Importing private variables into a module with vanilla javascript? - javascript

This example is taken from Addy Osmani's Javascript Design Patterns Book, which I found in this article.
var myRevealingModule = (function () {
var privateVar = "Ben Cherry",
publicVar = "Hey there!";
function privateFunction() {
console.log( "Name:" + privateVar );
}
function publicSetName( strName ) {
privateVar = strName;
}
function publicGetName() {
privateFunction();
}
// Reveal public pointers to
// private functions and properties
return {
setName: publicSetName,
greeting: publicVar,
getName: publicGetName
};
})();
myRevealingModule.setName( "Paul Kinlan" );
I've been using this module pattern in my own code, but I've come to a situation where I have a giant array variable that gets accessed by multiple files/modules.
var bigArray = [
['AliceBlue', '#557'],
['AntiqueWhite', '#B01'],
['Aqua', '#077'],
['Aquamarine', '#088'],
...
...
...
];
I want to declare this (and all other variables that get used in multiple places) only once. I've read that this is something webpack would solve. Is there any way with vanilla js to make a variable like a large array private but then import it into a module as needed?

I suggest you have a look here https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
What you are probably looking for is an import statement that is currently not available in browsers.That's why you need to use webpack with the babel loader in order to have that module import you are looking for.
Check out this tutorial https://www.youtube.com/watch?v=GU-2T7k9NfI&t=2s
If you really want to do it with vanilla javascript, you can add <script> tags on top of each other to have access to the other scripts and then have a look at closures to hopefully separate things a bit.
What you are basically doing like this is staking scripts on top of scripts which is by far the not the best way you can do this (webpack can save you on this one, try it out (; ).
Hope this sets you in the right direction, i'll be in the comments if you need more answers

Related

Javascript IIFE code sharing between projects

Looking for pure JavaScript answers please.
Using IIFE for a JavaScript game. Actually multiple games on multiple webpages. Suppose there is a common piece of code that needs to be used by all of these games. Say for example, a diceroller; 1d20, 3d6, etc.
What is the right way to do this? Should the IIFEs all be set to the global with unique names? I worry about setting to the global (perhaps I am too worried about that).
Does the diceroller need to be passed into the game IIFE? How to do this properly?
I think you want a Revealing Module Pattern, not an IIFE Pattern.
//Revealing Module Pattern (Public & Private) w Public Namespace 'game'
var game = (function() {
// object to expose as public properties and methods such as game.roll
var pub = {};
//game.roll
pub.roll = function () {
//do your thing
return randomIntFromInterval(1,6);
};
function randomIntFromInterval(min,max){
return Math.floor(Math.random()*(max-min+1)+min);
}
//API
return pub;
}());

Javascript Module pattern - how to reveal all methods?

I have module pattern done like this:
var A = (function(x) {
var methodA = function() { ... }
var methodB = function() { ... }
var methodC = function() { ... }
...
...
return {
methA: methodA,
methB: methodB
}
})(window)
This code let's me call only methA and methB() on A which is what I want and what I like. Now the problem I have - I want to unit test it with no pain ot at least with minimal efforts.
First I though I can simply return this but I was wrong. It returns window object.(can someone explain why?).
Second - I found solution somewhere online - to include this method inside my return block:
__exec: function() {
var re = /(\(\))$/,
args = [].slice.call(arguments),
name = args.shift(),
is_method = re.test(name),
name = name.replace(re, ''),
target = eval(name);
return is_method ? target.apply(this, args) : target;
}
This method let's me call the methods like this: A.__exec('methA', arguments);
It is almost what I want, but quite ugly. I would prefer A.test.methA() where test would never be used in production code - just for revealing private methods.
EDIT
I see people telling me to test the big thing instead of the small parts. Let me explain. In my opinion API should reveal only the needed methods not a bunch of internal functions. The internals because of their small size and limited functionality are much easier to test then test the whole thing and guess which part gone wrong.
While I may be wrong, I would still like to see how I could return references to all the methods from the object itself :).
Answer to your first question(you return this, but it returns window, not the object you wanted): in javascript this inside the function returns global object unless this function is a method of the object.
Consider next examples:
1) this points to the global object ():
function(){
return this;
}
2) this points to the object:
var obj = {
value: "foo",
getThisObject: function(){
return this;
}
}
Your case is example #1, because you have a function, that returns an object. This function is not a method of any object.
The best answer to your second question is to test only public methods, but if
that is so important for you, I can propose next:
create your modules dynamically on server side.
How it works:
create separate scripts for functionality you want;
create tests for these separate scripts;
create method that will combine scripts into one however you want;
to load script, reference to the combining scripts method.
Hopefully, it can solve your problem. Good luck!
Why not use namespaces to add your modules and public methods to js engine. Like this:
window['MyApp']['MODULE1'] = { "METHOD1" : {}, "METHOD2" : {}};
I write modules like this Sample module in JavaScript.
And test it like this: Simple unit testing in JavaScript
The use of eval() is generally not good idea.

Node.js Module plugins

I was hoping to find out what the best practices are for writing Node.js modules, specifically for the type of javascript pattern to follow for code separation.
One style I've been using, is this:
var Something;
Something = (function() {
function Something() {
}
Something.prototype.some = function() {
}
return Something;
})();
module.exports = Something;
Another style would be :
module.exports = {
item: "one",
some: function() {
},
another: function() {
}
}
Is there any reason why the second method would not be advised, in node.js? or is there another format that would be preferred and what would the advantages be?
Thank you!
You run into issues using the 'this' keyword. Which you have to use instead of 'Something'. So Something.some() you can run... But if you wanted to run that on the bottom, you'd have to run this.run(). The scope of this changes within other functions and can get messy.
There are several variants including assigning properties directly to exports, assigning a new object literal to module.exports and a few others. For the most part they are just syntax sugar or syntax alternatives that accomplish exactly the same thing. My personal preference is to leave as much of my code as possible unpolluted pure JS, and keep the CommonJS idioms separate. So I do:
function myFunction() {
}
var MY_STRING = "Forty-two";
module.exports = {
myFunction: myFunction,
MY_STRING: MY_STRING
};
It's a bit boilerplate-y and prone to maintenance mistakes, but I prefer it to the alternatives as I really dislike putting the CommonJS module level names (module, exports) sprinkled throughout my code. CoffeeScript makes the last part easier since you can just do:
module.exports = {
myFunction
MY_STRING
}

Aliasing a function object in JavaScript

Disclaimer: I am using ExtJS 3, but I don't think it's very relevant to the question, outside of the common use of it's namespacing function.
I have a singleton that's declared in a really long namespace like this:
Ext.ns("REALLY.REALLY.LONG.NAMESPACE");
var Singleton = (function() {
var foo = {
bar: "baz"
};
var privateFunction = function(param){
// ...
return foo;
};
var single = Ext.extend(Object, {
constructor: function(config) {
Ext.apply(this, config);
},
otherFunction: privateFunction,
publicFunction: function (someObject){
// do stuff with someObject
}
});
return single;
})();
// Make it a singleton
REALLY.REALLY.LONG.NAMESPACE.Singleton = new Singleton();
I use it in other modules via calls like REALLY.REALLY.LONG.NAMESPACE.Singleton.otherFunction(); and REALLY.REALLY.LONG.NAMESPACE.Singleton.publicFunction(myObject); . I'm wondering if I can swap out those calls by setting up the client module with an alias to the singleton, i.e. var singleton = REALLY.REALLY.LONG.NAMESPACE.Singleton; , so that I can call singleton.otherFunction();. I'm wondering if this is an anti-pattern , or if there are any pitfalls (memory?) I might run into through this usage.
Thanks StackOverflow!
I'm wondering if I can swap out those calls by setting up the client module with an alias to the singleton
Yes, you can.
I'm wondering if this is an anti-pattern , or if there are any pitfalls (memory?) I might run into through this usage.
No, there aren't any that I can think of and it is faster than calling the fully-qualified version.
Local Alias Pattern
Example:
function somefunc(){
var singleton = REALLY.REALLY.LONG.NAMESPACE.Singleton;
singleton.publicFunction();
};
Or:
(function somfunc(singleton){
}(REALLY.REALLY.LONG.NAMESPACE.Singleton));
Test Results:
http://jsfiddle.net/jMg9A/
There is no issue with creating a reference to the original "object". In many cases we create a namespace to organize our code, but of course, this can lead to really long namespaces that we really don't wish to reference later, thus creating a local reference to that namespace is an excellent idea so that you can change it in one place instead of various places.
I don't really see an ant-pattern here, instead I see an opportunity to make it simpler for yourself and probably a little more manageable from a developer standpoint.

What is meant by “leaking” into global scope?

A while ago, I offered-up a JavaScript design pattern (the Module Pattern - see below) that I got from a John Resig example as part of a solution to someone’s question and I received the following comment:
“…that pattern is a bit over
engineered and not that good. Still
leaking into global-scope. and your
not opening yourself to async loaders.
But it is better then just ad-hoc
coding !”
So…
If “leaking” into global scope means “your object gets appended to the browsers window (object)”…then everything already gets appended (globally):
This “leaks” into global scope:
window.jQuery
…just call: window.jQuery and it resolves as a function();
This “leaks” into global scope:
function HelloWorld() { alert(‘Howdy’); }
…just call: window.HelloWorld() and you will get ‘Howdy’.
This “leaks” into global scope:
var myVariable = 10;
…just call: window.myVariable and you will get 10
If the commenter is correct, then all the above “leak” into global-scope. So, personally, I don’t see a way NOT to “leak” into global-scope as even your form controls exists there (as well).
As such, here are my questions…
What is meant by “leaking” into
global-scope?
Why is that bad?
How do you avoid it?
When wanting to create persistent
custom-objects, why is the Module
Pattern (below) bad?
Design patterns let you encapsulate
complex logic, is encapsulation
suddenly bad simply because we’re
writing in JavaScript?
Or...is this commenter simply wrong?
Here is the Module Pattern I Mentioned Above:
<script type="text/javascript">
var myNamespace = (function($) {
var publicInstances = {};
// ***********************
// myObject
publicInstances.myObject = myObject;
function myObject() {
/// <summary>A pointer to this</summary>
var self = this;
this.someProperty = new String();
this.initialize = function() {
/// your code here
}
this.someMethod = function() {
/// your code here
}
self.initialize();
}
return publicInstances;
})(jQuery);
jQuery(document).ready(function() {
// Use would look like
var myInstance = new myNamespace.myObject();
});
</script>
UPDATED:
I’m satisfied with the answers below and want to thank everyone for taking the time to comment.
TO RECAP THE ANSWERS BELOW:
"Leaking" into global-scope occurs when something used in local-scope is unintentionally made available to the global-scope (e.g. the window object). This is bad because it opens the page to potential naming collisions which could result in variables resolving to unexpected values or types.
Intentionally making a variable global is not considered a "leak". However, properly namespacing the object is required to reduce potential for said naming collisions.
You cannot avoid globally-scoped variables, but you can reduce the above risks by using asynchronous-loaders and defining-modules made available in plug-ins like RequireJS or Curl.
"Leaking" into global scope is when something used in a local scope is unintentionally made available to the global scope. That means assigning to a variable not already defined in the current scope:
function myFunction() {
a=1;
}
myFunction();
alert(a);
//-> 1
It's bad because there could be naming collisions resulting in variables with different values/types than expected. It can also lead to a bug in older Internet Explorers when you forget to use the var keyword for a variable used in a for statement.
I wouldn't class intentionally making a variable global as "leaking", because it's more like you're "pouring" it into the global scope. However, this is still often considered bad practice by some (although I think that's a little melodramatic) because there are still potential naming collisions with current properties of the window object, or variables set by other scripts and libraries.
[[Short story]]
Don't make global variables ever and use an async module loader like requirejs or curl
[[Long story]]
That comment was poorly structured.
There is nothing wrong with the module system. I was complaining about using global variables at all. (I still think the full generic module pattern is bloated).
Whether you should avoid all global variables is a different question and I think a matter of style. You can either use an async loader to pass modules around or using window to pass modules around.
What is meant by “leaking” into global-scope?
What I meant was your creating global variables. Minimising the use of global variables is a pattern. In functional style programming it's possible to have zero global variables but this is a different pattern from using global modules.
Why is that bad?
Having any state globally can cause that state to be corrupted.
How do you avoid it?
You can't. You can minimize the amount of global variables though. To avoid having global state completely you can use asynchronous loaders. These define a few global variables for you that you can then use.
When wanting to create persistent custom-objects, why is the Module Pattern (below) bad?
There is nothing wrong with the module pattern. The problem is storing your module globally. The issue is having global namespaces.
Design patterns let you encapsulate complex logic, is encapsulation suddenly bad simply because we’re writing in JavaScript?
Now that I've cleared up the intent of the comment this question isn't really relevant
Or...is this commenter simply wrong?
The comment was poorly phrased at best. I objected to global namespaces rather than modules, but did not state this properly.
The alternative is using asynchronous loaders and defining modules. These can be narrowed down to two global variables. define and require.
require = function(moduleName, callback)
This will get a module and then return it to you.
define = function(obj)
this defines a module.
The concept here is that you multi file code as follows:
// main.js
require([
"foo.js",
"bar.js",
...,
], function(foo, bar, ...) {
// do stuff
});
//foo.js
(function() {
var namespace = modulePatternCode;
...
define(namespace):
})();
//bar.js
(function() {
var namespace = modulePatternCode;
...
define(namespace):
})();
Your module only "leaks" it's namespace holder so it's pretty acceptable.
Loader example using RequireJS:
Define a utilities module in utils.js:
define(function () {
return {
each: function (iterable, callback) {
// ...
},
map: function (iterable, mapper) {
// ...
}
};
});
Use the above module in another module, say math.js:
define([ "utils" ], function (utils) {
return {
sum: function (numbers) {
var sum = 0;
utils.each(numbers, function (n) {
sum += n;
});
return sum;
},
average: function (numbers) {
return this.sum(numbers) / numbers.length;
}
};
});
And you can use math.js in another file, say main.js:
console.log("About to add 1-3");
require([ "math" ], function (math) {
console.log(math.sum([ 1, 2, 3 ]));
});
You can still have namespaces, and still keep them warm and cozy inside modules:
namespace.js:
define([ "foo", "bar", "moo" ] function (foo, bar, moo) {
return {
foo: foo,
bar: bar,
moo: moo
};
});
Then the rest of the modules can use this namespace during definition:
define([ "namespace" ], function (namespace) {
namespace.foo(42);
});
Or at runtime, in some other module:
define(function () {
return {
initialize: function () {
require([ "namespace" ], function (namespace) {
namespace.foo(42);
});
}
};
});
In the usages above, nothing but define and require are global. Of course, these are just illustrative examples, as there are many different flavors of defining/using modules in RequireJS.

Categories

Resources