ctx.beginPath();
ctx.moveTo(notes[0], notes[1]); // start point
ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, notes[len-2], notes[len-1]);
// taper going from right to left
var taper = 0.15; // angle offset
cp1x = notes[0] + dist1*t*Math.cos(a1-taper);
cp1y = notes[1] + dist1*t*Math.sin(a1-taper);
cp2x = notes[len-2] + dist2*t*Math.cos(a2+taper);
cp2y = notes[len-1] + dist2*t*Math.sin(a2+taper);
// note the order of the control points
ctx.bezierCurveTo(cp2x, cp2y, cp1x, cp1y, notes[0], notes[1]);
ctx.fill(); // close and fill
Final result (with pseudo notes - tension = 0.7, padding = 10)
FIDDLE
Suggested improvements:
If both groups' distances are large, or angles are steep, they could probably be used as a sum to reduce tension (distance) or increase it (angle).
A dominance/area factor could affect the distances. Dominance indicating where the most tallest parts are shifted at (does it lay more in the left or right side, and affects tension for each side accordingly). This could possibly/potentially be enough on its own but needs to be tested.
Taper angle offset should also have a relationship with the sum of distance. In some cases the lines crosses and does not look so good. Tapering could be replaced with a manual approach parsing Bezier points (manual implementation) and add a distance between the original points and the points for the returning path depending on array position.
Hope this helps!
Cardinal spline and filtering approach
If you're open to use a non-Bezier approach then the following can give an approximate curve above the note stems.
This solutions consists of 4 steps:
Collect top of notes/stems
Filter away "dips" in the path
Filter away points on same slope
Generate a cardinal spline curve
This is a prototype solution so I have not tested it against every possible combination there is. But it should give you a good starting point and basis to continue on.
The first step is easy, collect points representing the top of the note stem - for the demo I use the following point collection which slightly represents the image you have in the post. They are arranged in x, y order:
var notes = [60,40, 100,35, 140,30, 180,25, 220,45, 260,25, 300,25, 340,45];
which would be represented like this:
Then I created a simple multi-pass algorithm that filters away dips and points on the same slope. The steps in the algorithm are as follows:
While there is a anotherPass (true) it will continue, or until max number of passes set initially
The point is copied to another array as long as the skip flag isn't set
Then it will compare current point with next to see if it has a down-slope
If it does, it will compare the next point with the following and see if it has an up-slope
If it does it is considered a dip and the skip flag is set so next point (the current middle point) won't be copied
The next filter will compare slope between current and next point, and next point and the following.
If they are the same skip flag is set.
If it had to set a skip flag it will also set anotherPass flag.
If no points where filtered (or max passes is reached) the loop will end
The core function is as follows:
while(anotherPass && max) {
skip = anotherPass = false;
for(i = 0; i < notes.length - 2; i += 2) {
if (!skip) curve.push(notes[i], notes[i+1]);
skip = false;
// if this to next points goes downward
// AND the next and the following up we have a dip
if (notes[i+3] >= notes[i+1] && notes[i+5] <= notes[i+3]) {
skip = anotherPass = true;
}
// if slope from this to next point =
// slope from next and following skip
else if (notes[i+2] - notes[i] === notes[i+4] - notes[i+2] &&
notes[i+3] - notes[i+1] === notes[i+5] - notes[i+3]) {
skip = anotherPass = true;
}
}
curve.push(notes[notes.length-2], notes[notes.length-1]);
max--;
if (anotherPass && max) {
notes = curve;
curve = [];
}
}
The result of the first pass would be after offsetting all the points on the y-axis - notice that the dipping note is ignored:
After running through all necessary passes the final point array would be represented as this:
The only step left is to smoothen the curve. For this I have used my own implementation of a cardinal spline (licensed under MIT and can be found here) which takes an array with x,y points and smooths it adding interpolated points based on a tension value.
It won't generate a perfect curve but the result from this would be:
FIDDLE
There are ways to improve the visual result which I haven't addressed, but I will leave it to you to do that if you feel it's needed. Among those could be:
Find center of points and increase the offset depending on angle so it arcs more at top
The end points of the smoothed curve sometimes curls slightly - this can be fixed by adding an initial point right below the first point as well at the end. This will force the curve to have better looking start/end.
You could draw double curve to make a taper effect (thin beginning/end, thicker in the middle) by using the first point in this list on another array but with a very small offset at top of the arc, and then render it on top.
The algorithm was created ad-hook for this answer so it's obviously not properly tested. There could be special cases and combination throwing it off but I think it's a good start.
Known weaknesses:
It assumes the distance between each stem is the same for the slope detection. This needs to be replaced with a factor based comparison in case the distance varies within a group.
It compares the slope with exact values which may fail if floating point values are used. Compare with an epsilon/tolerance

Calculate the direction based on degrees

So I'm working on a particle emitter with javascript and canvas.
And I want to be able to set what direction the particles are emitting based on an angle.
This can be done with this function:
y = Math.tan(45 * Math.PI/180);
Which returns 1 if the angle is 45. etc.
But I don't exacly know how I should implement this since pixels are calculated a little different. Think -1 as removing one pixel each step and 1 as adding one pixel.
If the angle is 45, Y is 1 and X is 1 which is correct.
But to get a pixel traveling at 315 degrees Y is -1 and X should be 1.
And at 225 degrees Y should be -1 (but is 1) and X should be -1.
How should the function look like if it should work like this?
Here is an image of how im thinking:
(The emitter is in the origin.)
Actually it's simple,
angle = (angle * Math.PI/180) % 360;
tangent = Math.tan(angle);
Since you do not know where is x;
section_x_positive = (angle<90||angle>270?1:-1);
section_y_positive = (angle>0&&angle<180?1:-1);
x = abs(tangent) * section_x_positive;
y = abs(tangent) * section_y_positive;
It sounds to me like your problem is that you're thinking about direction, which is a vector quantity, as if it were a scalar.
You need to remember that a 2D vector is represented as two components:
You can work in terms of unit vectors, so the magnitude r = 1.
So if you have a direction angle, which should be measured in radians, increasing in the counterclockwise direction, and starting at the x = 0 horizontal axis, you'll end up with two components of the unit vector that points in the direction you want.

Categories

Resources