Find four coordinates of the rectangle after the rotation and translation - javascript

I need to adapt the algorithm (or find the formula) to work in all three dimensions to find the new four coordinates. In the example i've obtained the new width and height of a transformed (rotate and perspective), but i don't know how to extract the angle and the new coordinates.
var x = Math.cos(angle) * origy;
var z = Math.sin(angle) * origy;
return x * p / (p + z);

Related

Converting an equirectangular depth map into 3d point cloud

I have a 2D equirectangular depth map that is a 1024 x 512 array of floats, each ranging between 0 to 1. Here example (truncated to grayscale):
I want to convert it to a set of 3D points but I am having trouble finding the right formula to do so - it's sort of close - pseudocode here (using a vec3() library):
for(var y = 0; y < array_height; ++y) {
var lat = (y / array_height) * 180.0 - 90.0;
var rho = Math.cos(lat * Math.PI / 180.0);
for(var x = 0; x < array_width; ++x) {
var lng = (x / array_width) * 360.0 - 180.0;
var pos = new vec3();
pos.x = (r * Math.cos(lng * Math.PI / 180.0));
pos.y = (Math.sin(lat * Math.PI / 180.0));
pos.z = (r * Math.sin(lng * Math.PI / 180.0));
pos.norm();
var depth = parseFloat(depth[(y * array_width) + x] / 255);
pos.multiply(depth);
// at this point I can plot pos as an X, Y, Z point
}
}
What I end up with isn't quite right and I can't tell why not. I am certain the data is correct. Can anyone suggest what I am doing wrong.
Thank you.
Molly.
Well looks like the texture is half-sphere in spherical coordinates:
x axis is longitude angle a <0,180> [deg]
y axis is latitude angle b <-45,+45> [deg]
intensity is radius r <0,1> [-]
So for each pixel simply:
linearly convert x,y to a,b
in degrees:
a = x*180 / (width -1)
b = -45 + ( y* 90 / (height-1) )
or in radians:
a = x*M_PI / (width -1)
b = -0.25*M_PI + ( 0.5*y*M_PI / (height-1) )
apply spherical to cartesian conversion
x=r*cos(a)*cos(b);
y=r*sin(a)*cos(b);
z=r* sin(b);
Looks like you have wrongly coded this conversion as latitude angle should be in all x,y,z not just y !!! Also you should not normalize the resulting position that would corrupt the shape !!!
store point into point cloud.
When I put all together in VCL/C++ (sorry do not code in javascript):
List<double> pnt; // 3D point list x0,y0,z0,x1,y1,z1,...
void compute()
{
int x,y,xs,ys; // texture positiona and size
double a,b,r,da,db; // spherical positiona and angle steps
double xx,yy,zz; // 3D point
DWORD *p; // texture pixel access
// load and prepare BMP texture
Graphics::TBitmap *bmp=new Graphics::TBitmap;
bmp->LoadFromFile("map.bmp");
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
xs=bmp->Width;
ys=bmp->Height;
/*
// 360x180 deg
da=2.0*M_PI/double(xs-1);
db=1.0*M_PI/double(ys-1);
b=-0.5*M_PI;
*/
// 180x90 deg
da=1.0*M_PI/double(xs-1);
db=0.5*M_PI/double(ys-1);
b=-0.25*M_PI;
// proces all its pixels
pnt.num=0;
for ( y=0; y<ys; y++,b+=db)
for (p=(DWORD*)bmp->ScanLine[y],a=0.0,x=0; x<xs; x++,a+=da)
{
// pixel access
r=DWORD(p[x]&255); // obtain intensity from texture <0..255>
r/=255.0; // normalize to <0..1>
// convert to 3D
xx=r*cos(a)*cos(b);
yy=r*sin(a)*cos(b);
zz=r* sin(b);
// store to pointcloud
pnt.add(xx);
pnt.add(yy);
pnt.add(zz);
}
// clean up
delete bmp;
}
Here preview for 180x90 deg:
and preview for 360x180 deg:
Not sure which one is correct (as I do not have any context to your map) but the first option looks more correct to me ...
In case its the second just use different numbers (doubled) for the interpolation in bullet #1
Also if you want to remove the background just ignore r==1 pixels:
simply by testing the intensity to max value (before normalization) in my case by adding this line:
if (r==255) continue;
after this one
r=DWORD(p[x]&255);
In your case (you have <0..1> already) you should test r>=0.9999 or something like that instead.

HTML5 Canvas Grid Tilt [duplicate]

I was trying to do a perspective grid on my canvas and I've changed the function from another website with this result:
function keystoneAndDisplayImage(ctx, img, x, y, pixelHeight, scalingFactor) {
var h = img.height,
w = img.width,
numSlices = Math.abs(pixelHeight),
sliceHeight = h / numSlices,
polarity = (pixelHeight > 0) ? 1 : -1,
heightScale = Math.abs(pixelHeight) / h,
widthScale = (1 - scalingFactor) / numSlices;
for(var n = 0; n < numSlices; n++) {
var sy = sliceHeight * n,
sx = 0,
sHeight = sliceHeight,
sWidth = w;
var dy = y + (sliceHeight * n * heightScale * polarity),
dx = x + ((w * widthScale * n) / 2),
dHeight = sliceHeight * heightScale,
dWidth = w * (1 - (widthScale * n));
ctx.drawImage(img, sx, sy, sWidth, sHeight,
dx, dy, dWidth, dHeight);
}
}
It creates almost-good perspective grid, but it isn't scaling the Height, so every square has got the same height. Here's a working jsFiddle and how it should look like, just below the canvas. I can't think of any math formula to distort the height in proportion to the "perspective distance" (top).
I hope you understand. Sorry for language errors. Any help would be greatly appreciatedRegards
There is sadly no proper way besides using a 3D approach. But luckily it is not so complicated.
The following will produce a grid that is rotatable by the X axis (as in your picture) so we only need to focus on that axis.
To understand what goes on: We define the grid in Cartesian coordinate space. Fancy word for saying we are defining our points as vectors and not absolute coordinates. That is to say one grid cell can go from 0,0 to 1,1 instead of for example 10,20 to 45, 45 just to take some numbers.
At the projection stage we project these Cartesian coordinates into our screen coordinates.
The result will be like this:
ONLINE DEMO
Ok, lets dive into it - first we set up some variables that we need for projection etc:
fov = 512, /// Field of view kind of the lense, smaller values = spheric
viewDist = 22, /// view distance, higher values = further away
w = ez.width / 2, /// center of screen
h = ez.height / 2,
angle = -27, /// grid angle
i, p1, p2, /// counter and two points (corners)
grid = 10; /// grid size in Cartesian
To adjust the grid we don't adjust the loops (see below) but alter the fov and viewDist as well as modifying the grid to increase or decrease the number of cells.
Lets say you want a more extreme view - by setting fov to 128 and viewDist to 5 you will get this result using the same grid and angle:
The "magic" function doing all the math is as follows:
function rotateX(x, y) {
var rd, ca, sa, ry, rz, f;
rd = angle * Math.PI / 180; /// convert angle into radians
ca = Math.cos(rd);
sa = Math.sin(rd);
ry = y * ca; /// convert y value as we are rotating
rz = y * sa; /// only around x. Z will also change
/// Project the new coords into screen coords
f = fov / (viewDist + rz);
x = x * f + w;
y = ry * f + h;
return [x, y];
}
And that's it. Worth to mention is that it is the combination of the new Y and Z that makes the lines smaller at the top (at this angle).
Now we can create a grid in Cartesian space like this and rotate those points directly into screen coordinate space:
/// create vertical lines
for(i = -grid; i <= grid; i++) {
p1 = rotateX(i, -grid);
p2 = rotateX(i, grid);
ez.strokeLine(p1[0], p1[1], p2[0], p2[1]); //from easyCanvasJS, see demo
}
/// create horizontal lines
for(i = -grid; i <= grid; i++) {
p1 = rotateX(-grid, i);
p2 = rotateX(grid, i);
ez.strokeLine(p1[0], p1[1], p2[0], p2[1]);
}
Also notice that position 0,0 is center of screen. This is why we use negative values to get out on the left side or upwards. You can see that the two center lines are straight lines.
And that's all there is to it. To color a cell you simply select the Cartesian coordinate and then convert it by calling rotateX() and you will have the coordinates you need for the corners.
For example - a random cell number is picked (between -10 and 10 on both X and Y axis):
c1 = rotateX(cx, cy); /// upper left corner
c2 = rotateX(cx + 1, cy); /// upper right corner
c3 = rotateX(cx + 1, cy + 1); /// bottom right corner
c4 = rotateX(cx, cy + 1); /// bottom left corner
/// draw a polygon between the points
ctx.beginPath();
ctx.moveTo(c1[0], c1[1]);
ctx.lineTo(c2[0], c2[1]);
ctx.lineTo(c3[0], c3[1]);
ctx.lineTo(c4[0], c4[1]);
ctx.closePath();
/// fill the polygon
ctx.fillStyle = 'rgb(200,0,0)';
ctx.fill();
An animated version that can help see what goes on.

Rotating canvas around a point and getting new x,y offest

I am writing a multitouch jigsaw puzzle using html5 canvas in which you can rotate the pieces around a point. Each piece has their own canvas the size of their bounding box. When the rotation occurs, the canvas size must change, which I am able to calculate and is working. What I can't figure out, is how to find the new x,y offsets if I am to have this appear to be rotating around the pivot (first touch point).
Here is an image to better explain what I'm trying to achieve. Note the pivot point is not always the center, otherwise I could just halve the difference between the new bounds and the old.
So I know the original x, y, width, height, rotation angle, new bounds(rotatedWidth, rotatedHeight), and the pivot X,Y relating to original object. What I can't figure out how to get is the x/y offset for the new bounds (to make it appear that the object rotated around the pivot point)
Thanks in advance!
First we need to find the distance from pivot point to the corner.
Then calculate the angle between pivot and corner
Then calculate the absolute angle based on previous angle + new angle.
And finally calculate the new corner.
Snapshot from demo below showing a line from pivot to corner.
The red dot is calculated while the rectangle is rotated using
translations.
Here is an example using an absolute angle, but you can easily convert this into converting the difference between old and new angle for example. I kept the angles as degrees rather than radians for simplicity.
The demo first uses canvas' internal translation and rotation to rotate the rectangle. Then we use pure math to get to the same point as evidence that we have calculated the correct new x and y point for corner.
/// find distance from pivot to corner
diffX = rect[0] - mx; /// mx/my = center of rectangle (in demo of canvas)
diffY = rect[1] - my;
dist = Math.sqrt(diffX * diffX + diffY * diffY); /// Pythagoras
/// find angle from pivot to corner
ca = Math.atan2(diffY, diffX) * 180 / Math.PI; /// convert to degrees for demo
/// get new angle based on old + current delta angle
na = ((ca + angle) % 360) * Math.PI / 180; /// convert to radians for function
/// get new x and y and round it off to integer
x = (mx + dist * Math.cos(na) + 0.5)|0;
y = (my + dist * Math.sin(na) + 0.5)|0;
Initially you can verify the printed x and y by seeing that the they are exact the same value as the initial corner defined for the rectangle (50, 100).
UPDATE
It seems as I missed the word in: offset for the new bounds... sorry about that, but what you can do instead is to calculate the distance to each corner instead.
That will give you the outer limits of the bound and you just "mix and match" the corner base on those distance values using min and max.
New Live demo here
The new parts consist of a function that will give you the x and y of a corner:
///mx, my = pivot, cx, cy = corner, angle in degrees
function getPoint(mx, my, cx, cy, angle) {
var x, y, dist, diffX, diffY, ca, na;
/// get distance from center to point
diffX = cx - mx;
diffY = cy - my;
dist = Math.sqrt(diffX * diffX + diffY * diffY);
/// find angle from pivot to corner
ca = Math.atan2(diffY, diffX) * 180 / Math.PI;
/// get new angle based on old + current delta angle
na = ((ca + angle) % 360) * Math.PI / 180;
/// get new x and y and round it off to integer
x = (mx + dist * Math.cos(na) + 0.5)|0;
y = (my + dist * Math.sin(na) + 0.5)|0;
return {x:x, y:y};
}
Now it's just to run the function for each corner and then do a min/max to find the bounds:
/// offsets
c2 = getPoint(mx, my, rect[0], rect[1], angle);
c2 = getPoint(mx, my, rect[0] + rect[2], rect[1], angle);
c3 = getPoint(mx, my, rect[0] + rect[2], rect[1] + rect[3], angle);
c4 = getPoint(mx, my, rect[0], rect[1] + rect[3], angle);
/// bounds
bx1 = Math.min(c1.x, c2.x, c3.x, c4.x);
by1 = Math.min(c1.y, c2.y, c3.y, c4.y);
bx2 = Math.max(c1.x, c2.x, c3.x, c4.x);
by2 = Math.max(c1.y, c2.y, c3.y, c4.y);
to rotate around the centre point of the canvas you can use this function:
function rotate(context, rotation, canvasWidth, canvasHeight) {
// Move registration point to the center of the canvas
context.translate(canvasWidth / 2, canvasHeight/ 2);
// Rotate 1 degree
context.rotate((rotation * Math.PI) / 180);
// Move registration point back to the top left corner of canvas
context.translate(-canvasWidth / 2, -canvasHeight/ 2);
}
Here is the way that worked best for me. First I calculate what is the new width and height of that image, then I translate it by half of that amount, then I apply the rotation and finally I go back by the original width and height amount to re center the image.
var canvas = document.getElementById("canvas")
const ctx = canvas.getContext('2d')
drawRectangle(30,30,40,40,30,"black")
function drawRectangle(x,y,width,height, angle,color) {
drawRotated(x,y,width,height,angle,ctx =>{
ctx.fillStyle = color
ctx.fillRect(0,0,width,height)
})
}
function drawRotated(x,y,width,height, angle,callback)
{
angle = angle * Math.PI / 180
const newWidth = Math.abs(width * Math.cos(angle)) + Math.abs(height * Math.sin(angle));
const newHeight = Math.abs(width * Math.sin(angle)) + Math.abs(height * Math.cos(angle));
var surface = document.createElement('canvas')
var sctx = surface.getContext('2d')
surface.width = newWidth
surface.height = newHeight
// START debug magenta square
sctx.fillStyle = "magenta"
sctx.fillRect(0,0,newWidth,newHeight)
// END
sctx.translate(newWidth/2,newHeight/2)
sctx.rotate(angle)
sctx.translate(-width/2,-height/2)
callback(sctx)
ctx.drawImage(surface,x-newWidth/2,y-newHeight/2)
}
#canvas{
border:1px solid black
}
<canvas id="canvas">
</canvas>

Projecting points along the surface on a sphere into 2D

I have a number of objects that I am rendering in HTML/CSS/JavaScript. The objects all sit on the surface of an invisible sphere with radius R.
Additionally, the interaction with the user allows this invisible sphere to be rotated arbitrarily.
The obvious solution is spherical co-ordinates assigned to the objects (Theta, Phi, and fixed Radius), which is the converted to Cartesian 3D co-ordinates, and then I can either just drop the depth (Z), or apply some fancy perspective. I will worry about perspective later...
Since I'm working with graphics, X/Y is horizontal/vertical respectively, and Z is depth where +ve is sticking out of the screen and -ve is inside the monitor.
I have a JavaScript array of objects called objects[], each of which has a Theta and Phi. I assume that Theta is rotation about the Y axis, and Phi is rotation about the X axis, such that at Phi = 0 and Theta = 0, we are at (X,Y,Z) = (0,0,R);
Since I'm rotating the invisible sphere, I don't want to have to change the Theta and Phi of each individual objects, which would also just add to numerical instability. Instead, I store a global Theta and Phi which is associated with the rotation of the sphere itself.
Hence, the "effective" Theta and Phi of the points are the Theta and Phi of the points plus the global Theta and Phi.
According to Wikipedia, WolframAlpha, MathWorld, and many other resources, we can find the Cartesian co-ordinates from spherical co-ordinates in the following way:
z = r * sin(phi) * cos(theta);
y = r * sin(phi) * sin(theta);
x = r * cos(phi);
(I've swapped Theta and Phi from Wikipedia as I'm using them backwards, and my X/Y/Z co-ordinates are different too).
I'm not sure why, but when I render these objects they don't look right at all. If you imagine a point on the equator of a sphere with Theta = Pi/4, and you rotate the sphere about the Y axis, the point should only move up and down if projected onto 2D and no perspective transformations are used. However, this isn't at all what happens. The points move from the right to the left side of the screen. The whole thing looks all wrong.
Order matters. When you use your equations
z = r * sin(phi) * cos(theta);
y = r * sin(phi) * sin(theta);
x = r * cos(phi);
then you can interpret them as a rotation first by phi about y and second by theta about x (for appropriate choices of angle measurement directions):
(x1, y1, z1) = (r, 0, 0)
(x2, y2, z2) = (x1 * cos(phi) - z1 * sin(phi),
y1,
x1 * sin(phi) + z1 * cos(phi))
= (r * cos(phi), 0, r * sin(phi))
(x3, y3, z3) = (x2,
y2 * cos(-theta) - z2 * sin(-theta),
y2 * sin(-theta) + z2 * cos(-theta))
= (r * cos(phi),
r * sin(phi) * sin(theta),
r * sin(phi) * cos(theta))
When you simply add those angles, you end up with a wrong order: rotating first by phi1then by theta1 then by phi2 and then by theta2 about the different axes is not the same as rotating by phi1 + phi2 first and theta1 + theta2 afterwards. You're changing the order between theta1 and phi2, which breaks your 3D position.
Better use rotation matrices, quaternions, a library (like three.js) which encapsulates this for you, or make sure you properly combine euler angles.

Drawing a custom number of straight lines across 1 point with javascript

I'm trying to develop a small application using html5 and canvas/KineticJS. I'd like to trace a number of rays that start from a 2d point to infinite, just setting a custom angle degree. For example, if I set 90° the app should render four rays (two straight lines, one vertical and one horizontal that meet in my 2d point). If I set 60° I should see 3 straight lines, like an asterisk *
The longest line you'll ever have to draw is the size of the canvas's diagonal:
var r = Math.sqrt(Math.pow(canvas.width, 2) + Math.pow(canvas.height, 2));
Use sin and cos to calculate each of your end points at that radius:
var theta = delta * Math.PI / 180.0;
var dx = r * Math.cos(n * theta);
var dy = r * Math.sin(n * theta);
Then, just draw lines from (x, y) to (x + dx, y + dy). Simples.

Categories

Resources