I have hard time wrapping my head around how to get this to work so I came to ask the help of the brilliant minds in here.
The thing is, I want to reverse the process of the below equation so that I get X from the given Y and Z.
Z = [ ( X * 30 ) % Y ]
For the use-case, a user inputs number Y and then presses ENTER, the system get's the current server time and then multiplies that by 30. The user will then be given the remainder of the server time in format HHMMssxxx, (hmm, xxx here is the millisecond.. I don't know the format letter for millisecond.. hehe..), divided by Y - that is (X*30) % Y where X is the current server time converted to int.
How can I do this in reverse?
The catch is, X should not be greater than 2359999 -> (23:59:59.999) the maximum time value for a 24-hour clock.
Supposedly I have Z = 32, Y = 400, how can I find X?
I know that it's possible to have multiple answers. Here's what I came up so far but I think this is not very optimal in terms of performance.
function getTimeIDx(rem, codeIndexer) {
var times = [];
for(var i = 0; i < 2400000; i++) {
if((i * 30) % codeIndexer == rem) {
var str = i.toString(),
l = str.length;
if(l < 9)
str = '000000000'.substr(0, 9 - l) + str;
str = str.substr(0, 2) + ':' + str.substr(2, 2) + ':' + str.substr(4, 2) + '.' + str.substr(6);
if(/^(?:[0-1]?\d|2[0-3]):(?:[0-5]?\d):(?:[0-5]+\d)/.test(str))
times.push(str);
}
}
return times;
}
Is there some way to do this more efficiently? Is there something like a inverse modulo?
EDIT:
Updated code to check if the string is a valid time.
You cannot reverse it. Modulo is the remainder from a division operation.
Simplifying your equation. Z = Y % 2
Z is 0 for half of the values and 1 for the rest.
You can not solve for the dividend with just the remainder and the divisor.
Lets fill it into the equation:
32 = ( X * 30 ) % 400
Then this means that X * 30 is a multiple of 400 plus 32:
32
432
832
...
Now we could divide that by 30 to get x. That could be done in js like this:
function* reverse(Z, Y) {
for(let n = 0; ; n++)
yield (Z + Y * n) / 30;
}
Usable as:
for(let X of reverse(32, 400))
console.log(X);
Note that this loop will run forever as there are infinite results. Try it
Related
So I have some numbers x = 320232 y = 2301 z = 12020305. I want to round these numbers off using JavaScript so that they become x = 320000 y = 2300 z = 12000000.
I tried Math.round and Math.floor but turns out that they only work with decimal values like
a = 3.1; Math.round(a); // Outputs 3 and not whole numbers.
So my question is can we round of whole numbers using JavaScript and If yes then how?
Edit: I want it to the round of to the starting 3 digit places as seen in the variables above. Like If there was another variable called c = 423841 It should round off to become c = 424000.
You could work with the logarithm of ten and adjust the digits.
const
format = n => v => {
if (!v) return 0;
const l = Math.floor(Math.log10(Math.abs(v))) - n + 1;
return Math.round(v / 10 ** l) * 10 ** l;
};
console.log([0, -9876, 320232, 2301, 12020305, 123456789].map(format(3)));
The solution is to first calculate how many numbers need to be rounded away, and then use that in a round.
Math.round(1234/100)*100 would round to 1200 so we can use this to round. We then only need to determan what to replace 100 with in this example.
That is that would be a 1 followed by LENGTH - 3 zeros. That number can be calculated as it is 10 to the power of LENGTH - 3, in JS: 10 ** (length - 3).
var x = 320232;
var y = 2301;
var z = 12020305;
function my_round(number){
var org_number = number;
// calculate integer number
var count = 0;
if (number >= 1) ++count;
while (number / 10 >= 1) {
number /= 10;
++count;
}
// length - 3
count = Math.round(count) - 3;
if (count < 0){
count = 0;
}
// 10 to the power of (length - 3)
var helper = 10 ** count;
return Math.round(org_number/helper)*helper;
}
alert(my_round(x));
alert(my_round(y));
alert(my_round(z));
It is not the prettiest code, though I tried to make it explainable code.
This should work:
function roundToNthPlace(input, n) {
let powerOfTen = 10 ** n
return Math.round(input/powerOfTen) * powerOfTen;
}
console.log([320232, 2301,12020305, 423841].map(input => roundToNthPlace(input, 3)));
Output: [320000, 2000, 12020000, 424000]
This is part of a bigger problem I try to solve in an exercise. It looks like this:
x is 10 times more likely to appear than y.
z appears 2x less often than y.
I solved this by calculating a single unit like this:
const x = 100;
const y = 10;
const z = 5;
const unit = 100 / (x + y + z);
unit equals 0.87
So when I do (0.87) + (0.87 * 10) + (0.87 * 5) I get 100%(almost)
Then I generate a random number between 0 and 1.
const randomNumber = Math.random();
function getValue() {
if (randomNumber <= 0.87) {
console.log('x');
} else if (randomNumber > 0.87 && randomNumber < 95.7) {
console.log('y');
} else console.log('z');
}
getValue();
If value<0.87 then I log out x, if value < 0.87+(0.087*10) I log y etc
Can anyone recommend a more logical and elegant way than this?
Your way looks clean for me except the fact that randomNumber > 0.87 is redundant.
if you store the value x, y and z in an array, you can probably write some cleaner code for example:
let prob = [100, 10, 5];
let sum = prob.reduce((a, b) => a + b, 0);
let normalizedProb = prob.map(p => p / sum);
let cummulativeProb = normalizedProb.map((cummulative => p => cummulative += p)(0));
for (let i = 0; i <= 50; i++) {
let r = Math.random();
console.log(cummulativeProb.filter(p => r >= p).length);
}
Also, you may want to read this post for faster implementation (in python though). However, the code will be more complicated for sure.
Since the weights are small integers, you can duplicate the x, y and z in an array, and just pick one random cell of the array:
let choices = "zyyxxxxxxxxxxxxxxxxxxxx";
console.log(choices[Math.floor(Math.random() * 23)]);
Here the magic number 23 is the number of choices, 1+2+20; and Math.floor(Math.random() * 23) is a random integer uniformly at random in range [0, 22] (both bounds included). See also:
Generating random whole numbers in JavaScript in a specific range?
A friend of mine takes a sequence of numbers from 1 to n (where n > 0)
Within that sequence, he chooses two numbers, a and b
He says that the product of a and b should be equal to the sum of all numbers in the sequence, excluding a and b
Given a number n, could you tell me the numbers he excluded from the sequence?
Have found the solution to this Kata from Code Wars but it times out (After 12 seconds) in the editor when I run it; any ideas as too how I should further optimize the nested for loop and or remove it?
function removeNb(n) {
var nArray = [];
var sum = 0;
var answersArray = [];
for (let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
var length = nArray.length;
for (let i = Math.round(n / 2); i < length; i++) {
for (let y = Math.round(n / 2); y < length; y++) {
if (i != y) {
if (i * y === sum - i - y) {
answersArray.push([i, y]);
break;
}
}
}
}
return answersArray;
}
console.log(removeNb(102));
.as-console-wrapper { max-height: 100% !important; top: 0; }
I think there is no reason for calculating the sum after you fill the array, you can do that while filling it.
function removeNb(n) {
let nArray = [];
let sum = 0;
for(let i = 1; i <= n; i++) {
nArray.push(i);
sum += i;
}
}
And since there could be only two numbers a and b as the inputs for the formula a * b = sum - a - b, there could be only one possible value for each of them. So, there's no need to continue the loop when you find them.
if(i*y === sum - i - y) {
answersArray.push([i,y]);
break;
}
I recommend looking at the problem in another way.
You are trying to find two numbers a and b using this formula a * b = sum - a - b.
Why not reduce the formula like this:
a * b + a = sum - b
a ( b + 1 ) = sum - b
a = (sum - b) / ( b + 1 )
Then you only need one for loop that produces the value of b, check if (sum - b) is divisible by ( b + 1 ) and if the division produces a number that is less than n.
for(let i = 1; i <= n; i++) {
let eq1 = sum - i;
let eq2 = i + 1;
if (eq1 % eq2 === 0) {
let a = eq1 / eq2;
if (a < n && a != i) {
return [[a, b], [b, a]];
}
}
}
You can solve this in linear time with two pointers method (page 77 in the book).
In order to gain intuition towards a solution, let's start thinking about this part of your code:
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
...
You already figured out this is the part of your code that is slow. You are trying every combination of i and y, but what if you didn't have to try every single combination?
Let's take a small example to illustrate why you don't have to try every combination.
Suppose n == 10 so we have 1 2 3 4 5 6 7 8 9 10 where sum = 55.
Suppose the first combination we tried was 1*10.
Does it make sense to try 1*9 next? Of course not, since we know that 1*10 < 55-10-1 we know we have to increase our product, not decrease it.
So let's try 2*10. Well, 20 < 55-10-2 so we still have to increase.
3*10==30 < 55-3-10==42
4*10==40 < 55-4-10==41
But then 5*10==50 > 55-5-10==40. Now we know we have to decrease our product. We could either decrease 5 or we could decrease 10, but we already know that there is no solution if we decrease 5 (since we tried that in the previous step). So the only choice is to decrease 10.
5*9==45 > 55-5-9==41. Same thing again: we have to decrease 9.
5*8==40 < 55-5-8==42. And now we have to increase again...
You can think about the above example as having 2 pointers which are initialized to the beginning and end of the sequence. At every step we either
move the left pointer towards right
or move the right pointer towards left
In the beginning the difference between pointers is n-1. At every step the difference between pointers decreases by one. We can stop when the pointers cross each other (and say that no solution can be obtained if one was not found so far). So clearly we can not do more than n computations before arriving at a solution. This is what it means to say that the solution is linear with respect to n; no matter how large n grows, we never do more than n computations. Contrast this to your original solution, where we actually end up doing n^2 computations as n grows large.
Hassan is correct, here is a full solution:
function removeNb (n) {
var a = 1;
var d = 1;
// Calculate the sum of the numbers 1-n without anything removed
var S = 0.5 * n * (2*a + (d *(n-1)));
// For each possible value of b, calculate a if it exists.
var results = [];
for (let numB = a; numB <= n; numB++) {
let eq1 = S - numB;
let eq2 = numB + 1;
if (eq1 % eq2 === 0) {
let numA = eq1 / eq2;
if (numA < n && numA != numB) {
results.push([numA, numB]);
results.push([numB, numA]);
}
}
}
return results;
}
In case it's of interest, CY Aries pointed this out:
ab + a + b = n(n + 1)/2
add 1 to both sides
ab + a + b + 1 = (n^2 + n + 2) / 2
(a + 1)(b + 1) = (n^2 + n + 2) / 2
so we're looking for factors of (n^2 + n + 2) / 2 and have some indication about the least size of the factor. This doesn't necessarily imply a great improvement in complexity for the actual search but still it's kind of cool.
This is part comment, part answer.
In engineering terms, the original function posted is using "brute force" to solve the problem, iterating every (or more than needed) possible combinations. The number of iterations is n is large - if you did all possible it would be
n * (n-1) = bazillio n
Less is More
So lets look at things that can be optimized, first some minor things, I'm a little confused about the first for loop and nArray:
// OP's code
for(let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
??? You don't really use nArray for anything? Length is just n .. am I so sleep deprived I'm missing something? And while you can sum a consecutive sequence of integers 1-n by using a for loop, there is a direct and easy way that avoids a loop:
sum = ( n + 1 ) * n * 0.5 ;
THE LOOPS
// OP's loops, not optimized
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
if(i != y) {
if(i*y === sum - i - y) {
Optimization Considerations:
I see you're on the right track in a way, cutting the starting i, y values in half since the factors . But you're iterating both of them in the same direction : UP. And also, the lower numbers look like they can go a little below half of n (perhaps not because the sequence start at 1, I haven't confirmed that, but it seems the case).
Plus we want to avoid division every time we start an instantiation of the loop (i.e set the variable once, and also we're going to change it). And finally, with the IF statements, i and y will never be equal to each other the way we're going to create the loops, so that's a conditional that can vanish.
But the more important thing is the direction of transversing the loops. The smaller factor low is probably going to be close to the lowest loop value (about half of n) and the larger factor hi is probably going to be near the value of n. If we has some solid math theory that said something like "hi will never be less than 0.75n" then we could make a couple mods to take advantage of that knowledge.
The way the loops are show below, they break and iterate before the hi and low loops meet.
Moreover, it doesn't matter which loop picks the lower or higher number, so we can use this to shorten the inner loop as number pairs are tested, making the loop smaller each time. We don't want to waste time checking the same pair of numbers more than once! The lower factor's loop will start a little below half of n and go up, and the higher factor's loop will start at n and go down.
// Code Fragment, more optimized:
let nHi = n;
let low = Math.trunc( n * 0.49 );
let sum = ( n + 1 ) * n * 0.5 ;
// While Loop for the outside (incrementing) loop
while( low < nHi ) {
// FOR loop for the inside decrementing loop
for(let hi = nHi; hi > low; hi--) {
// If we're higher than the sum, we exit, decrement.
if( hi * low + hi + low > sum ) {
continue;
}
// If we're equal, then we're DONE and we write to array.
else if( hi * low + hi + low === sum) {
answersArray.push([hi, low]);
low = nHi; // Note this is if we want to end once finding one pair
break; // If you want to find ALL pairs for large numbers then replace these low = nHi; with low++;
}
// And if not, we increment the low counter and restart the hi loop from the top.
else {
low++;
break;
}
} // close for
} // close while
Tutorial:
So we set the few variables. Note that low is set slightly less than half of n, as larger numbers look like they could be a few points less. Also, we don't round, we truncate, which is essentially "always rounding down", and is slightly better for performance, (though it dosenit matter in this instance with just the single assignment).
The while loop starts at the lowest value and increments, potentially all the way up to n-1. The hi FOR loop starts at n (copied to nHi), and then decrements until the factor are found OR it intercepts at low + 1.
The conditionals:
First IF: If we're higher than the sum, we exit, decrement, and continue at a lower value for the hi factor.
ELSE IF: If we are EQUAL, then we're done, and break for lunch. We set low = nHi so that when we break out of the FOR loop, we will also exit the WHILE loop.
ELSE: If we get here it's because we're less than the sum, so we need to increment the while loop and reset the hi FOR loop to start again from n (nHi).
I'll try to ask as clearly as possible, but please comment if some part is not clear to you.
I'm trying to develop a formula to determine the position of an element based on that element's value in a sequence. More specifically, I am using JavaScript to split a string of this nature: c-c c-c-c c into an array and iterate over that array using an interval of 2i to extract the c values. For example, let's say my string is as previously posted (6 c values in length). I wish to place these c values in the following manner where the number refers to the value of i in my loop (I prepended an extra 0 to make it symmetrical due to the 10):
00 ## 02
##
06 ## 04
##
08 ## 10
I'm trying to find a pattern/formula using the value of i which will result in the above positioning. For simplicity's sake, let's assume an x,y coordinate system such that the position of the c value at 00 is (0,0), 02 is (1,0), 04 is (1,1), 06 is (0,1), 08 is (0,2), and 10 is (1,2).
Can anyone help in developing a pattern/formula/algorithm to determine the positioning using i values? I'm trying not to have to write (in this example) six different if statements.
Using your x,y coordinate system:
y = Math.floor(i / 2);
x = y % 2 == 0 ? i % 2 : (i + 1) % 2;
Or if you want it more concise (but very unclear):
y = Math.floor(i / 2);
x = (i + y % 2) % 2;
The above code is based on the assumption that the code is something like this:
for (var i = 0; i < theString.length / 2; i++) {
var character = theString.charAt(2 * i);
// work out the coordinates
}
If the code is more like this:
for (var i = 0; i < theString.length; i += 2) {
var character = theString.charAt(i);
// work out the coordinates
}
Then we need to do modify it a bit to be like this:
j = i / 2;
y = Math.floor(j / 2);
x = y % 2 == 0 ? j % 2 : (j + 1) % 2;
Or if you want it more concise (but very unclear):
j = i / 2;
y = Math.floor(j / 2);
x = (j + y % 2) % 2;
Lets say I have a list of numbers in the following form(Ignore the | they are there for formating help).
00|00|xx
00|xx|00
xx|00|00
etc.
Rules: XX can be any number between 1 and 50. No XX values can be identical.
Now I select a random set of numbers(no duplicates) from a list qualifying the above format, and randomly add and subtract them. For example
000011 - 002400 - 230000 = -232389
How can I determine the original numbers and if they were added or subtracted solely from -232389? I'm stumped.
Thanks!
EDIT:
I was looking for a function so I ended up having to make one. Its just a proof of concept function so variables names are ugly http://jsfiddle.net/jPW8A/.
There are bugs in the following implementation, and it fails to work in a dozen of scenarios. Check the selected answer below.
function reverse_add_subtract(num){
var nums = [];
while(num != 0){
var str = num.toString(),
L = Math.abs(num).toString().length,
MA = str.match(/^(-?[0-9]?[0-9])([0-9][0-9])([0-9][0-9])*$/);
if(MA){
var num1 = MA[1],
num2 = MA[2];
}else{
var num1 = num,
num2 = 0;
}
if(L%2)L++;
if( num2 > 50){
if(num < 0) num1--;
else num1++;
}
nums.push(num1);
var add = parseInt(num1 + Array(--L).join(0),10);
num = (num-add);
}
return nums;
}
reverse_add_subtract(-122436);
First note that each xx group is constrained from [1, 50). This implies that each associated pair in the number that is in the range [50, 99) is really 100 - xx and this means that it "borrowed from" the group to the left. (It also means that there is only one set of normalized numbers and one solution, if any.)
So given the input 23|23|89 (the initial xx spots from -232389), normalize it -- that is, starting from the right, if the value is >= 50, get 100 - value and carry the 100 rightward (must balance). Example: (23 * 100) + 89 = 2300 * 89 = 2400 - 11 = 2389. And example that shows that it doesn't matter if it's negative as the only things that change is the signs: (-23 * 100) - 89 = -2300 - 89 = -2400 + 11 = -2389
(Notes: Remember, 1 is added to the 23 group to make it 24: the sign of the groups is not actually considered in this step, the math is just to show an example that it's okay to do! It may be possible to use this step to determine the sign and avoid extra math below, but this solution just tries to find the candidate numbers at this step. If there are any repeats of the number groups after this step then there is no solution; otherwise a solution exists.)
The candidate numbers after the normalization are then 23|24|11 (let's say this is aa|bb|cc, for below). All the xx values are now known and it is just a matter of finding the combination such that e * (aa * 10000) + f * (bb * 100) + g * (cc * 1) = -232389. The values aa, bb, cc are known from above and e, f, and g will be either 1 or -1, respectively.
Solution Warning: A method of finding the addition or subtraction given the determined numbers (determined above) is provided below the horizontal separator. Take a break and reflect on the above sections before deciding if the extra "hints" are required.
This can then be solved by utilizing the fact that all the xx groups are not dependent after the normalization. (At each step, try to make the input number for the next step approach zero.)
Example:
-232389 + (23 * 10000) = -2389 (e is -1 because that undoes the + we just did)
-2389 + (24 * 100) = 11 (likewise, f is -1)
11 - (11 * 1) = 0 (0 = win! g is 1 and solution is (-1 * 23 * 10000) + (-1 * 24 * 100) + (1 * 11 * 1) = -232389)
Happy homeworking.
First, your math is wrong. Your leading zeros are converting the first two numbers to octal. If that is the intent, the rest of this post doesn't exactly apply but may be able to be adapted.
11-2400-230000 = -232389
Now the last number is easy, it's always the first two digits, 23 in this case. Remove that:
-232389 + 230000 = -2389
Your 2nd number is the next 100 below this, -2400 in this case. And your final number is simply:
-2389 + 2400 = 11
Aww! Someone posted an answer saying "brute force it" that I was about to respond to with:
function find(num){for(var i=1;i<50;i++){for(var o1=0;o1<2;o1++){for(var j=1;j<50;j++){for(var o2=0;o2<2;o2++){for(var k=1;k<50;k++){var eq;if(eval(eq=(i+(o1?'+':'-')+j+'00'+(o2?'+':'-')+k+'0000'))==num){ return eq; }}}}}}}
they deleted it... :(
It was going to go in the comment, but here's a cleaner format:
function find(num){
for(var i=1;i<50;i++){
for(var o1=0;o1<2;o1++){
for(var j=1;j<50;j++){
for(var o2=0;o2<2;o2++){
for(var k=1;k<50;k++){
var eq;
if(eval(eq=(i+(o1?'+':'-')+j+'00'+(o2?'+':'-')+k+'0000'))==num){ return eq; }
}
}
}
}
}
}