How do you add arrowheads to lines drawn using canvas? - javascript

I have a function that draws linear plots on a coordinate grid, as illustrated in the following JsFiddle: https://jsfiddle.net/zje14n92/1/
The component of the code that draws the linear plots (as opposed to the axes) is below:
if (canvas1.getContext) {
canvas1.width = x_axis * 2;
canvas1.height = y_axis * 2;
var ctx1 = canvas1.getContext("2d");
ctx1.font = "10px sans-serif";
ctx1.strokeText(' ', x_axis+50, 50);
ctx1.lineWidth = 1;
ctx1.beginPath();
ctx1.strokeStyle = 'black';
x = -x_max;
y = 4*x + 5; // FIRST THING TO CHANGE TO CHANGE EQUATION (MUST USE * FOR MULTIPLICATION)
ctx1.moveTo(offsetX(x), offsetY(y));
while (x < x_max) { // INCLUDE CODE FOR BROKEN LINE IN HERE
x += 0.1;
y = 4*x+5; // SECOND THING TO CHANGE TO CHANGE EQUATION (MUST USE * FOR MULTIPLICATION)
ctx1.lineTo(offsetX(x), offsetY(y));
}
ctx1.stroke();
ctx1.closePath();
I want the linear plots (I already figured out the axes) to end in arrows, but I cannot figure out how to do so. I found the code below in the following JsFiddle (http://jsfiddle.net/m1erickson/Sg7EZ/), but I cannot figure out how to incorporate this into my existing code...or if this is, indeed, how I'm supposed to do it.
var startRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
startRadians+=((this.x2>this.x1)?-90:90)*Math.PI/180;
this.drawArrowhead(ctx,this.x1,this.y1,startRadians);
// draw the ending arrowhead
var endRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
endRadians+=((this.x2>this.x1)?90:-90)*Math.PI/180;
this.drawArrowhead(ctx,this.x2,this.y2,endRadians);
}
Line.prototype.drawArrowhead=function(ctx,x,y,radians){
ctx.save();
ctx.beginPath();
ctx.translate(x,y);
ctx.rotate(radians);
ctx.moveTo(0,0);
ctx.lineTo(5,20);
ctx.lineTo(-5,20);
ctx.closePath();
ctx.restore();
ctx.fill();
}
Is there some sort of simple way to turn the endpoints of lines into arrowheads? Thank you!

You have to find any point(s) where your (infinite) plot line exits the canvas (a rectangle).
It might exit the canvas at 0, 1 or 2 points. If the plot line exits the canvas rectangle at 0 or 1 points you don't need the arrowheads. If the plot line exits the canvas rectangle at 2 points then place arrowheads at both exit points using your arrowhead fiddle.
To test for exit points you can think of the canvas rectangle as 4 lines forming the rectangle. Then test for intersections between the plot line and each of the 4 rectangle-lines.
This script returns any intersection of 2 lines:
// Attribution: http://paulbourke.net/geometry/pointlineplane/
// p0 & p1 are points on a first line
// p2 & p3 are points on a second line
// returns the intersection point (or null if the lines don't intersect)
function line2lineIntersection(p0,p1,p2,p3) {
var unknownA = (p3.x-p2.x) * (p0.y-p2.y) - (p3.y-p2.y) * (p0.x-p2.x);
var unknownB = (p1.x-p0.x) * (p0.y-p2.y) - (p1.y-p0.y) * (p0.x-p2.x);
var denominator = (p3.y-p2.y) * (p1.x-p0.x) - (p3.x-p2.x) * (p1.y-p0.y);
// Test if Coincident
// If the denominator and numerator for the ua and ub are 0
// then the two lines are coincident.
if(unknownA==0 && unknownB==0 && denominator==0){return(null);}
// Test if Parallel
// If the denominator for the equations for ua and ub is 0
// then the two lines are parallel.
if (denominator == 0) return null;
// If the intersection of line segments is required
// then it is only necessary to test if ua and ub lie between 0 and 1.
// Whichever one lies within that range then the corresponding
// line segment contains the intersection point.
// If both lie within the range of 0 to 1 then
// the intersection point is within both line segments.
unknownA /= denominator;
unknownB /= denominator;
var isIntersecting=(unknownA>=0 && unknownA<=1 && unknownB>=0 && unknownB<=1)
if(!isIntersecting){return(null);}
return({
x: p0.x + unknownA * (p1.x-p0.x),
y: p0.y + unknownA * (p1.y-p0.y)
});
}
Find any intersections of the plot line and the 4 canvas rectangle lines:
var exitTop=line2lineIntersection(
{x:0,y:0}, { x:canvas.width, y:0},
yourLinePoint0, yourLinePoint1
);
var exitRight=line2lineIntersection(
{x:canvas.width,y:0}, { x:canvas.width, y:canvas.height},
yourLinePoint0, yourLinePoint1
);
var exitBottom=line2lineIntersection(
{x:0,y:canvas.height}, { x:canvas.width, y:canvas.height},
yourLinePoint0, yourLinePoint1
);
var exitLeft=line2lineIntersection(
{x:0,y:0}, { x:0, y:canvas.height},
yourLinePoint0, yourLinePoint1
);
var intersections=[];
if(exitTop){ intersections.push(exitTop); }
if(exitRight){ intersections.push(exitRight); }
if(exitBottom){ intersections.push(exitBottom); }
if(exitLeft){ intersections.push(exitLeft); }
if(intersections.length==2){
// feed your 2 exit points into your arrow drawing script
}
Then feed your 2 exit points into your arrow drawing script:
// create a new line object
var line=new Line(
intersections[0].x, intersections[0].y,
intersections[1].x, intersections[1].y
);
// draw the line
line.drawWithArrowheads(context);
Example code and a Demo
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
function Line(x1,y1,x2,y2){
this.x1=x1;
this.y1=y1;
this.x2=x2;
this.y2=y2;
}
Line.prototype.drawWithArrowheads=function(){
// arbitrary styling
ctx.strokeStyle="blue";
ctx.fillStyle="blue";
ctx.lineWidth=1;
// draw the line
ctx.beginPath();
ctx.moveTo(this.x1,this.y1);
ctx.lineTo(this.x2,this.y2);
ctx.stroke();
// draw the starting arrowhead
var startRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
startRadians+=((this.x2>this.x1)?-90:90)*Math.PI/180;
this.drawArrowhead(ctx,this.x1,this.y1,startRadians);
// draw the ending arrowhead
var endRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
endRadians+=((this.x2>this.x1)?90:-90)*Math.PI/180;
this.drawArrowhead(ctx,this.x2,this.y2,endRadians);
}
Line.prototype.drawArrowhead=function(ctx,x,y,radians){
ctx.save();
ctx.beginPath();
ctx.translate(x,y);
ctx.rotate(radians);
ctx.moveTo(0,0);
ctx.lineTo(5,20);
ctx.lineTo(-5,20);
ctx.closePath();
ctx.restore();
ctx.fill();
}
////////////////////////////////////
var x0=22.375;
var y0=678.625;
var x1=330.8125;
var y1=-555.125;
var exitTop=line2lineIntersection(
{x:0,y:0}, { x:canvas.width, y:0},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitRight=line2lineIntersection(
{x:canvas.width,y:0}, { x:canvas.width, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitBottom=line2lineIntersection(
{x:0,y:canvas.height}, { x:canvas.width, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitLeft=line2lineIntersection(
{x:0,y:0}, { x:0, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
var intersections=[];
if(exitTop){ intersections.push(exitTop); }
if(exitRight){ intersections.push(exitRight); }
if(exitBottom){ intersections.push(exitBottom); }
if(exitLeft){ intersections.push(exitLeft); }
if(intersections.length==2){
// feed your 2 exit points into your arrow drawing script
for(var i=0;i<intersections.length;i++){
ctx.beginPath();
ctx.arc(intersections[i].x,intersections[i].y,3,0,Math.PI*2);
//ctx.fill();
}
}
// create a new line object
var line=new Line(
intersections[0].x, intersections[0].y,
intersections[1].x, intersections[1].y
);
// draw the line
line.drawWithArrowheads();
// Attribution: http://paulbourke.net/geometry/pointlineplane/
function line2lineIntersection(p0,p1,p2,p3) {
var unknownA = (p3.x-p2.x) * (p0.y-p2.y) - (p3.y-p2.y) * (p0.x-p2.x);
var unknownB = (p1.x-p0.x) * (p0.y-p2.y) - (p1.y-p0.y) * (p0.x-p2.x);
var denominator = (p3.y-p2.y) * (p1.x-p0.x) - (p3.x-p2.x) * (p1.y-p0.y);
// Test if Coincident
// If the denominator and numerator for the ua and ub are 0
// then the two lines are coincident.
if(unknownA==0 && unknownB==0 && denominator==0){return(null);}
// Test if Parallel
// If the denominator for the equations for ua and ub is 0
// then the two lines are parallel.
if (denominator == 0) return null;
// If the intersection of line segments is required
// then it is only necessary to test if ua and ub lie between 0 and 1.
// Whichever one lies within that range then the corresponding
// line segment contains the intersection point.
// If both lie within the range of 0 to 1 then
// the intersection point is within both line segments.
unknownA /= denominator;
unknownB /= denominator;
var isIntersecting=(unknownA>=0 && unknownA<=1 && unknownB>=0 && unknownB<=1)
if(!isIntersecting){return(null);}
return({
x: p0.x + unknownA * (p1.x-p0.x),
y: p0.y + unknownA * (p1.y-p0.y)
});
}
body{ background-color: ivory; }
#canvas{border:1px solid red; margin:0 auto; }
<canvas id="canvas" width=300 height=300></canvas>
[Addition: add answer code into questioner's code]
/////////////
//
function Line(x1,y1,x2,y2){
this.x1=x1;
this.y1=y1;
this.x2=x2;
this.y2=y2;
}
Line.prototype.drawWithArrowheads=function(color){
// arbitrary styling
ctx.strokeStyle=color || "black";
ctx.fillStyle=color || "black";
ctx.lineWidth=1;
// draw the line
ctx.beginPath();
ctx.moveTo(this.x1,this.y1);
ctx.lineTo(this.x2,this.y2);
ctx.stroke();
// draw the starting arrowhead
var startRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
startRadians+=((this.x2>this.x1)?-90:90)*Math.PI/180;
this.drawArrowhead(ctx,this.x1,this.y1,startRadians);
// draw the ending arrowhead
var endRadians=Math.atan((this.y2-this.y1)/(this.x2-this.x1));
endRadians+=((this.x2>this.x1)?90:-90)*Math.PI/180;
this.drawArrowhead(ctx,this.x2,this.y2,endRadians);
}
//
Line.prototype.drawArrowhead=function(ctx,x,y,radians){
ctx.save();
ctx.beginPath();
ctx.translate(x,y);
ctx.rotate(radians);
ctx.moveTo(0,0);
ctx.lineTo(5,20);
ctx.lineTo(-5,20);
ctx.closePath();
ctx.restore();
ctx.fill();
}
/////////////
var x_axis = 175;
var y_axis = 175;
var x_max = 7; // THIS CHANGES RANGE OF X-AXIS
var y_max = 7; // THIS CHANGES RANGE OF Y-AXIS
var x_scale = x_axis / (x_max + 1);
var y_scale = y_axis / (y_max + 1);
var x_offset = x_axis + 0.5; // location on canvas
var y_offset = y_axis + 0.5; // of graph's origin
var canvas1 = document.getElementById("plot");
var ctx1 = canvas1.getContext("2d");
var canvas = document.getElementById("axes");
var ctx = canvas.getContext("2d");
canvas.width = canvas1.width = x_axis * 2;
canvas.height = canvas1.height = y_axis * 2;
drawAxes(ctx);
plotline(-x_max,function(x){return(4*x+5);},'purple');
plotline(-x_max,function(x){return(3*x-1);},'blue');
function drawAxes(ctx) {
ctx.font = "20px";
ctx.font = "14px";
ctx.strokeText('Y', x_axis - 25, 10); //CHANGES LABEL OF Y-AXIS
ctx.strokeText('X', x_axis * 2 - 10, y_axis + 20); //CHANGES LABEL OF X-AXIS
ctx.font = "10px sans-serif";
ctx.lineWidth = 1;
// draw x-axis
ctx.beginPath();
ctx.moveTo(0, y_offset);
ctx.lineTo(x_axis*2, y_offset);
ctx.stroke();
ctx.closePath();
// draw arrow
ctx.beginPath();
ctx.moveTo(10 - 8, y_axis+0.5);
ctx.lineTo(10, y_axis+0.5 - 3);
ctx.lineTo(10, y_axis+0.5 + 3);
ctx.stroke();
ctx.closePath();
ctx.fill();
ctx.beginPath();
ctx.moveTo(x_axis*2+0.5, y_axis+0.5);
ctx.lineTo(x_axis*2+0.5 - 8, y_axis+0.5 - 3);
ctx.lineTo(x_axis*2+0.5 - 8, y_axis+0.5 + 3);
ctx.stroke();
ctx.closePath();
ctx.fill();
// draw x values
j = -x_max;
while (j <= x_max) {
x = j * x_scale;
ctx.strokeStyle = '#aaa';
ctx.beginPath();
ctx.moveTo(x + x_offset, y_offset);
ctx.lineTo(x + x_offset, y_offset + 10);
ctx.stroke();
ctx.closePath();
ctx.strokeStyle = '#666';
ctx.strokeText(j, x + x_offset - 10, y_offset + 20);
j++;
if (j == 0) { j++; }
}
// draw y-axis
ctx.beginPath();
ctx.moveTo(x_offset, 0);
ctx.lineTo(x_offset, y_axis*2);
ctx.stroke();
ctx.closePath();
// draw arrow
ctx.beginPath();
ctx.moveTo(x_axis+0.5, 0.5);
ctx.lineTo(x_axis+0.5 - 3, 0.5 + 8);
ctx.lineTo(x_axis+0.5 + 3, 0.5 + 8);
ctx.stroke();
ctx.closePath();
ctx.fill();
ctx.beginPath();
ctx.moveTo(x_axis+0.5, y_axis*2);
ctx.lineTo(x_axis+0.5 - 3, y_axis*2 -8);
ctx.lineTo(x_axis+0.5 + 3, y_axis*2 - 8);
ctx.stroke();
ctx.closePath();
ctx.fill();
// draw y values
j = -y_max;
while (j <= y_max) {
y = j * y_scale;
ctx.strokeStyle = '#aaa';
ctx.beginPath();
ctx.moveTo(x_offset, y + y_offset);
ctx.lineTo(x_offset - 10, y + y_offset);
ctx.stroke();
ctx.closePath();
ctx.strokeStyle = '#666';
ctx.strokeText(-j, x_offset - 25, y + y_offset + 5);
j++;
if (j == 0) { j++; }
}
}
function offsetX(v) {
return x_offset + (v * x_scale);
}
function offsetY(v) {
return y_offset - (v * y_scale);
}
/////////////////////////
function plotline(x,yFn,strokecolor){
ctx1.font = "10px sans-serif";
ctx1.strokeText(' ', x_axis+50, 50);
ctx1.lineWidth = 1;
ctx1.strokeStyle=strokecolor;
drawLineWithArrowheads(
offsetX(x),
offsetY(yFn(x)),
offsetX(x_max),
offsetY(yFn(x_max)),
strokecolor
);
}
//
function drawLineWithArrowheads(x0,y0,x1,y1,color){
var exitTop=line2lineIntersection(
{x:0,y:0}, { x:canvas.width, y:0},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitRight=line2lineIntersection(
{x:canvas.width,y:0}, { x:canvas.width, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitBottom=line2lineIntersection(
{x:0,y:canvas.height}, { x:canvas.width, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
var exitLeft=line2lineIntersection(
{x:0,y:0}, { x:0, y:canvas.height},
{x:x0,y:y0},{x:x1,y:y1}
);
//
var intersections=[];
if(exitTop){ intersections.push(exitTop); }
if(exitRight){ intersections.push(exitRight); }
if(exitBottom){ intersections.push(exitBottom); }
if(exitLeft){ intersections.push(exitLeft); }
//
if(intersections.length==2){
// create a new line object
var line=new Line(
intersections[0].x, intersections[0].y,
intersections[1].x, intersections[1].y
);
// draw the line
line.drawWithArrowheads(color);
}
}
// Attribution: http://paulbourke.net/geometry/pointlineplane/
function line2lineIntersection(p0,p1,p2,p3) {
var unknownA = (p3.x-p2.x) * (p0.y-p2.y) - (p3.y-p2.y) * (p0.x-p2.x);
var unknownB = (p1.x-p0.x) * (p0.y-p2.y) - (p1.y-p0.y) * (p0.x-p2.x);
var denominator = (p3.y-p2.y) * (p1.x-p0.x) - (p3.x-p2.x) * (p1.y-p0.y);
// Test if Coincident
// If the denominator and numerator for the ua and ub are 0
// then the two lines are coincident.
if(unknownA==0 && unknownB==0 && denominator==0){return(null);}
// Test if Parallel
// If the denominator for the equations for ua and ub is 0
// then the two lines are parallel.
if (denominator == 0) return null;
// If the intersection of line segments is required
// then it is only necessary to test if ua and ub lie between 0 and 1.
// Whichever one lies within that range then the corresponding
// line segment contains the intersection point.
// If both lie within the range of 0 to 1 then
// the intersection point is within both line segments.
unknownA /= denominator;
unknownB /= denominator;
var isIntersecting=(unknownA>=0 && unknownA<=1 && unknownB>=0 && unknownB<=1)
if(!isIntersecting){return(null);}
return({
x: p0.x + unknownA * (p1.x-p0.x),
y: p0.y + unknownA * (p1.y-p0.y)
});
}
body{ background-color: ivory; }
canvas{border:1px solid red; }
canvas{left:0; position: absolute; top: 0; }
<div class="relative">
<canvas id="axes"></canvas>
<canvas id="plot"></canvas>

The last 4 lines of that jsFiddle show the usage:
// create a new line object
var line=new Line(50,50,250,275);
// draw the line
line.drawWithArrowheads(context);
(but you'll also need the definition of Line from the top of the jsFiddle).
Anyway, what the code does is figure out the angle the line is heading and then just draws a triangle at that angle.
It saves state, then
it uses translate to move to the line end, then
it uses rotate to orient the arrowhead, then
it forms the arrowhead path, then
it fills in the path, and finally
it restores the state
by far the trickiest bit is finding the angle to orient the arrowhead.
Since you have a multi-point line, presumably you would just use that last two points for that.

Related

draw arc between 2 lines & draw a curve 2 points

Framework: fabricjs
My first problem is to draw a angle betweens 2 Lines. My code is working but i'm not happy with the result.
My second problem is to draw a curve between 2 Points.
My Code for the first problem.
I have 3 Points:
A , B , C
2 Lines:
AB , BC
With this information i calculate distance points with distance 10.
let angle = this.calcAngle(A,B,C);
let distanceAB = this.calcCornerPoint(A, B, 10);
let distanceBC = this.calcCornerPoint(C, B, 10);
Calc Angle:
calcAngle(A, B, C, final, finalAddon = "°") {
var nx1 = A.x - B.x;
var ny1 = A.y - B.y;
var nx2 = C.x - B.x;
var ny2 = C.y - B.y;
this.lineAngle1 = Math.atan2(ny1, nx1);
this.lineAngle2 = Math.atan2(ny2, nx2);
if (nx1 * ny2 - ny1 * nx2 < 0) {
const t = lineAngle2;
this.lineAngle2 = this.lineAngle1;
this.lineAngle1 = t;
}
// if angle 1 is behind then move ahead
if (lineAngle1 < lineAngle2) {
this.lineAngle1 += Math.PI * 2;
}
}
Than draw a Path with:
this.drawAngleTrapez(distanceAB, distanceBC, B);
drawAngleTrapez(AB, BC, B) {
let points = [AB, BC, B];
let path = "";
if (this.trapezObjs[this.iterator]) {
this.canvas.remove(this.trapezObjs[this.iterator]);
}
path += "M " + Math.round(points[0].x) + " " + Math.round(points[0].y) + "";
for (let i = 1; i < points.length; i++) {
path += " L " + Math.round(points[i].x) + " " + Math.round(points[i].y) + "";
}
this.currentTrapez = this.trapezObjs[this.iterator] = new fabric.Path(path, {
selectable: false,
hasControls: false,
hasBorders: false,
hoverCursor: 'default',
fill: '#ccc',
strokeWidth: this.strokeWidth,
});
this.canvas.add(this.trapezObjs[this.iterator]);
}
And than i draw a Circle:
drawAnglePoint(B,d = 10) {
this.currentCorner = new fabric.Circle({
left: B.x,
top: B.y,
startAngle: this.lineAngle1,
endAngle: this.lineAngle2,
radius: 10,
fill: '#ccc',
selectable: false,
hasControls: false,
hasBorders: false,
hoverCursor: 'default',
});
this.canvas.add(this.currentCorner);
}
But the result ist not beautiful:
And the blue point is not on the end of the line, mabye here also a little fix.
this.startPoint.set({ left: C.x, top: C.y });
Second Problem solved: was an error in my calculation.
The problem is , its not a beautiful curve:
Rather than draw the central 'wedge' as 2 shapes - a triangle and a portion of a circle, you should instead draw it as the 2-sided figure that it is.
Circles are drawn by supplying the origin. Therefore, to draw the blue point on the end of the line, you should specify the same coordinates for the end-point as you do for the circle-centre.
The below code will re-create your first image with the exception of the text.
While I've drawn the swept-angle indicator transparently, ontop of the lines, you'd probably want to change the draw order, colour and opacity.
(I used 0x88/0xFF = 136/255 = 53.3%),
"use strict";
function newEl(tag){return document.createElement(tag)}
function byId(id){return document.getElementById(id)}
class vec2
{
constructor(x,y){this.x = x;this.y = y;}
get x(){ return this._x; }
set x(newVal){ this._x = newVal; }
get y(){ return this._y; }
set y(newVal){ this._y = newVal; }
get length(){return Math.hypot(this.x,this.y);}
set length(len){var invLen = len/this.length; this.timesEquals(invLen);}
add(other){return new vec2(this.x+other.x, this.y+other.y);}
sub(other){return new vec2(this.x-other.x, this.y-other.y);}
plusEquals(other){this.x+=other.x;this.y+=other.y;return this;}
minusEquals(other){this.x-=other.x;this.y-=other.y;return this;}
timesEquals(scalar){this.x*=scalar;this.y*=scalar;return this;}
divByEquals(scalar){this.x/=scalar;this.y/=scalar;return this;}
setTo(other){this.x=other.x;this.y=other.y;}
toString(){return `vec2 {x: ${this.x}, y: ${this.y}}` }
toStringN(n){ return `vec2 {x: ${this.x.toFixed(n)}, y: ${this.y.toFixed(n)}}` }
dotProd(other){return this.x*other.x + this.y*other.y;}
timesEquals(scalar){this.x *= scalar;this.y *= scalar;return this;}
normalize(){let len = this.length;this.x /= len;this.y /= len;return this;}
static clone(other){let result = new vec2(other.x, other.y);return result;}
clone(){return vec2.clone(this);}
};
window.addEventListener('load', onWindowLoaded, false);
function onWindowLoaded(evt)
{
var can = byId('output');
let A = new vec2(172,602), B = new vec2(734,602), C = new vec2(847,194);
myTest(can, [A,B,C]);
}
function circle(canvas, x, y, radius)
{
let ctx = canvas.getContext('2d');
ctx.moveTo(x,y);
ctx.beginPath();
ctx.ellipse(x,y, radius,radius, 0, 0, 2*Math.PI);
ctx.closePath();
ctx.fill();
}
function getAngle(origin, pt)
{
let delta = pt.sub(origin);
let angle = Math.atan2( delta.y, delta.x );
return angle;
}
function myTest(canvas, points)
{
let ctx = canvas.getContext('2d');
// background colour
//
ctx.fillStyle = '#ebedf0';
ctx.fillRect(0,0,canvas.width,canvas.height);
// white square grid
//
//60,33 = intersection of first
//115 = square-size
ctx.strokeStyle = '#FFFFFF';
ctx.lineWidth = 12;
for (let x=60; x<canvas.width; x+=112)
{
ctx.beginPath();
ctx.moveTo(x, 0);
ctx.lineTo(x, canvas.height);
ctx.stroke();
ctx.closePath();
}
for (let y=33; y<canvas.height; y+=112)
{
ctx.beginPath();
ctx.moveTo(0, y);
ctx.lineTo(canvas.width, y);
ctx.stroke();
ctx.closePath();
}
// wedge indicating swept angle
let angle1 = getAngle(points[1], points[2]);
let angle2 = getAngle(points[1], points[0]);
ctx.beginPath();
ctx.moveTo(points[1].x,points[1].y);
ctx.arc(points[1].x,points[1].y, 70, angle1,angle2, true);
ctx.fillStyle = '#cccccc88';
ctx.fill();
console.log(angle1, angle2);
// lines
//
ctx.lineWidth = 9;
ctx.strokeStyle = '#c3874c';
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
ctx.lineTo(points[1].x, points[1].y);
ctx.lineTo(points[2].x, points[2].y);
ctx.stroke();
ctx.closePath();
// points
//
ctx.fillStyle = '#3b89c9';
ctx.beginPath();
points.forEach( function(pt){circle(canvas, pt.x,pt.y, 10);} );
ctx.closePath();
}
canvas
{
zoom: 67%;
}
<canvas id='output' width='996' height='730'></canvas>

html5 canvas triangle with rounded corners

I'm new to HTML5 Canvas and I'm trying to draw a triangle with rounded corners.
I have tried
ctx.lineJoin = "round";
ctx.lineWidth = 20;
but none of them are working.
Here's my code:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
var x = 18 / 2;
var y = 0;
var triangleWidth = 18;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>
Could you help me?
Rounding corners
An invaluable function I use a lot is rounded polygon. It takes a set of 2D points that describe a polygon's vertices and adds arcs to round the corners.
The problem with rounding corners and keeping within the constraint of the polygons area is that you can not always fit a round corner that has a particular radius.
In these cases you can either ignore the corner and leave it as pointy or, you can reduce the rounding radius to fit the corner as best possible.
The following function will resize the corner rounding radius to fit the corner if the corner is too sharp and the lines from the corner not long enough to get the desired radius in.
Note the code has comments that refer to the Maths section below if you want to know what is going on.
roundedPoly(ctx, points, radius)
// ctx is the context to add the path to
// points is a array of points [{x :?, y: ?},...
// radius is the max rounding radius
// this creates a closed polygon.
// To draw you must call between
// ctx.beginPath();
// roundedPoly(ctx, points, radius);
// ctx.stroke();
// ctx.fill();
// as it only adds a path and does not render.
function roundedPoly(ctx, points, radiusAll) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut,radius;
// convert 2 points into vector form, polar form, and normalised
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
radius = radiusAll;
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
// for each point
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
//-----------------------------------------
// Part 1
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA < -1 ? -1 : sinA > 1 ? 1 : sinA);
//-----------------------------------------
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
if(p2.radius !== undefined){
radius = p2.radius;
}else{
radius = radiusAll;
}
//-----------------------------------------
// Part 2
halfAngle = angle / 2;
//-----------------------------------------
//-----------------------------------------
// Part 3
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
//-----------------------------------------
//-----------------------------------------
// Special part A
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
//-----------------------------------------
// Part 4
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
//-----------------------------------------
// Part 5
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
//-----------------------------------------
// Part 6
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
//-----------------------------------------
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
You may wish to add to each point a radius eg {x :10,y:10,radius:20} this will set the max radius for that point. A radius of zero will be no rounding.
The maths
The following illistration shows one of two possibilities, the angle to fit is less than 90deg, the other case (greater than 90) just has a few minor calculation differences (see code).
The corner is defined by the three points in red A, B, and C. The circle radius is r and we need to find the green points F the circle center and D and E which will define the start and end angles of the arc.
First we find the angle between the lines from B,A and B,C this is done by normalising the vectors for both lines and getting the cross product. (Commented as Part 1) We also find the angle of line BC to the line at 90deg to BA as this will help determine which side of the line to put the circle.
Now we have the angle between the lines, we know that half that angle defines the line that the center of the circle will sit F but we do not know how far that point is from B (Commented as Part 2)
There are two right triangles BDF and BEF which are identical. We have the angle at B and we know that the side DF and EF are equal to the radius of the circle r thus we can solve the triangle to get the distance to F from B
For convenience rather than calculate to F is solve for BD (Commented as Part 3) as I will move along the line BC by that distance (Commented as Part 4) then turn 90deg and move up to F (Commented as Part 5) This in the process gives the point D and moving along the line BA to E
We use points D and E and the circle center F (in their abstract form) to calculate the start and end angles of the arc. (done in the arc function part 6)
The rest of the code is concerned with the directions to move along and away from lines and which direction to sweep the arc.
The code section (special part A) uses the lengths of both lines BA and BC and compares them to the distance from BD if that distance is greater than half the line length we know the arc can not fit. I then solve the triangles to find the radius DF if the line BD is half the length of shortest line of BA and BC
Example use.
The snippet is a simple example of the above function in use. Click to add points to the canvas (needs a min of 3 points to create a polygon). You can drag points and see how the corner radius adapts to sharp corners or short lines. More info when snippet is running. To restart rerun the snippet. (there is a lot of extra code that can be ignored)
The corner radius is set to 30.
const ctx = canvas.getContext("2d");
const mouse = {
x: 0,
y: 0,
button: false,
drag: false,
dragStart: false,
dragEnd: false,
dragStartX: 0,
dragStartY: 0
}
function mouseEvents(e) {
mouse.x = e.pageX;
mouse.y = e.pageY;
const lb = mouse.button;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
if (lb !== mouse.button) {
if (mouse.button) {
mouse.drag = true;
mouse.dragStart = true;
mouse.dragStartX = mouse.x;
mouse.dragStartY = mouse.y;
} else {
mouse.drag = false;
mouse.dragEnd = true;
}
}
}
["down", "up", "move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
const pointOnLine = {x:0,y:0};
function distFromLines(x,y,minDist){
var index = -1;
const v1 = {};
const v2 = {};
const v3 = {};
const point = P2(x,y);
eachOf(polygon,(p,i)=>{
const p1 = polygon[(i + 1) % polygon.length];
v1.x = p1.x - p.x;
v1.y = p1.y - p.y;
v2.x = point.x - p.x;
v2.y = point.y - p.y;
const u = (v2.x * v1.x + v2.y * v1.y)/(v1.y * v1.y + v1.x * v1.x);
if(u >= 0 && u <= 1){
v3.x = p.x + v1.x * u;
v3.y = p.y + v1.y * u;
dist = Math.hypot(v3.y - point.y, v3.x - point.x);
if(dist < minDist){
minDist = dist;
index = i;
pointOnLine.x = v3.x;
pointOnLine.y = v3.y;
}
}
})
return index;
}
function roundedPoly(ctx, points, radius) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut;
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA); // warning you should guard by clampling
// to -1 to 1. See function roundedPoly in answer or
// Math.asin(Math.max(-1, Math.min(1, sinA)))
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
halfAngle = angle / 2;
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
const eachOf = (array, callback) => { var i = 0; while (i < array.length && callback(array[i], i++) !== true); };
const P2 = (x = 0, y = 0) => ({x, y});
const polygon = [];
function findClosestPointIndex(x, y, minDist) {
var index = -1;
eachOf(polygon, (p, i) => {
const dist = Math.hypot(x - p.x, y - p.y);
if (dist < minDist) {
minDist = dist;
index = i;
}
});
return index;
}
// short cut vars
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var dragPoint;
var globalTime;
var closestIndex = -1;
var closestLineIndex = -1;
var cursor = "default";
const lineDist = 10;
const pointDist = 20;
var toolTip = "";
// main update function
function update(timer) {
globalTime = timer;
cursor = "crosshair";
toolTip = "";
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if (w !== innerWidth - 4 || h !== innerHeight - 4) {
cw = (w = canvas.width = innerWidth - 4) / 2;
ch = (h = canvas.height = innerHeight - 4) / 2;
} else {
ctx.clearRect(0, 0, w, h);
}
if (mouse.drag) {
if (mouse.dragStart) {
mouse.dragStart = false;
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex === -1){
polygon.push(dragPoint = P2(mouse.x, mouse.y));
}else{
polygon.splice(closestLineIndex+1,0,dragPoint = P2(mouse.x, mouse.y));
}
}else{
dragPoint = polygon[closestIndex];
}
}
dragPoint.x = mouse.x;
dragPoint.y = mouse.y
cursor = "none";
}else{
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex > -1){
toolTip = "Click to cut line and/or drag to move.";
}
}else{
toolTip = "Click drag to move point.";
closestLineIndex = -1;
}
}
ctx.lineWidth = 4;
ctx.fillStyle = "#09F";
ctx.strokeStyle = "#000";
ctx.beginPath();
roundedPoly(ctx, polygon, 30);
ctx.stroke();
ctx.fill();
ctx.beginPath();
ctx.strokeStyle = "red";
ctx.lineWidth = 0.5;
eachOf(polygon, p => ctx.lineTo(p.x,p.y) );
ctx.closePath();
ctx.stroke();
ctx.strokeStyle = "orange";
ctx.lineWidth = 1;
eachOf(polygon, p => ctx.strokeRect(p.x-2,p.y-2,4,4) );
if(closestIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
dragPoint = polygon[closestIndex];
ctx.strokeRect(dragPoint.x-4,dragPoint.y-4,8,8);
cursor = "move";
}else if(closestLineIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
var p = polygon[closestLineIndex];
var p1 = polygon[(closestLineIndex + 1) % polygon.length];
ctx.beginPath();
ctx.lineTo(p.x,p.y);
ctx.lineTo(p1.x,p1.y);
ctx.stroke();
ctx.strokeRect(pointOnLine.x-4,pointOnLine.y-4,8,8);
cursor = "pointer";
}
if(toolTip === "" && polygon.length < 3){
toolTip = "Click to add a corners of a polygon.";
}
canvas.title = toolTip;
canvas.style.cursor = cursor;
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas {
border: 2px solid black;
position: absolute;
top: 0px;
left: 0px;
}
<canvas id="canvas"></canvas>
I started by using #Blindman67 's answer, which works pretty well for basic static shapes.
I ran into the problem that when using the arc approach, having two points right next to each other is very different than having just one point. With two points next to each other, it won't be rounded, even if that is what your eye would expect. This is extra jarring if you are animating the polygon points.
I fixed this by using Bezier curves instead. IMO this is conceptually a little cleaner as well. I just make each corner with a quadratic curve where the control point is where the original corner was. This way, having two points in the same spot is virtually the same as only having one point.
I haven't compared performance but seems like canvas is pretty good at drawing Beziers.
As with #Blindman67 's answer, this doesn't actually draw anything so you will need to call ctx.beginPath() before and ctx.stroke() after.
/**
* Draws a polygon with rounded corners
* #param {CanvasRenderingContext2D} ctx The canvas context
* #param {Array} points A list of `{x, y}` points
* #radius {number} how much to round the corners
*/
function myRoundPolly(ctx, points, radius) {
const distance = (p1, p2) => Math.sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2)
const lerp = (a, b, x) => a + (b - a) * x
const lerp2D = (p1, p2, t) => ({
x: lerp(p1.x, p2.x, t),
y: lerp(p1.y, p2.y, t)
})
const numPoints = points.length
let corners = []
for (let i = 0; i < numPoints; i++) {
let lastPoint = points[i]
let thisPoint = points[(i + 1) % numPoints]
let nextPoint = points[(i + 2) % numPoints]
let lastEdgeLength = distance(lastPoint, thisPoint)
let lastOffsetDistance = Math.min(lastEdgeLength / 2, radius)
let start = lerp2D(
thisPoint,
lastPoint,
lastOffsetDistance / lastEdgeLength
)
let nextEdgeLength = distance(nextPoint, thisPoint)
let nextOffsetDistance = Math.min(nextEdgeLength / 2, radius)
let end = lerp2D(
thisPoint,
nextPoint,
nextOffsetDistance / nextEdgeLength
)
corners.push([start, thisPoint, end])
}
ctx.moveTo(corners[0][0].x, corners[0][0].y)
for (let [start, ctrl, end] of corners) {
ctx.lineTo(start.x, start.y)
ctx.quadraticCurveTo(ctrl.x, ctrl.y, end.x, end.y)
}
ctx.closePath()
}
Styles for joining of lines such as ctx.lineJoin="round" apply to the stroke operation on paths - which is when their width, color, pattern, dash/dotted and similar line style attributes are taken into account.
Line styles do not apply to filling the interior of a path.
So to affect line styles a stroke operation is needed. In the following adaptation of posted code, I've translated canvas output to see the result without cropping, and stroked the triangle's path but not the rectangles below it:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
ctx.translate( 18, 12);
var x = 18 / 2;
var y = 0;
var triangleWidth = 48;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
// stroke the triangle path.
ctx.lineWidth = 3;
ctx.lineJoin = "round";
ctx.strokeStyle = "orange";
ctx.stroke();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>

How to draw herringbone pattern on html canvas

I Have to draw Herringbone pattern on canvas and fill with image
some one please help me I am new to canvas 2d drawing.
I need to draw mixed tiles with cross pattern (Herringbone)
var canvas = this.__canvas = new fabric.Canvas('canvas');
var canvas_objects = canvas._objects;
// create a rectangle with a fill and a different color stroke
var left = 150;
var top = 150;
var x=20;
var y=40;
var rect = new fabric.Rect({
left: left,
top: top,
width: x,
height: y,
angle:45,
fill: 'rgba(255,127,39,1)',
stroke: 'rgba(34,177,76,1)',
strokeWidth:0,
originX:'right',
originY:'top',
centeredRotation: false
});
canvas.add(rect);
for(var i=0;i<15;i++){
var rectangle = fabric.util.object.clone(getLastobject());
if(i%2==0){
rectangle.left = rectangle.oCoords.tr.x;
rectangle.top = rectangle.oCoords.tr.y;
rectangle.originX='right';
rectangle.originY='top';
rectangle.angle =-45;
}else{
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.left = rectangle.oCoords.tl.x;
rectangle.top = rectangle.oCoords.tl.y;
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.originX='left';
rectangle.originY='top';
rectangle.angle =45;
}
//rectangle.angle -90;
canvas.add(rectangle);
}
fabric.log('rectangle: ', canvas.toJSON());
canvas.renderAll();
function getLastobject(){
var last = null;
if(canvas_objects.length !== 0){
last = canvas_objects[canvas_objects.length -1]; //Get last object
}
return last;
}
How to draw this pattern in canvas using svg or 2d,3d method. If any third party library that also Ok for me.
I don't know where to start and how to draw this complex pattern.
some one please help me to draw this pattern with rectangle fill with dynamic color on canvas.
Here is a sample of the output I need: (herringbone pattern)
I tried something similar using fabric.js library here is my JSFiddle
Trippy disco flooring
To get the pattern you need to draw rectangles one horizontal tiled one space left or right for each row down and the same for the vertical rectangle.
The rectangle has an aspect of width 2 time height.
Drawing the pattern is simple.
Rotating is easy as well the harder part is finding where to draw the tiles for the rotation.
To do that I create a inverse matrix of the rotation (it reverses a rotation). I then apply that rotation to the 4 corners of the canvas 0,0, width,0 width,height and 0,height this gives me 4 points in the rotated space that are at the edges of the canvas.
As I draw the tiles from left to right top to bottom I find the min corners for the top left, and the max corners for the bottom right, expand it out a little so I dont miss any pixels and draw the tiles with a transformation set the the rotation.
As I could not workout what angle you wanted it at the function will draw it at any angle. On is animated, the other is at 60deg clockwise.
Warning demo contains flashing content.
Update The flashing was way to out there, so have made a few changes, now colours are a more pleasing blend and have fixed absolute positions, and have tied the tile origin to the mouse position, clicking the mouse button will cycle through some sizes as well.
const ctx = canvas.getContext("2d");
const colours = []
for(let i = 0; i < 1; i += 1/80){
colours.push(`hsl(${Math.floor(i * 360)},${Math.floor((Math.sin(i * Math.PI *4)+1) * 50)}%,${Math.floor(Math.sin(i * Math.PI *8)* 25 + 50)}%)`)
}
const sizes = [0.04,0.08,0.1,0.2];
var currentSize = 0;
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 2;
endX = Math.floor(endX / size) + 2;
startY = Math.floor(startY / size) - 2;
endY = Math.floor(endY / size) + 2;
// draw the pattern
ctx.lineWidth = size * 0.1;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
var colourIndex = 0;
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
if((x + y) % 4 === 0){
colourIndex = Math.floor(Math.abs(Math.sin(x)*size + Math.sin(y) * 20));
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
// Animate it all
var update = true; // flag to indecate something needs updating
function mainLoop(time){
// if window size has changed update canvas to new size
if(canvas.width !== innerWidth || canvas.height !== innerHeight || update){
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width, canvas.height) * sizes[currentSize % sizes.length];
update = false;
}
if(mouse.buttonRaw !== 0){
mouse.buttonRaw = 0;
currentSize += 1;
update = true;
}
// draw the patter
drawPattern(size,mouse,time/2000);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
mouse = (function () {
function preventDefault(e) { e.preventDefault() }
var m; // alias for mouse
var mouse = {
x : 0, y : 0, // mouse position
buttonRaw : 0,
over : false, // true if mouse over the element
buttonOnMasks : [0b1, 0b10, 0b100], // mouse button on masks
buttonOffMasks : [0b110, 0b101, 0b011], // mouse button off masks
bounds : null,
eventNames : "mousemove,mousedown,mouseup,mouseout,mouseover".split(","),
event(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left - scrollX;
m.y = e.pageY - m.bounds.top - scrollY;
if (t === "mousedown") { m.buttonRaw |= m.buttonOnMasks[e.which - 1] }
else if (t === "mouseup") { m.buttonRaw &= m.buttonOffMasks[e.which - 1] }
else if (t === "mouseout") { m.over = false }
else if (t === "mouseover") { m.over = true }
e.preventDefault();
},
start(element) {
if (m.element !== undefined) { m.remove() }
m.element = element === undefined ? document : element;
m.eventNames.forEach(name => document.addEventListener(name, mouse.event) );
document.addEventListener("contextmenu", preventDefault, false);
},
}
m = mouse;
return mouse;
})();
mouse.start(canvas);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
Un-animated version at 60Deg
const ctx = canvas.getContext("2d");
const colours = ["red","green","yellow","orange","blue","cyan","magenta"]
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 4;
endX = Math.floor(endX / size) + 4;
startY = Math.floor(startY / size) - 4;
endY = Math.floor(endY / size) + 4;
// draw the pattern
ctx.lineWidth = 5;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
if((x + y) % 4 === 0){
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
drawPattern(size,origin,Math.PI / 3);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
The best way to approach this is to examine the pattern and analyse its symmetry and how it repeats.
You can look at this several ways. For example, you could rotate the patter 45 degrees so that the tiles are plain orthogonal rectangles. But let's just look at it how it is. I am going to assume you are happy with it with 45deg tiles.
Like the tiles themselves, it turns out the pattern has a 2:1 ratio. If we repeat this pattern horizontally and vertically, we can fill the canvas with the completed pattern.
We can see there are five tiles that overlap with our pattern block. However we don't need to draw them all when we draw each pattern block. We can take advantage of the fact that blocks are repeated, and we can leave the drawing of some tiles to later rows and columns.
Let's assume we are drawing the pattern blocks from left to right and top to bottom. Which tiles do we need to draw, at a minimum, to ensure this pattern block gets completely drawn (taking into account adjacent pattern blocks)?
Since we will be starting at the top left (and moving right and downwards), we'll need to draw tile 2. That's because that tile won't get drawn by either the block below us, or the block to the right of us. The same applies to tile 3.
It turns out those two are all we'll need to draw for each pattern block. Tile 1 and 4 will be drawn when the pattern block below us draws their tile 2 and 3 respectively. Tile 5 will be drawn when the pattern block to the south-east of us draws their tile 1.
We just need to remember that we may need to draw an extra column on the right-hand side, and at the bottom, to ensure those end-of-row and end-of-column pattern blocks get completely drawn.
The last thing to work out is how big our pattern blocks are.
Let's call the short side of the tile a and the long side b. We know that b = 2 * a. And we can work out, using Pythagoras Theorem, that the height of the pattern block will be:
h = sqrt(a^2 + a^2)
= sqrt(2 * a^2)
= sqrt(2) * a
The width of the pattern block we can see will be w = 2 * h.
Now that we've worked out how to draw the pattern, let's implement our algorithm.
const a = 60;
const b = 120;
const h = 50 * Math.sqrt(2);
const w = h * 2;
const h2 = h / 2; // How far tile 1 sticks out to the left of the pattern block
// Set of colours for the tiles
const colours = ["red","cornsilk","black","limegreen","deepskyblue",
"mediumorchid", "lightgrey", "grey"]
const canvas = document.getElementById("herringbone");
const ctx = canvas.getContext("2d");
// Set a universal stroke colour and width
ctx.strokeStyle = "black";
ctx.lineWidth = 4;
// Loop through the pattern block rows
for (var y=0; y < (canvas.height + h); y+=h)
{
// Loop through the pattern block columns
for (var x=0; x < (canvas.width + w); x+=w)
{
// Draw tile "2"
// I'm just going to draw a path for simplicity, rather than
// worrying about drawing a rectangle with rotation and translates
ctx.beginPath();
ctx.moveTo(x - h2, y - h2);
ctx.lineTo(x, y - h);
ctx.lineTo(x + h, y);
ctx.lineTo(x + h2, y + h2);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
// Draw tile "3"
ctx.beginPath();
ctx.moveTo(x + h2, y + h2);
ctx.lineTo(x + w - h2, y - h2);
ctx.lineTo(x + w, y);
ctx.lineTo(x + h, y + h);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
}
}
<canvas id="herringbone" width="500" height="400"></canvas>

Javascript Canvas apply Radial Gradient to Segment?

I am trying to create a shadow system for my 2D Game in a HTML5 Canvas. Right now, I am rendering my shadows like so:
function drawShadows(x, y, width) {
if (shadowSprite == null) {
shadowSprite = document.createElement('canvas');
var tmpCtx = shadowSprite.getContext('2d');
var shadowBlur = 20;
shadowSprite.width = shadowResolution;
shadowSprite.height = shadowResolution;
var grd = tmpCtx.createLinearGradient(-(shadowResolution / 4), 0,
shadowResolution, 0);
grd.addColorStop(0, "rgba(0, 0, 0, 0.1)");
grd.addColorStop(1, "rgba(0, 0, 0, 0)");
tmpCtx.fillStyle = grd;
tmpCtx.shadowBlur = shadowBlur;
tmpCtx.shadowColor = "#000";
tmpCtx.fillRect(0, 0, shadowResolution, shadowResolution);
}
graph.save();
graph.rotate(sun.getDir(x, y));
graph.drawImage(shadowSprite, 0, -(width / 2), sun.getDist(x, y), width);
graph.restore();
}
This renders a cube with a linear gradient that fades from black to alpha 0.
This however does not produce a realistic result, since it will always be a rectangle. Here is an illustration to describe the problem:
Sorry i'm not very artistic. It would not be an issue to draw the trapezoid shape. (Seen in blue). The issue is that I still there to be a gradient. Is it possible to draw a shape like that with a gradient?
The canvas is very flexible. Almost anything is possible. This example draws the light being cast. But it can just as easily be the reverse. Draw the shadows as a gradient.
If you are after realism then instead of rendering a gradient for the lighting (or shadows) use the shape created to set a clipping area and then render a accurate lighting and shadow solution.
With lineTo and gradients you can create any shape and gradient you my wish. Also to get the best results use globalCompositeOperation as they have a large variety of filters.
The demo just shows how to mix a gradient and a shadow map. (Very basic no recursion implemented, and shadows are just approximations.)
var canvas = document.getElementById("canV");
var ctx = canvas.getContext("2d");
var mouse = {
x:0,
y:0,
};
function mouseMove(event){
mouse.x = event.offsetX; mouse.y = event.offsetY;
if(mouse.x === undefined){ mouse.x = event.clientX; mouse.y = event.clientY;}
}
// add mouse controls
canvas.addEventListener('mousemove',mouseMove);
var boundSize = 10000; // a number....
var createImage = function(w,h){ // create an image
var image;
image = document.createElement("canvas");
image.width = w;
image.height = h;
image.ctx = image.getContext("2d");
return image;
}
var directionC = function(x,y,xx,yy){ // this should be inLine but the angles were messing with my head
var a; // so moved it out here
a = Math.atan2(yy - y, xx - x); // for clarity and the health of my sanity
return (a + Math.PI * 2) % (Math.PI * 2); // Dont like negative angles.
}
// Create background image
var back = createImage(20, 20);
back.ctx.fillStyle = "#333";
back.ctx.fillRect(0, 0, 20, 20);
// Create background image
var backLight = createImage(20, 20);
backLight .ctx.fillStyle = "#ACD";
backLight .ctx.fillRect(0, 0, 20, 20);
// create circle image
var circle = createImage(64, 64);
circle.ctx.fillStyle = "red";
circle.ctx.beginPath();
circle.ctx.arc(32, 32, 30, 0, Math.PI * 2);
circle.ctx.fill();
// create some circles semi random
var circles = [];
circles.push({
x : 200 * Math.random(),
y : 200 * Math.random(),
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random() + 200,
y : 200 * Math.random(),
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random() + 200,
y : 200 * Math.random() + 200,
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random(),
y : 200 * Math.random() + 200,
scale : Math.random() * 0.8 + 0.3,
});
// shadows on for each circle;
var shadows = [{},{},{},{}];
var update = function(){
var c, dir, dist, x, y, x1, y1, x2, y2, dir1, dir2, aAdd, i, j, s, s1 ,nextDir, rev, revId;
rev = false; // if inside a circle reverse the rendering.
// set up the gradient at the mouse pos
var g = ctx.createRadialGradient(mouse.x, mouse.y, canvas.width * 1.6, mouse.x, mouse.y, 2);
// do each circle and work out the two shadow lines coming from it.
for(var i = 0; i < circles.length; i++){
c = circles[i];
dir = directionC(mouse.x, mouse.y, c.x, c.y);
dist = Math.hypot(mouse.x - c.x, mouse.y - c.y);
// cludge factor. Could not be bother with the math as the light sourse nears an object
if(dist < 30* c.scale){
rev = true;
revId = i;
}
aAdd = (Math.PI / 2) * (0.5 / (dist - 30 * c.scale));
x1 = Math.cos(dir - (Math.PI / 2 + aAdd)) * 30 * c.scale;
y1 = Math.sin(dir - (Math.PI / 2 + aAdd)) * 30 * c.scale;
x2 = Math.cos(dir + (Math.PI / 2 + aAdd)) * 30 * c.scale;
y2 = Math.sin(dir + (Math.PI / 2 + aAdd)) * 30 * c.scale;
// direction of both shadow lines
dir1 = directionC(mouse.x, mouse.y, c.x + x1, c.y + y1);
dir2 = directionC(mouse.x, mouse.y, c.x + x2, c.y + y2);
// create the shadow object to hold details
shadows[i].dir = dir;
shadows[i].d1 = dir1;
if (dir2 < dir1) { // make sure second line is always greater
dir2 += Math.PI * 2;
}
shadows[i].d2 = dir2;
shadows[i].x1 = (c.x + x1); // set the shadow start pos
shadows[i].y1 = (c.y + y1);
shadows[i].x2 = (c.x + x2); // for both lines
shadows[i].y2 = (c.y + y2);
shadows[i].circle = c; // ref the circle
shadows[i].dist = dist; // set dist from light
shadows[i].branch1 = undefined; //.A very basic tree for shadows that interspet other object
shadows[i].branch2 = undefined; //
shadows[i].branch1Dist = undefined;
shadows[i].branch2Dist = undefined;
shadows[i].active = true; // false if the shadow is in a shadow
shadows[i].id = i;
}
shadows.sort(function(a,b){ // sort by distance from light
return a.dist - b.dist;
});
// cull shdows with in shadows and connect circles with joined shadows
for(i = 0; i < shadows.length; i++){
s = shadows[i];
for(j = i + 1; j < shadows.length; j++){
s1 = shadows[j];
if(s1.d1 > s.d1 && s1.d2 < s.d2){ // if shadow in side another
s1.active = false; // cull it
}else
if(s.d1 > s1.d1 && s.d1 < s1.d2){ // if shodow intercepts going twards light
s1.branch1 = s;
s.branch1Dist = s1.dist - s.dist;
s.active = false;
}else
if(s.d2 > s1.d1 && s.d2 < s1.d2){ // away from light
s.branch2 = s1;
s.branch2Dist = s1.dist - s.dist;
s1.active = false;
}
}
}
// keep it quick so not using filter
// filter culled shadows
var shadowsShort = [];
for (i = 0; i < shadows.length; i++) {
if ((shadows[i].active && !rev) || (rev && shadows[i].id === revId)) { // to much hard work makeng shadow from inside the circles. Was a good idea at the time. But this i just an example after all;
shadowsShort.push(shadows[i])
}
}
// sort shadows in clock wise render order
if(rev){
g.addColorStop(0.3, "rgba(210,210,210,0)");
g.addColorStop(0.6, "rgba(128,128,128,0.5)");
g.addColorStop(1, "rgba(0,0,0,0.9)");
shadowsShort.sort(function(a,b){
return b.dir - a.dir;
});
// clear by drawing background image.
ctx.drawImage(backLight, 0, 0, canvas.width, canvas.height);
}else{
g.addColorStop(0.3, "rgba(0,0,0,0)");
g.addColorStop(0.6, "rgba(128,128,128,0.5)");
g.addColorStop(1, "rgba(215,215,215,0.9)");
shadowsShort.sort(function(a,b){
return a.dir - b.dir;
});
// clear by drawing background image.
ctx.drawImage(back, 0, 0, canvas.width, canvas.height);
}
// begin drawin the light area
ctx.fillStyle = g; // set the gradient as the light
ctx.beginPath();
for(i = 0; i < shadowsShort.length; i++){ // for each shadow move in to the light across the circle and then back out away from the light
s = shadowsShort[i];
x = s.x1 + Math.cos(s.d1) * boundSize;
y = s.y1 + Math.sin(s.d1) * boundSize;
if (i === 0) { // if the start move to..
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
ctx.lineTo(s.x1, s.y1);
if (s.branch1 !== undefined) { // if braching. (NOTE this is not recursive. the correct solution would to math this a function and use recursion to climb in an out)
s = s.branch1;
x = s.x1 + Math.cos(s.d1) * s.branch1Dist;
y = s.y1 + Math.sin(s.d1) * s.branch1Dist;
ctx.lineTo(x, y);
ctx.lineTo(s.x1, s.y1);
}
ctx.lineTo(s.x2, s.y2);
if (s.branch2 !== undefined) {
x = s.x2 + Math.cos(s.d2) * s.branch2Dist;
y = s.y2 + Math.sin(s.d2) * s.branch2Dist;
ctx.lineTo(x, y);
s = s.branch2;
ctx.lineTo(s.x2, s.y2);
}
x = s.x2 + Math.cos(s.d2) * boundSize;
y = s.y2 + Math.sin(s.d2) * boundSize;
ctx.lineTo(x, y);
// now fill in the light between shadows
s1 = shadowsShort[(i + 1) % shadowsShort.length];
nextDir = s1.d1;
if(rev){
if (nextDir > s.d2) {
nextDir -= Math.PI * 2
}
}else{
if (nextDir < s.d2) {
nextDir += Math.PI * 2
}
}
x = Math.cos((nextDir+s.d2)/2) * boundSize + canvas.width / 2;
y = Math.sin((nextDir+s.d2)/2) * boundSize + canvas.height / 2;
ctx.lineTo(x, y);
}
// close the path.
ctx.closePath();
// set the comp to lighten or multiply
if(rev){
ctx.globalCompositeOperation ="multiply";
}else{
ctx.globalCompositeOperation ="lighter";
}
// draw the gradient
ctx.fill()
ctx.globalCompositeOperation ="source-over";
// draw the circles
for (i = 0; i < circles.length; i++) {
c = circles[i];
ctx.drawImage(circle, c.x - 32 * c.scale, c.y - 32 * c.scale, 64 * c.scale, 64 * c.scale);
}
// feed the herbervors.
window.requestAnimationFrame(update);
}
update();
.canC { width:400px; height:400px;}
<canvas class="canC" id="canV" width=400 height=400></canvas>

HTML5 Canvas Pathfinding for an object within a drawn polygon

Good afternoon all,
I come to you with yet another request for a lesson/example/answers. While messing around with a canvas in HTML5, I have learned how to manipulate Depth(Z-Buffer) and several other neat things. However, now I am trying to find a way to perform Pathfinding with the canvas. Most of the examples on the Internet are a little difficult to comprehend for me due to the fact that they are handling pathfinding far differently than I am trying to achieve(Which is that they use tile based pathfinding). Most other examples seem to deal in boxes or rectangles as well.
This is my code that I used as an example to draw a Polygon:
var canvas = document.getElementById('CanvasPath');
var context = canvas.getContext('2d');
// begin custom shape
context.beginPath();
context.moveTo(170, 80);
context.bezierCurveTo(1, 200, 125, 230, 230, 150);
context.bezierCurveTo(250, 180, 320, 200, 340, 200);
context.bezierCurveTo(420, 150, 420, 120, 390, 100);
context.bezierCurveTo(430, 40, 370, 30, 340, 50);
context.bezierCurveTo(320, 5, 250, 20, 250, 50);
context.bezierCurveTo(200, 5, 150, 20, 170, 80);
context.closePath();
context.lineWidth = 2;
context.strokeStyle = 'gray';
context.stroke();
Lets say I have a small box that I want to move around in that Polygon(I really will be creating the polygon with line points rather than Bezier curvers. I just wantd to show an example here) when I click at the goal position I want it to be at... How can I create a pathfinding algorithm that will find its way around and yet not have the bottom points of the box touch outside the polygon? I am assuming I would need to get all the pixels that are in that polygon to create a path from? I am thinking that the Bezier Curves and points may need to be created and pushed from an Array instead and then find the path???
Any suggestions on approach and can you provide an example for how to go about this? Please be gentle... While I have been an experienced scripter and programmer, I have not been one to mess to much with games, or graphics and I am still learning to manipulate the canvas in HTML5. Thanks for your help in advance.
The key part of what you are asking is how to shrink a polygon so that your box can travel along the shrunken polygon without extending outside the original polygon.
The illustration below shows an original black polygon, a shrunken red polygon and a blue traveling box.
Precisely shrinking a polygon
The code to precisely shrink a polygon is quite complex. It involves repositioning the original polygon vertices based on whether each particular vertex forms a convex or concave angle.
Here's example code I derived from Hans Muller's Blog on Webkits Shape-Padding. This example requires that the polygon vertices defined in a clockwise order.
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
var shapePadding = 10;
var dragVertexIndex = null;
var hoverLocation = null;
var polygonVertexRadius = 9;
var polygon, marginPolygon, paddingPolygon;
var polygonVertices = [{x: 143, y: 327}, {x: 80, y: 236}, {x: 151, y: 148}, {x: 454, y: 69}, {x: 560, y: 320}];
var polygon = createPolygon(polygonVertices);
var paddingPolygon = createPaddingPolygon(polygon);
drawAll();
/////////////////////////////////
// Polygon creation and drawing
function drawAll(){
draw(polygon,'black');
draw(paddingPolygon,'red');
}
function draw(p,stroke){
var v=p.vertices;
ctx.beginPath();
ctx.moveTo(v[0].x,v[0].y);
for(var i=0;i<v.length;i++){
ctx.lineTo(v[i].x,v[i].y);
}
ctx.closePath();
ctx.strokeStyle=stroke;
ctx.stroke();
}
function createPolygon(vertices){
var polygon = {vertices: vertices};
var edges = [];
var minX = (vertices.length > 0) ? vertices[0].x : undefined;
var minY = (vertices.length > 0) ? vertices[0].y : undefined;
var maxX = minX;
var maxY = minY;
for (var i = 0; i < polygon.vertices.length; i++) {
vertices[i].label = String(i);
vertices[i].isReflex = isReflexVertex(polygon, i);
var edge = {
vertex1: vertices[i],
vertex2: vertices[(i + 1) % vertices.length],
polygon: polygon,
index: i
};
edge.outwardNormal = outwardEdgeNormal(edge);
edge.inwardNormal = inwardEdgeNormal(edge);
edges.push(edge);
var x = vertices[i].x;
var y = vertices[i].y;
minX = Math.min(x, minX);
minY = Math.min(y, minY);
maxX = Math.max(x, maxX);
maxY = Math.max(y, maxY);
}
polygon.edges = edges;
polygon.minX = minX;
polygon.minY = minY;
polygon.maxX = maxX;
polygon.maxY = maxY;
polygon.closed = true;
return polygon;
}
function createPaddingPolygon(polygon){
var offsetEdges = [];
for (var i = 0; i < polygon.edges.length; i++) {
var edge = polygon.edges[i];
var dx = edge.inwardNormal.x * shapePadding;
var dy = edge.inwardNormal.y * shapePadding;
offsetEdges.push(createOffsetEdge(edge, dx, dy));
}
var vertices = [];
for (var i = 0; i < offsetEdges.length; i++) {
var thisEdge = offsetEdges[i];
var prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length];
var vertex = edgesIntersection(prevEdge, thisEdge);
if (vertex)
vertices.push(vertex);
else {
var arcCenter = polygon.edges[i].vertex1;
appendArc(vertices, arcCenter, shapePadding, prevEdge.vertex2, thisEdge.vertex1, true);
}
}
var paddingPolygon = createPolygon(vertices);
paddingPolygon.offsetEdges = offsetEdges;
return paddingPolygon;
}
//////////////////////
// Support functions
function isReflexVertex(polygon, vertexIndex){
// Assuming that polygon vertices are in clockwise order
var thisVertex = polygon.vertices[vertexIndex];
var nextVertex = polygon.vertices[(vertexIndex + 1) % polygon.vertices.length];
var prevVertex = polygon.vertices[(vertexIndex + polygon.vertices.length - 1) % polygon.vertices.length];
if (leftSide(prevVertex, nextVertex, thisVertex) < 0){return true;} // TBD: return true if thisVertex is inside polygon when thisVertex isn't included
return false;
}
function inwardEdgeNormal(edge){
// Assuming that polygon vertices are in clockwise order
var dx = edge.vertex2.x - edge.vertex1.x;
var dy = edge.vertex2.y - edge.vertex1.y;
var edgeLength = Math.sqrt(dx*dx + dy*dy);
return {x: -dy/edgeLength, y: dx/edgeLength};
}
function outwardEdgeNormal(edge){
var n = inwardEdgeNormal(edge);
return {x: -n.x, y: -n.y};
}
// If the slope of line vertex1,vertex2 greater than the slope of vertex1,p then p is on the left side of vertex1,vertex2 and the return value is > 0.
// If p is colinear with vertex1,vertex2 then return 0, otherwise return a value < 0.
function leftSide(vertex1, vertex2, p){
return ((p.x - vertex1.x) * (vertex2.y - vertex1.y)) - ((vertex2.x - vertex1.x) * (p.y - vertex1.y));
}
function createOffsetEdge(edge, dx, dy){
return {
vertex1: {x: edge.vertex1.x + dx, y: edge.vertex1.y + dy},
vertex2: {x: edge.vertex2.x + dx, y: edge.vertex2.y + dy}
};
}
// based on http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/, edgeA => "line a", edgeB => "line b"
function edgesIntersection(edgeA, edgeB){
var den = (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex2.x - edgeA.vertex1.x) - (edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex2.y - edgeA.vertex1.y);
if (den == 0){return null;} // lines are parallel or conincident
var ua = ((edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
var ub = ((edgeA.vertex2.x - edgeA.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeA.vertex2.y - edgeA.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
if (ua < 0 || ub < 0 || ua > 1 || ub > 1){ return null; }
return {x: edgeA.vertex1.x + ua * (edgeA.vertex2.x - edgeA.vertex1.x), y: edgeA.vertex1.y + ua * (edgeA.vertex2.y - edgeA.vertex1.y)};
}
function appendArc(vertices, center, radius, startVertex, endVertex, isPaddingBoundary){
const twoPI = Math.PI * 2;
var startAngle = Math.atan2(startVertex.y - center.y, startVertex.x - center.x);
var endAngle = Math.atan2(endVertex.y - center.y, endVertex.x - center.x);
if (startAngle < 0)
startAngle += twoPI;
if (endAngle < 0)
endAngle += twoPI;
var arcSegmentCount = 5; // An odd number so that one arc vertex will be eactly arcRadius from center.
var angle = ((startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPI - endAngle));
var angle5 = ((isPaddingBoundary) ? -angle : twoPI - angle) / arcSegmentCount;
vertices.push(startVertex);
for (var i = 1; i < arcSegmentCount; ++i) {
var angle = startAngle + angle5 * i;
var vertex = {
x: center.x + Math.cos(angle) * radius,
y: center.y + Math.sin(angle) * radius,
};
vertices.push(vertex);
}
vertices.push(endVertex);
}
body{ background-color: ivory; }
#canvas{border:1px solid red;}
<h4>Original black polygon and shrunken red polygon</h4>
<canvas id="canvas" width=650 height=400></canvas>
Calculating the waypoints along the polygon for your traveling box
To have your box travel along the inside of the polygon, you need an array containing points along each line of the polygon. You can calculate these points using linear interpolation.
Given an object defining a line like this:
var line={
x0:50,
y0:50,
x1:200,
y1:50};
You can use linear interpolation to calculate points along that line every 1px like this:
var allPoints = allLinePoints(line);
function allLinePoints(line){
var raw=[];
var dx = line.x1-line.x0;
var dy = line.y1-line.y0;
var length=Math.sqrt(dx*dx+dy*dy);
var segments=parseInt(length+1);
for(var i=0;i<segments;i++){
var percent=i/segments;
if(i==segments-1){
raw.push({x:line.x1,y:line.y1}); // force last point == p1
}else{
raw.push({ x:line.x0+dx*percent, y:line.y0+dy*percent});
}
}
return(raw);
}
Get the point on the polygon closest to the mouse click
You can use the distance formula (derived from Pythagorean theorem) to calculate which of the calculated waypoints is closest to the mouse click position:
// this will be the index in of the waypoint closest to the mouse
var indexOfClosestPoint;
// iterate all waypoints and find the closest to the mouse
var minLengthSquared=1000000*1000000;
for(var i=0;i<allPoints.length;i++){
var p=allPoints[i];
var dx=mouseX-p.x;
var dy=mouseY-p.y;
var dxy=dx*dx+dy*dy
if(dxy<minLengthSquared){
minLengthSquared=dxy;
indexOfClosestPoint=i;
}
}
Animate the box along each waypoint up to the calculated ending waypoint
The only thing left to do is set up an animation loop that redraws the traveling box at each waypoint along the polygon until it reaches the ending waypoint:
// start animating at the first waypoint
var animationIndex=0;
// use requestAnimationFrame to redraw the traveling box
// along each waypoint
function animate(time){
// redraw the line and the box at its current (percent) position
var pt=allPoints[animationIndex];
// redraw the polygon and the traveling box
ctx.strokeStyle='black';
ctx.lineWidth=1;
ctx.clearRect(0,0,cw,ch);
ctx.strokeStyle='black';
drawLines(linePoints);
ctx.strokeStyle='red';
drawLines(insideLinePoints);
ctx.fillStyle='skyblue';
ctx.fillRect(pt.x-boxWidth/2,pt.y-boxHeight/2,boxWidth,boxHeight);
// increase the percentage for the next frame loop
animationIndex++;
// Are we done?
if(animationIndex<=indexOfClosestPoint){
// request another frame loop
requestAnimationFrame(animate);
}else{
// set the flag indicating the animation is complete
isAnimating=false;
}
}
Here's what it looks like when you put it all together
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
function reOffset(){
var BB=canvas.getBoundingClientRect();
offsetX=BB.left;
offsetY=BB.top;
}
var offsetX,offsetY;
reOffset();
window.onscroll=function(e){ reOffset(); }
// polygon vertices
var polygonVertices=[
{x:143,y:327},
{x:80,y:236},
{x:151,y:148},
{x:454,y:69},
{x:560,y:320},
];
var shrunkenVertices=getShrunkenVertices(polygonVertices,10);
var polyPoints=getPolygonPoints(shrunkenVertices)
//log(shrunkenVertices);
// animation variables
var isAnimating=false;
var animationIndex=0;
//
var indexOfClosestPoint=-99;
// define the movable box
var boxWidth=12;
var boxHeight=10;
var boxRadius=Math.sqrt(boxWidth*boxWidth+boxHeight*boxHeight);
var boxFill='skyblue';
// listen for mouse events
$("#canvas").mousedown(function(e){handleMouseDown(e);});
$("#canvas").mousemove(function(e){handleMouseMove(e);});
drawPolys(polygonVertices,shrunkenVertices);
////////////////////////////
// animate box to endpoint
////////////////////////////
function animate(time){
ctx.clearRect(0,0,cw,ch);
drawPolys(polygonVertices,shrunkenVertices);
// redraw the line and the box at its current (percent) position
var pt=polyPoints[animationIndex];
ctx.fillStyle=boxFill;
ctx.fillRect(pt.x-boxWidth/2,pt.y-boxHeight/2,boxWidth,boxHeight);
// increase the percentage for the next frame loop
animationIndex++;
// request another frame loop
if(animationIndex<=indexOfClosestPoint){
requestAnimationFrame(animate);
}else{
isAnimating=false;
}
}
////////////////////////////////////
// select box endpoint with click
////////////////////////////////////
function handleMouseDown(e){
// return if we're already animating
if(isAnimating){return;}
// tell the browser we're handling this event
e.preventDefault();
e.stopPropagation();
// start animating
animationIndex=0;
isAnimating=true;
requestAnimationFrame(animate);
}
function handleMouseMove(e){
// return if we're already animating
if(isAnimating){return;}
// tell the browser we're handling this event
e.preventDefault();
e.stopPropagation();
// get mouse position
mouseX=parseInt(e.clientX-offsetX);
mouseY=parseInt(e.clientY-offsetY);
// find the nearest waypoint
indexOfClosestPoint=findNearestPointToMouse(mouseX,mouseY);
// redraw
ctx.clearRect(0,0,cw,ch);
drawPolys(polygonVertices,shrunkenVertices);
// draw a red dot at the nearest waypoint
drawDot(polyPoints[indexOfClosestPoint],'red');
}
function findNearestPointToMouse(mx,my){
// find the nearest waypoint
var minLengthSquared=1000000*1000000;
for(var i=0;i<polyPoints.length;i++){
var p=polyPoints[i];
var dx=mouseX-p.x;
var dy=mouseY-p.y;
var dxy=dx*dx+dy*dy
if(dxy<minLengthSquared){
minLengthSquared=dxy;
indexOfClosestPoint=i;
}
}
return(indexOfClosestPoint);
}
////////////////////////////////
// Drawing functions
////////////////////////////////
function drawPolys(polygon,shrunken){
drawPoly(polygon,'black');
drawPoly(shrunken,'blue');
}
function drawPoly(v,stroke){
ctx.beginPath();
ctx.moveTo(v[0].x,v[0].y);
for(var i=0;i<v.length;i++){
ctx.lineTo(v[i].x,v[i].y);
}
ctx.closePath();
ctx.strokeStyle=stroke;
ctx.stroke();
}
function drawDot(pt,color){
ctx.beginPath();
ctx.arc(pt.x,pt.y,3,0,Math.PI*2);
ctx.closePath();
ctx.fillStyle=color;
ctx.fill();
}
////////////////////////////////
// Get points along a polygon
////////////////////////////////
function getPolygonPoints(vertices){
// For this purpose, be sure to close the polygon
var v=vertices.slice(0);
var v0=v[0];
var vx=v[v.length-1];
if(v0.x!==vx.x || v0.y!==vx.y){v.push(v[0]);}
//
var points=[];
for(var i=1;i<v.length;i++){
var p0=v[i-1];
var p1=v[i];
var line={x0:p0.x,y0:p0.y,x1:p1.x,y1:p1.y};
points=points.concat(getLinePoints(line));
}
return(points);
}
function getLinePoints(line){
var raw=[];
var dx = line.x1-line.x0;
var dy = line.y1-line.y0;
var length=Math.sqrt(dx*dx+dy*dy);
var segments=parseInt(length+1);
for(var i=0;i<segments;i++){
var percent=i/segments;
if(i==segments-1){
raw.push({x:line.x1,y:line.y1}); // force last point == p1
}else{
raw.push({ x:line.x0+dx*percent, y:line.y0+dy*percent});
}
}
return(raw);
}
/////////////////////////
// "shrink" a polygon
/////////////////////////
function getShrunkenVertices(vertices,shapePadding){
var polygon = createPolygon(polygonVertices);
var paddingPolygon = createPaddingPolygon(polygon,shapePadding);
return(paddingPolygon.vertices);
}
function createPolygon(vertices){
var polygon = {vertices: vertices};
var edges = [];
var minX = (vertices.length > 0) ? vertices[0].x : undefined;
var minY = (vertices.length > 0) ? vertices[0].y : undefined;
var maxX = minX;
var maxY = minY;
for (var i = 0; i < polygon.vertices.length; i++) {
vertices[i].label = String(i);
vertices[i].isReflex = isReflexVertex(polygon, i);
var edge = {
vertex1: vertices[i],
vertex2: vertices[(i + 1) % vertices.length],
polygon: polygon,
index: i
};
edge.outwardNormal = outwardEdgeNormal(edge);
edge.inwardNormal = inwardEdgeNormal(edge);
edges.push(edge);
var x = vertices[i].x;
var y = vertices[i].y;
minX = Math.min(x, minX);
minY = Math.min(y, minY);
maxX = Math.max(x, maxX);
maxY = Math.max(y, maxY);
}
polygon.edges = edges;
polygon.minX = minX;
polygon.minY = minY;
polygon.maxX = maxX;
polygon.maxY = maxY;
polygon.closed = true;
return polygon;
}
function createPaddingPolygon(polygon,shapePadding){
var offsetEdges = [];
for (var i = 0; i < polygon.edges.length; i++) {
var edge = polygon.edges[i];
var dx = edge.inwardNormal.x * shapePadding;
var dy = edge.inwardNormal.y * shapePadding;
offsetEdges.push(createOffsetEdge(edge, dx, dy));
}
var vertices = [];
for (var i = 0; i < offsetEdges.length; i++) {
var thisEdge = offsetEdges[i];
var prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length];
var vertex = edgesIntersection(prevEdge, thisEdge);
if (vertex)
vertices.push(vertex);
else {
var arcCenter = polygon.edges[i].vertex1;
appendArc(vertices, arcCenter, shapePadding, prevEdge.vertex2, thisEdge.vertex1, true);
}
}
var paddingPolygon = createPolygon(vertices);
paddingPolygon.offsetEdges = offsetEdges;
return paddingPolygon;
}
function isReflexVertex(polygon, vertexIndex){
// Assuming that polygon vertices are in clockwise order
var thisVertex = polygon.vertices[vertexIndex];
var nextVertex = polygon.vertices[(vertexIndex + 1) % polygon.vertices.length];
var prevVertex = polygon.vertices[(vertexIndex + polygon.vertices.length - 1) % polygon.vertices.length];
if (leftSide(prevVertex, nextVertex, thisVertex) < 0){return true;} // TBD: return true if thisVertex is inside polygon when thisVertex isn't included
return false;
}
function inwardEdgeNormal(edge){
// Assuming that polygon vertices are in clockwise order
var dx = edge.vertex2.x - edge.vertex1.x;
var dy = edge.vertex2.y - edge.vertex1.y;
var edgeLength = Math.sqrt(dx*dx + dy*dy);
return {x: -dy/edgeLength, y: dx/edgeLength};
}
function outwardEdgeNormal(edge){
var n = inwardEdgeNormal(edge);
return {x: -n.x, y: -n.y};
}
// If the slope of line vertex1,vertex2 greater than the slope of vertex1,p then p is on the left side of vertex1,vertex2 and the return value is > 0.
// If p is colinear with vertex1,vertex2 then return 0, otherwise return a value < 0.
function leftSide(vertex1, vertex2, p){
return ((p.x - vertex1.x) * (vertex2.y - vertex1.y)) - ((vertex2.x - vertex1.x) * (p.y - vertex1.y));
}
function createOffsetEdge(edge, dx, dy){
return {
vertex1: {x: edge.vertex1.x + dx, y: edge.vertex1.y + dy},
vertex2: {x: edge.vertex2.x + dx, y: edge.vertex2.y + dy}
};
}
// based on http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/, edgeA => "line a", edgeB => "line b"
function edgesIntersection(edgeA, edgeB){
var den = (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex2.x - edgeA.vertex1.x) - (edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex2.y - edgeA.vertex1.y);
if (den == 0){return null;} // lines are parallel or conincident
var ua = ((edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
var ub = ((edgeA.vertex2.x - edgeA.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeA.vertex2.y - edgeA.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
if (ua < 0 || ub < 0 || ua > 1 || ub > 1){ return null; }
return {x: edgeA.vertex1.x + ua * (edgeA.vertex2.x - edgeA.vertex1.x), y: edgeA.vertex1.y + ua * (edgeA.vertex2.y - edgeA.vertex1.y)};
}
function appendArc(vertices, center, radius, startVertex, endVertex, isPaddingBoundary){
const twoPI = Math.PI * 2;
var startAngle = Math.atan2(startVertex.y - center.y, startVertex.x - center.x);
var endAngle = Math.atan2(endVertex.y - center.y, endVertex.x - center.x);
if (startAngle < 0)
startAngle += twoPI;
if (endAngle < 0)
endAngle += twoPI;
var arcSegmentCount = 5; // An odd number so that one arc vertex will be eactly arcRadius from center.
var angle = ((startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPI - endAngle));
var angle5 = ((isPaddingBoundary) ? -angle : twoPI - angle) / arcSegmentCount;
vertices.push(startVertex);
for (var i = 1; i < arcSegmentCount; ++i) {
var angle = startAngle + angle5 * i;
var vertex = {
x: center.x + Math.cos(angle) * radius,
y: center.y + Math.sin(angle) * radius,
};
vertices.push(vertex);
}
vertices.push(endVertex);
}
/////////////////////////
// End "shrink polygon"
/////////////////////////
body{ background-color: ivory; }
#canvas{border:1px solid red;}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<h4>Move mouse to where you want the box to end up<br>Then click to start the box animating from start to end.<br>Note: The starting point is on the bottom left of the polygon</h4>
<canvas id="canvas" width=650 height=400></canvas>
Using curved paths
If you want to make your closed path with Bezier curves, you will have to calculate waypoints along the curves using De Casteljau's algorithm. You will want to over-sample the number of points--maybe 500 values of T between 0.00 and 1.00. Here is a javascript version of the algorithm that calculates x,y points at interval T along a Cubic Bezier Curve:
// De Casteljau's algorithm which calculates points along a cubic Bezier curve
// plot a point at interval T along a bezier curve
// T==0.00 at beginning of curve. T==1.00 at ending of curve
// Calculating 300 T's between 0-1 will usually define the curve sufficiently
function getCubicBezierXYatT(startPt,controlPt1,controlPt2,endPt,T){
var x=CubicN(T,startPt.x,controlPt1.x,controlPt2.x,endPt.x);
var y=CubicN(T,startPt.y,controlPt1.y,controlPt2.y,endPt.y);
return({x:x,y:y});
}
// cubic helper formula at T distance
function CubicN(T, a,b,c,d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}

Categories

Resources