Cannot combine dynamic prototype pattern with prototype chaining [duplicate] - javascript

Stylistically, I prefer this structure:
var Filter = function( category, value ){
this.category = category;
this.value = value;
// product is a JSON object
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
};
To this structure:
var Filter = function( category, value ){
this.category = category;
this.value = value;
};// var Filter = function(){...}
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
Functionally, are there any drawbacks to structuring my code this way? Will adding a prototypical method to a prototype object inside the constructor function's body (i.e. before the constructor function's expression statement closes) cause unexpected scoping issues?
I've used the first structure before with success, but I want to make sure I'm not setting myself for a debugging headache, or causing a fellow developer grief and aggravation due to bad coding practices.

Functionally, are there any drawbacks to structuring my code this way?
Will adding a prototypical method to a prototype object inside the
constructor function's body (i.e. before the constructor function's
expression statement closes) cause unexpected scoping issues?
Yes, there are drawbacks and unexpected scoping issues.
Assigning the prototype over and over to a locally defined function, both repeats that assignment and creates a new function object each time. The earlier assignments will be garbage collected since they are no longer referenced, but it's unnecessary work in both runtime execution of the constructor and in terms of garbage collection compared to the second code block.
There are unexpected scoping issues in some circumstances. See the Counter example at the end of my answer for an explicit example. If you refer to a local variable of the constructor from the prototype method, then your first example creates a potentially nasty bug in your code.
There are some other (more minor) differences. Your first scheme prohibits the use of the prototype outside the constructor as in:
Filter.prototype.checkProduct.apply(someFilterLikeObject, ...)
And, of course, if someone used:
Object.create(Filter.prototype)
without running the Filter constructor, that would also create a different result which is probably not as likely since it's reasonable to expect that something that uses the Filter prototype should run the Filter constructor in order to achieve expected results.
From a run-time performance point of view (performance of calling methods on the object), you would be better off with this:
var Filter = function( category, value ){
this.category = category;
this.value = value;
// product is a JSON object
this.checkProduct = function( product ){
// run some checks
return is_match;
}
};
There are some Javascript "experts" who claim that the memory savings of using the prototype is no longer needed (I watched a video lecture about that a few days ago) so it's time to start using the better performance of methods directly on the object rather than the prototype. I don't know if I'm ready to advocate that myself yet, but it was an interesting point to think about.
The biggest disadvantage of your first method I can think of is that it's really, really easy to make a nasty programming mistake. If you happen to think you can take advantage of the fact that the prototype method can now see local variables of the constructor, you will quickly shoot yourself in the foot as soon as you have more than one instance of your object. Imagine this circumstance:
var Counter = function(initialValue){
var value = initialValue;
// product is a JSON object
Counter.prototype.get = function() {
return value++;
}
};
var c1 = new Counter(0);
var c2 = new Counter(10);
console.log(c1.get()); // outputs 10, should output 0
Demonstration of the problem: http://jsfiddle.net/jfriend00/c7natr3d/
This is because, while it looks like the get method forms a closure and has access to the instance variables that are local variables of the constructor, it doesn't work that way in practice. Because all instances share the same prototype object, each new instance of the Counter object creates a new instance of the get function (which has access to the constructor local variables of the just created instance) and assigns it to the prototype, so now all instances have a get method that accesses the local variables of the constructor of the last instance created. It's a programming disaster as this is likely never what was intended and could easily be a head scratcher to figure out what went wrong and why.

While the other answers have focused on the things that are wrong with assigning to the prototype from inside the constructor, I'll focus on your first statement:
Stylistically, I prefer this structure
Probably you like the clean encapsulation that this notation offers - everything that belongs to the class is properly "scoped" to it by the {} block. (of course, the fallacy is that it is scoped to each run of the constructor function).
I suggest you take at the (revealing) module patterns that JavaScript offers. You get a much more explicit structure, standalone constructor declaration, class-scoped private variables, and everything properly encapsulated in a block:
var Filter = (function() {
function Filter(category, value) { // the constructor
this.category = category;
this.value = value;
}
// product is a JSON object
Filter.prototype.checkProduct = function(product) {
// run some checks
return is_match;
};
return Filter;
}());

The first example code kind of misses the purpose of the prototype. You will be recreating checkProduct method for each instance. While it will be defined only on the prototype, and will not consume memory for each instance, it will still take time.
If you wish to encapsulate the class you can check for the method's existence before stating the checkProduct method:
if(!Filter.prototype.checkProduct) {
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
}
There is one more thing you should consider. That anonymous function's closure now has access to all variables inside the constructor, so it might be tempting to access them, but that will lead you down a rabbit hole, as that function will only be privy to a single instance's closure. In your example it will be the last instance, and in my example it will be the first.

Biggest disadvantage of your code is closing possibility to override your methods.
If I write:
Filter.prototype.checkProduct = function( product ){
// run some checks
return different_result;
}
var a = new Filter(p1,p2);
a.checkProduct(product);
The result will be different than expected as original function will be called, not my.

In first example Filter prototype is not filled with functions until Filter is invoked at least once. What if somebody tries to inherit Filter prototypically? Using either nodejs'
function ExtendedFilter() {};
util.inherit(ExtendedFilter, Filter);
or Object.create:
function ExtendedFilter() {};
ExtendedFilter.prototype = Object.create(Filter.prototype);
always ends up with empty prototype in prototype chain if forgot or didn't know to invoke Filter first.

Just FYI, you cannot do this safely either:
function Constr(){
const privateVar = 'this var is private';
this.__proto__.getPrivateVar = function(){
return privateVar;
};
}
the reason is because Constr.prototype === this.__proto__, so you will have the same misbehavior.

Related

private function return the last instance [duplicate]

Stylistically, I prefer this structure:
var Filter = function( category, value ){
this.category = category;
this.value = value;
// product is a JSON object
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
};
To this structure:
var Filter = function( category, value ){
this.category = category;
this.value = value;
};// var Filter = function(){...}
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
Functionally, are there any drawbacks to structuring my code this way? Will adding a prototypical method to a prototype object inside the constructor function's body (i.e. before the constructor function's expression statement closes) cause unexpected scoping issues?
I've used the first structure before with success, but I want to make sure I'm not setting myself for a debugging headache, or causing a fellow developer grief and aggravation due to bad coding practices.
Functionally, are there any drawbacks to structuring my code this way?
Will adding a prototypical method to a prototype object inside the
constructor function's body (i.e. before the constructor function's
expression statement closes) cause unexpected scoping issues?
Yes, there are drawbacks and unexpected scoping issues.
Assigning the prototype over and over to a locally defined function, both repeats that assignment and creates a new function object each time. The earlier assignments will be garbage collected since they are no longer referenced, but it's unnecessary work in both runtime execution of the constructor and in terms of garbage collection compared to the second code block.
There are unexpected scoping issues in some circumstances. See the Counter example at the end of my answer for an explicit example. If you refer to a local variable of the constructor from the prototype method, then your first example creates a potentially nasty bug in your code.
There are some other (more minor) differences. Your first scheme prohibits the use of the prototype outside the constructor as in:
Filter.prototype.checkProduct.apply(someFilterLikeObject, ...)
And, of course, if someone used:
Object.create(Filter.prototype)
without running the Filter constructor, that would also create a different result which is probably not as likely since it's reasonable to expect that something that uses the Filter prototype should run the Filter constructor in order to achieve expected results.
From a run-time performance point of view (performance of calling methods on the object), you would be better off with this:
var Filter = function( category, value ){
this.category = category;
this.value = value;
// product is a JSON object
this.checkProduct = function( product ){
// run some checks
return is_match;
}
};
There are some Javascript "experts" who claim that the memory savings of using the prototype is no longer needed (I watched a video lecture about that a few days ago) so it's time to start using the better performance of methods directly on the object rather than the prototype. I don't know if I'm ready to advocate that myself yet, but it was an interesting point to think about.
The biggest disadvantage of your first method I can think of is that it's really, really easy to make a nasty programming mistake. If you happen to think you can take advantage of the fact that the prototype method can now see local variables of the constructor, you will quickly shoot yourself in the foot as soon as you have more than one instance of your object. Imagine this circumstance:
var Counter = function(initialValue){
var value = initialValue;
// product is a JSON object
Counter.prototype.get = function() {
return value++;
}
};
var c1 = new Counter(0);
var c2 = new Counter(10);
console.log(c1.get()); // outputs 10, should output 0
Demonstration of the problem: http://jsfiddle.net/jfriend00/c7natr3d/
This is because, while it looks like the get method forms a closure and has access to the instance variables that are local variables of the constructor, it doesn't work that way in practice. Because all instances share the same prototype object, each new instance of the Counter object creates a new instance of the get function (which has access to the constructor local variables of the just created instance) and assigns it to the prototype, so now all instances have a get method that accesses the local variables of the constructor of the last instance created. It's a programming disaster as this is likely never what was intended and could easily be a head scratcher to figure out what went wrong and why.
While the other answers have focused on the things that are wrong with assigning to the prototype from inside the constructor, I'll focus on your first statement:
Stylistically, I prefer this structure
Probably you like the clean encapsulation that this notation offers - everything that belongs to the class is properly "scoped" to it by the {} block. (of course, the fallacy is that it is scoped to each run of the constructor function).
I suggest you take at the (revealing) module patterns that JavaScript offers. You get a much more explicit structure, standalone constructor declaration, class-scoped private variables, and everything properly encapsulated in a block:
var Filter = (function() {
function Filter(category, value) { // the constructor
this.category = category;
this.value = value;
}
// product is a JSON object
Filter.prototype.checkProduct = function(product) {
// run some checks
return is_match;
};
return Filter;
}());
The first example code kind of misses the purpose of the prototype. You will be recreating checkProduct method for each instance. While it will be defined only on the prototype, and will not consume memory for each instance, it will still take time.
If you wish to encapsulate the class you can check for the method's existence before stating the checkProduct method:
if(!Filter.prototype.checkProduct) {
Filter.prototype.checkProduct = function( product ){
// run some checks
return is_match;
}
}
There is one more thing you should consider. That anonymous function's closure now has access to all variables inside the constructor, so it might be tempting to access them, but that will lead you down a rabbit hole, as that function will only be privy to a single instance's closure. In your example it will be the last instance, and in my example it will be the first.
Biggest disadvantage of your code is closing possibility to override your methods.
If I write:
Filter.prototype.checkProduct = function( product ){
// run some checks
return different_result;
}
var a = new Filter(p1,p2);
a.checkProduct(product);
The result will be different than expected as original function will be called, not my.
In first example Filter prototype is not filled with functions until Filter is invoked at least once. What if somebody tries to inherit Filter prototypically? Using either nodejs'
function ExtendedFilter() {};
util.inherit(ExtendedFilter, Filter);
or Object.create:
function ExtendedFilter() {};
ExtendedFilter.prototype = Object.create(Filter.prototype);
always ends up with empty prototype in prototype chain if forgot or didn't know to invoke Filter first.
Just FYI, you cannot do this safely either:
function Constr(){
const privateVar = 'this var is private';
this.__proto__.getPrivateVar = function(){
return privateVar;
};
}
the reason is because Constr.prototype === this.__proto__, so you will have the same misbehavior.

JavaScript approach for creating a singleton or keep variable reference

Sometimes techniques like this is used to keep variable reference or create singleton. In this way we will call createVariable one time only.
What are the pros and cons of this approach?
function createVariable() {
// usually here may be some long asynchronous task
//
return true;
}
function useVariable() {
if(!useVariable.someVar) {
useVariable.someVar = createVariable();
}
// do something with useVariable.someVar
}
// we will call useVariable several times.
// The idea is to call createVariable
// one time only.
useVariable();
useVariable();
useVariable();
I am grateful to all ideas and recommendations. I don't want to create a singleton. Just want to keep variable reference on function level. Without
pollute the global scope.
What are the pros and cons of this approach?
The approach is okay, although I question the need for it as higher-level design question.
The implementation has a couple of issues:
If someVar contains a falsey value, you'll recreate it when you shouldn't. To check if you've previously created it, use if(!useVariable.hasOwnProperty("someVar")) { rather than if(!useVariable.someVar) {.
The falsey values are 0, "", NaN, undefined, null, and of course, false. (All other values are "truthy".)
Functions have some built-in properties, both their own (name, length) and ones they get from their prototypes (various methods, mostly). So if your variables have names like name, length, call, and so on, you'll mistakenly think you've created them when you haven't as createVariable will already have those properties with truthy values (in your createVariable case). You can work around that by adding a prefix of some kind, or using a separate object as a map (although objects inherit properties, too, so you'd still probably need a prefix), or if you were using ES2015+, you could use a Map.
You've said you only want to create the variable once and "not pollute the global scope" (which is a good thing to avoid). I do that by just wrapping my code in a scoping function:
(function() {
var someVar = createSomeVar();
// My other code here
})();
That keeps the global namespace untouched, and creates only a single copy of someVar without the need for any particular plumbing.
Here is how you would create a singleton (from http://www.dofactory.com/javascript/singleton-design-pattern):
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
then use it like this
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
//You can see here that they are indeed the same instance
alert("Same instance? " + (instance1 === instance2));
NOTE: this took five seconds to find via Google: http://dofactory.com/javascript/singleton-design-pattern

Can you get the property name through which a function was called?

I've done a lot of searching and some playing around, and I'm pretty sure the answer to this question is no, but I'm hoping a JavaScript expert might have a trick up his sleeve that can do this.
A JavaScript function can be referenced by multiple properties, even on completely different objects, so there's no such thing as the object or property that holds the function. But any time you actually call a function, you must have done so via a single object (at the very least, the window object for global function calls) and property on that object.
(A function can also be called via a function-local variable, but we can consider the function-local variable to be a property of the activation object of the scope, so that case is not an exception to this rule.)
My question is, is there a way to get that property name that was used to call the function, from inside the function body? I don't want to pass in the property name as an argument, or closure around a variable in an enclosing scope, or store the name as a separate property on the object that holds the function reference and have the function access that name property on the this object.
Here's an example of what I want to do:
var callName1 = function() { var callName = /* some magic */; alert(callName); };
var obj1 = {'callName2':callName1, 'callName3':callName1 };
var obj2 = {'callName4':callName1, 'callName5':callName1 };
callName1(); // should alert 'callName1'
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'
From my searching, it looks like the closest you can get to the above is arguments.callee.name, but that won't work, because that only returns the name that was fixed to the function object when it was defined, and only if it was defined as a named function (which the function in my example is not).
I also considered that maybe you could iterate over all properties of the this object and test for equality with arguments.callee to find the property whose value is a reference to the function itself, but that won't work either (in the general case), because there could be multiple references to the function in the object's own (or inherited) property set, as in my example. (Also, that seems like it would be kind of an inefficient solution.)
Can this be done?
Short answer:
No, you cannot get "the property name" used to call your function.
There may be no name at all, or multiple names across different scopes, so "the property name" is pretty ill defined.
arguments.callee is deprecated and should not be used.
There exists no solution that does not use arguments or closure.
Long answer:
As thefourtheye commented, you should rethink what you are trying to do and ask that instead in a new question. But there are some common misconceptions, so I will try to explain why you cannot get the "simple property name".
The reason is because it is not simple.
Before we go ahead, let us clarify something. Activation Objects are not objects at all.
The ECMAScript 5.1 specification calls them Environment Records (10.2.1), but a more common term is Scope chain.
In a browser the global scope is (often) the window object, but all other scopes are not objects.
There may be an object that you use to call a function, and when you call a function you must be in some scope.
With few exceptions, scopes are not objects, and objects are not scopes.
Then, there are many names.
When you call a function, you need to reference it, such as through an object property. This reference may have a name.
Scope chain has declarations, which always have a name.
A Function (the real function, not reference) may also have a function name - your arguments.callee.name - which is fixed at declaration.
Not only are they different names, they are not (always) the "the property name" you are seeking.
var obj = { prop : function f(){} }, func = obj.prop;
// "obj" and "func" are declarations.
// Function name is "f" - use this name instead of arguments.callee
// Property name is "prop"
func(); // Reference name is "func"
obj.prop(); // Reference names are "obj" and "prop"
// But they are the same function!
// P.S. "this" in f is undefined (strict mode) or window (non-strict)
So, a function reference may comes from a binding (e.g. function declaration), an Object (arguments.callee), or a variable.
They are all References (8.7). And reference does have a name (so to speak).
The catch is, a function reference does not always come from an object or the scope chain, and its name is not always defined.
For example a common closure technique:
(function(i){ /* what is my name? */ })(i)
Even if the reference does have a name, a function call (11.2.3) does not pass the reference or its name to the function in any way.
Which keeps the JavaScript engine sane. Consider this example:
eval("(new Function('return function a(){}'))()")() // Calls function 'a'.
The final function call refers the eval function, which refers the result of a new global scope (in strict mode, anyway), which refers a function call statement, which refers a group, which refers an anonymous Function object, and which contains code that expresses and returns a function called 'a'.
If you want to get the "property name" from within a, which one should it get? "eval"? "Function"? "anonymous"? "a"? All of them?
Before you answer, consider complications such as function access across iframes, which has different globals as well as cross origin restriction, or interaction with native functions (Function.prototype.bind for example), and you will see how it quickly becomes hell.
This is also why arguments.caller, __caller__, and other similar techniques are now all deprecated.
The "property name" of a function is even more ill defined than the caller, almost unrealistic.
At least caller is always an execution context (not necessary a function).
So, not knowing what your real problem is, the best bet of getting the "property name" is using closure.
there is no reflection, but you can use function behavior to make adding your own fairly painless, and without resorting to try/catch, arguments.callee, Function.caller, or other strongly frowned-upon behavior, just wasteful looping:
// returning a function from inside a function always creates a new, unique function we can self-identify later:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//the one ugly about this is the extra "()" at the end:
var obj1 = {'callName2':callName(), 'callName3':callName() };
var obj2 = {'callName4':callName(), 'callName5':callName() };
//test out the tattle-tale function:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
if you REALLY want to make it look like an assignment and avoid the execution parens each time in the object literal, you can do this hacky routine to create an invoking alias:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//make an alias to execute a function each time it's used :
Object.defineProperty(window, 'callNamer', {get: function(){ return callName() }});
//use the alias to assign a tattle-tale function (look ma, no parens!):
var obj1 = {'callName2': callNamer, 'callName3': callNamer };
var obj2 = {'callName4': callNamer, 'callName5': callNamer };
//try it out:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
all that aside, you can probably accomplish what you need to do without all the looping required by this approach.
Advantages:
works on globals or object properties
requires no repetitive key/name passing
uses no proprietary or deprecated features
does not use arguments or closure
surrounding code executes faster (optimized) than
a try/catch version
is not confused by repeated uses
can handle new and deleted (renamed) properties
Caveats:
doesn't work on private vars, which have no property name
partially loops owner object each access
slower computation than a memorized property or code-time repetition
won't survive call/bind/apply
wont survive a setTimeout without bind() or a wrapper function
cannot easily be cloned
honestly, i think all the ways of accomplishing this task are "less than ideal", to be polite, and i would recommend you just bite the coding bullet and pass extra key names, or automate that by using a method to add properties to a blank object instead of coding it all in an object literal.
Yes.
Sort Of.
It depends on the browser. (Chrome=OK, Firefox=Nope)
You can use a factory to create the function, and a call stack parsing hack that will probably get me arrested.
This solution works in my version of Chrome on Windows 7, but the approach could be adapted to other browsers (if they support stack and show the property name in the call stack like Chrome does). I would not recommend doing this in production code as it is a pretty brittle hack; instead improve the architecture of your program so that you do not need to rely on knowing the name of the calling property. You didn't post details about your problem domain so this is just a fun little thought experiment; to wit:
JSFiddle demo: http://jsfiddle.net/tv9m36fr/
Runnable snippet: (scroll down and click Run code snippet)
function getCallerName(ex) {
// parse the call stack to find name of caller; assumes called from object property
// todo: replace with regex (left as exercise for the reader)
// this works in chrome on win7. other browsers may format differently(?) but not tested.
// easy enough to extend this concept to be browser-specific if rules are known.
// this is only for educational purposes; I would not do this in production code.
var stack = ex.stack.toString();
var idx = stack.indexOf('\n');
var lines = ex.stack.substring(idx + 1);
var objectSentinel = 'Object.';
idx = lines.indexOf(objectSentinel);
var line = lines.substring(idx + objectSentinel.length);
idx = line.indexOf(' ');
var callerName = line.substring(0, idx);
return callerName;
}
var Factory = {
getFunction: function () {
return function () {
var callName = "";
try {
throw up; // you don't *have* to throw to get stack trace, but it's more fun!
} catch (ex) {
callName = getCallerName(ex);
}
alert(callName);
};
}
}
var obj1 = {
'callName2': Factory.getFunction(),
'callName3': Factory.getFunction()
};
var obj2 = {
'callName4': Factory.getFunction(),
'callName5': Factory.getFunction()
};
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'

What are the differences between these three patterns of "class" definitions in JavaScript?

Are there any important/subtle/significant differences under the hood when choosing to use one of these four patterns over the others? And, are there any differences between the them when "instantiated" via Object.create() vs the new operator?
1) The pattern that CoffeeScript uses when translating "class" definitions:
Animal = (function() {
function Animal(name) {
this.name = name;
}
Animal.prototype.move = function(meters) {
return alert(this.name + (" moved " + meters + "m."));
};
return Animal;
})();
and
2) The pattern that Knockout seems to promote:
var DifferentAnimal = function(name){
var self = this;
self.name = name;
self.move = function(meters){
return alert(this.name + (" moved " + meters + "m."));
};
}
and
3) a similar, simple pattern I've often seen:
var DifferentAnimalWithClosure = function(name){
var name = name;
var move = function(meters){
};
return {name:name, move:move};
}
and
4) The pattern that Backbone promotes:
var OneMoreAnimal= ClassThatAlreadyExists.extend({
name:'',
move:function(){}
});
Update 1: Changed pattern #2 and added pattern #3 in response to Elias' response // minor formatting
Just to be clear: JS doesn't know of classes, just objects and custom, self-defined constructor functions, but that's besides the point.
To answer your question in short: yes, there are some small and even some fairly large differences between the various ways of creating a new object you're posting here.
CoffeeScript:
This is actually the most clear-cut and traditional way to create your own constructor, but it has been "optimized" in the sense that it's been ready set-up to use (optional) closure variables.
Basically, what this code does, is use an IIFE, to wrap both the constructor definition and the proptotype method assignments in their own, private scope, that returns a reference to the new constructor. It's just clean, simple JS, no different from what you might write yourself.
Knockout:
Now this threw me a little, because to me, at least, the snippet you provide looks either like part of a module pattern, or a power constructor. But since you're not using strict mode, omitting the new would still make for dangerous situations, and since the entire function goes trough the trouble of creating a new instance of DifferentAnimal, only to then construct a second object literal, assigning all properties of DifferentAnimal to that secondary object, I'd say you're missing something. Because, truth be told, omitting the last return {}; statement here, would probably make no difference at all. Plus: as you can see, you're declaring a method (move) in what is, in essence, a constructor. This means that every instance will be assigned its own function object move, rather then getting it from the prototype.
In short: have another close look at where you got this snippet from, and double-check if this is the full version, because if it is, I can only see arguments against this.
Using a variable, defined inside the constructor is simply: a closure, suppose your properties have a distinct initial state, determined by some arguments, passed to that constructor:
function MyConstructor(param)
{
var paramInit = param/2;//or something
this.p = paramInit;//this property can change later on, so:
this.reInit = function()
{//this method HAS to be inside constructor, every instance needs its own method
this.p = paramInit;//var paramInit can't, it's local to this scope
};
}
var foo = new MyConstructor(10);
console.log(foo.p);//5
foo.p = 'hi';
console.log(foo.p);//hi
foo.reInit();
console.log(foo.p);//5
console.log(foo.paramInit);//undefined, not available outside object: it's a pseudo-private property
That's all there is too it, really. When you see ppl using var that = this; or something, that's often to create a reference to the main object that is available anywhere, without having to deal with the headaches of this (what does this reference? What should the method do when applied to an object other than the one it was originally intended for? etcetera...)
Backbone:
Here, we're dealing with another case: extending objects (IE: using methods, properties of either an existing "class" (constructor) or a particular instance) is not the same as simply creating an object.
As you well know, JS objects can be assigned new properties at any given time. Those properties can be removed, too. Sometimes, prototype properties can be redefined on the instance itself (masking the prototypal behaviour) etc... So it all depends on what you want the resulting object (the newly created object, that extends the given instance) to look like: do you want it to take all properties from the instance, or do you want both objects to use the same prototype somewhere down the line?
Both of these things can be achieved by using simple JS, too, but they just take a bit more effort to write yourself. However, if you write, for example:
function Animal(name)
{
this.name = name;
}
Animal.prototype.eat= function()
{
console.log(this.name + ' is eating');
};
That could be deemed the equivalent of writing:
var Animal = Object.extend({name:'',eat:function()
{
console.log(this.name + ' is eating');
}});
A lot shorter, but lacking the constructor.
new vs Object.create
Well, that's an easy one: Object.create just is a lot more powerful that new: you can define prototype methods, properties (including weather or not they are enumerable, writeable etc...) right at the time you need to create an object, instead of having to write a constructor and a prototype, or create an object literal and mess around with all those Object.defineProperty lines.
The downsides: Some people still aren't using ECMA5 compliant browsers (IE8 is still not quite dead). In my experience: it does become quite hard to debug sizeable scripts after a while: though I tend to use power-constructors more than I do regular constructors, I still have them defined at the very top of my script, with distinct, clear and quite descriptive names, whereas object-literals are things I just create "on-the-fly". Using Object.create, I noticed I tend to create objects that are really a little too complex to qualify as actual object literals, as though they are object literals:
//fictional example, old:
var createSomething = (function()
{
var internalMethod = function()
{//method for new object
console.log(this.myProperty || '');
};
return function(basedOn)
{
var prop, returnVal= {};
returnVal.myProperty = new Date();
returnVal.getCreated = internalMethod;//<--shared by all instances, thx to closure
if (!basedOn || !(basedOn instanceof Object))
{//no argument, or argument is not an object:
return returnVal;
}
for (prop in basedOn)
{//extend instance, passed as argument
if (basedOn.hasOwnProperty(prop) && prop !== '_extends')
{
returnVal[prop] = basedOn[prop];
}
}
returnVal._extends = basedOn;//<-- ref as sort-of-prototype
return returnVal;
};
}());
Now this is pretty verbose, but I've got my basic constructor ready, and I can use it to extend an existing instance, too. It might seem less verbose to simply write:
var createSomething = Object.create(someObject, {getCreated:function()
{
console.log(this.myProperty);
},
myProperty:new Date()});
But IMO, this makes it harder on you do keep track of what object is created where (mainly because Object.create is an expression, and will not be hoisted.Ah well, that's far from a conclusive argument of course: both have their pro's and con's: I prefer using module patters, closures and power constructors, if you don't that's just fine.
Hope this cleared up a thing or 2 for you.
The first example puts the move function in the prototype which will be shared between all Animal instances.
The second example creates a new move function for every the animal instance.
The third example generates a Animal class with the move function in the prototype similar to the first example but with allot less code.
(In your example the name is also shared between all instances, which you probably don't want)
Putting the function in the prototype makes instantiating Animals faster, and because of the way JIT engines work even the execution of the function is faster.

Is it customary JS to write getters for simple properties?

Is this code idomatic, or should I just acess the properties directly?
self.isAlive = function() {
return self.alive;
}
It all depends on implementation.
If you feel the property is always going to be the value, accessing the property is adequate. If you feel like there's going to be some logic that determines returning a "properly formatted" value, I would use a method (or if the value could possibly be dynamic based on other factors, a method is a good idea).
To go a step further, other languages like C# have properties making it safe to expose values, but not necessarily alter them. JS doesn't have such a method of protecting it, so often get<Var> is used to expose the property, but in a read-only fashion.
It's all about how you would like the data, while also trying to anticipate what the worst-case scenario could be if you expose the property directly vs. through a method.
It seems that you are speaking of properties in the classical OOP sense, i.e., properties of classes. In the current version of Javascript, simulating this behavior is not completely clean. Consider the following example:
var Widget = function() {
var private = 'private';
}
'Widget' is a constructor function, and 'private' will be instantiated in the scope of just the constructor function. That means there is only one way to get access to 'private' from outside the constructor function scope:
var Widget = function() {
var private = 'private';
this.getPrivate = function() {
return private;
}
}
This will hide the private variable for each instance of Widget, but unfortunately, 'getPrivate' must now be added to each instance of Widget. You can see this occurring in the constructor function by the statement this.getPrivate = .... Every time you make an instance of Widget using var widget1 = new Widget(), that specific instance will have a new function, 'getPrivate', added to it.
The normal way to make reusable components in Javascript is to use its implementation of Prototypical Inheritance. You assign a prototype object to the constructor function that will have shared methods and properties across all instances of the component. I will provide an example below to explain, but there are caveats to prototypical inheritance that you should become aware of if you are doing object-oriented javascript. A great resource.
Here's an example of how this might come in to play for your example:
var Widget = function() {
this.alive = true;
}
Widget.prototype.isAlive = function() {
return this.alive;
}
var widget1 = new Widget();
widget1.isAlive(); // returns true
The problem here is that the property alive is being added to the object, and thus, it is publicly available, i.e., any user of your Widget can simply look through the DOM in their favorite variation of FireBug and see (as well as freely modify) this property.
Consider a variation where you attempt to hide alive to external users. Because alive is a property of Widget instances, you would want to include the code to hide it in the constructor, as shown below:
var Widget = function() {
var alive = true;
}
However, as stated at the beginning of this post, alive in this case is only exposed to the constructor function's scope; therefore, it would not be accessible to methods on the prototype. The reason for this is that each of those methods do not have the same scope as the constructor function, since Javascript only has function scope.
In conclusion, if you're trying to hide data in a reusable component, javascript does not provide a clean way to do it. If you don't mind having new memory allocated on each component instance for the same methods, then you can use my second code example in this post. However, if you prefer to have your methods allocated in memory only once, then you will need to expose properties on the object instance, e.g., this.alive = true.
That's subjective. Use of getters and setters is very discussed. Some people (like me) say you should always use getters and setters to follow the encapsulation principle, while others say that you shouldn't since your application would become unmaintainable.
This is good practice if you don't want outside js code to modify your property. If this is the desired effect you might consider assigning that property using var instead of making it a property of that object. That way your code within the object can modify it but it can only be accessed through your getter
var alive = false;
function isAlive(){ return alive;}
You can use:
function isAlive(){
return arguments.callee.alive;
}
isAlive.alive=true;
This appears to be ok still in strict mode.
Another way to accomplish this is
function isAlive(){
return isAlive.alive;
}
isAlive.alive=true;
But the problem is that someone can use the name as a string, or rename the function etc... and you can loose the status.

Categories

Resources