var foo = (function(){
var x = "bar";
return function(){
console.log(x);
};
})();
console.log(foo.toString()); // function() {console.log(x);}
(foo)(); // 'bar'
eval('(' + foo.toString()+')()')); // error: x is undefined
Is there a technique for resolving (modifying) a function, so references from outer scope become local references, like:
function() {console.log(x);}
becomes:
function() {console.log("bar");}
The function can now be stringified and transported across a network and executed in another runtime.
Maybe one could parse the function to an Abstract Syntax Tree and then modify it? The reference will always be out of scope (not available), right?
The objective:
I am serializing a filter function from a node runtime to a postgresql plv8 runtime. Right now the filter function has interface: dbClient.filter((row, age) => row.age > age), ageFromOuterScope).then(matches => ...)
I want interface dbClient.filter((row) => row.age > age)).then(matches => ...), where age is a reference from outer scope.
Update:
I can only imagine one solution. Analyze the function, detect references to variables outside the function, and then rewrite the original function:
function(row) {
return row.age > age
}
To:
function(row, age) {
return row.age > age
}
Detected variables should also be added to a string that represent an array, like:
var arrayString = '[age]'
And then eval the string:
var functionArgs = eval(arrayString)
And finally:
dbClient.filter(modifiedFunction, ...functionArgs).then(matches => ...)
To expose the private variable outside the scope you need another function within the scope that rewrites the method description returned by toString. Then you use that function instead of toString to retrieve the method description.
var foo = (function(){
var x = "bar";
var f = function(){
console.log(x);
};
f.decl = function() {
return f.toString().replace("(x)", "(\""+x+"\")");
}
return f;
})();
console.log(foo.decl()); // function() {console.log("bar");}
eval("("+foo.decl()+")()"); // bar
I ran your top codebox's foo through Google's Closure Compiler, and it gave me this:
var foo=function(){return function(){console.log("bar")}}();foo;
not EXACTLY what you want, but you can get what you want from there using eval() and/or toString() as you're been tinkering with already.
I don't know how robust this is, and it makes other code mangles, but for the simple kind of functions you show, it does seem to consistently inline non-repeated primitives appearing in code.
You can bind the x to the function object itself.
var foo = (function(){
var x = "bar";
return function(){
this.x = x;
console.log(this.x);
};
})();
(foo)() // 'bar'
console.log(foo.toString()); // 'function() { this.x = x; console.log(this.x) }'
eval('(' + foo.toString()+')()'); // 'bar'
Related
I'm maintaining some legacy code and I've noticed that the following pattern for defining objects is used:
var MyObject = {};
(function (root) {
root.myFunction = function (foo) {
//do something
};
})(MyObject);
Is there any purpose to this? Is it equivalent to just doing the following?
var MyObject = {
myFunction : function (foo) {
//do something
};
};
I'm not about to embark in a holy quest to refactor the whole codebase to my likings, but I'd really like to understand the reason behind that roundabout way of defining objects.
Thanks!
It's called the module pattern http://toddmotto.com/mastering-the-module-pattern/
The main reason is for you to create truly private methods and variables. In your case, it's not meaningful because it's not hiding any implementation details.
Here's an example where it makes sense to use the module pattern.
var MyNameSpace = {};
(function(ns){
// The value variable is hidden from the outside world
var value = 0;
// So is this function
function adder(num) {
return num + 1;
}
ns.getNext = function () {
return value = adder(value);
}
})(MyNameSpace);
var id = MyNameSpace.getNext(); // 1
var otherId = MyNameSpace.getNext(); // 2
var otherId = MyNameSpace.getNext(); // 3
Whereas if you just used a straight object, adder and value would become public
var MyNameSpace = {
value: 0,
adder: function(num) {
return num + 1;
},
getNext: function() {
return this.value = this.adder(this.value);
}
}
And you could break it by doing stuff like
MyNameSpace.getNext(); // 1
MyNameSpace.value = 0;
MyNameSpace.getNext(); // 1 again
delete MyNameSpace.adder;
MyNameSpace.getNext(); // error undefined is not a function
But with the module version
MyNameSpace.getNext(); // 1
// Is not affecting the internal value, it's creating a new property
MyNameSpace.value = 0;
MyNameSpace.getNext(); // 2, yessss
// Is not deleting anything
delete MyNameSpace.adder;
MyNameSpace.getNext(); // no problemo, outputs 3
The purpose is to limit accessibility of functions within the closure to help prevent other scripts from executing code on it. By wrapping it around a closure you are redefining the scope of execution for all code inside the closure and effectively creating a private scope. See this article for more info:
http://lupomontero.com/using-javascript-closures-to-create-private-scopes/
From the article:
One of the best known problems in JavaScript is its dependance on a
global scope, which basically means that any variables you declare
outside of a function live in the same name space: the ominous
window object. Because of the nature of web pages, many scripts from
different sources can (and will) run on the same page sharing a
common global scope and this can be a really really bad thing as it
can lead to name collisions (variables with the same names being
overwritten) and security issues. To minimise the problem we can use
JavaScript’s powerful closures to create private scopes where we can
be sure our variables are invisible to other scripts on the page.
Code:
var MyObject = {};
(function (root) {
function myPrivateFunction() {
return "I can only be called from within the closure";
}
root.myFunction = function (foo) {
//do something
};
myPrivateFunction(); // returns "I can only be called from within the closure"
})(MyObject);
myPrivateFunction(); // throws error - undefined is not a function
advantages:
maintains variables in private scope.
you can extend the functionality of the existing object.
performance is increased.
i think the above three simple points are just enough to follow those rules. And to keep it simple its nothing but writing inner functions.
In the particular case that you show, there is no meaningful difference, in terms of functionality or visibility.
It's likely that the original coder adopted this approach as a sort of template allowing him to define private variables that could be used in the definition of things like myFunction:
var MyObject = {};
(function(root) {
var seconds_per_day = 24 * 60 * 60; // <-- private variable
root.myFunction = function(foo) {
return seconds_per_day;
};
})(MyObject);
This avoids calculating seconds_per_day each time the function is called, while also keeping it from polluting the global scope.
However, there's nothing essentially different from that and just saying
var MyObject = function() {
var seconds_per_day = 24 * 60 * 60;
return {
myFunction: function(foo) {
return seconds_per_day;
}
};
}();
The original coder may have preferred to be able to add functions to the object using the declarative syntax of root.myFunction = function, rather than the object/property syntax of myFunction: function. But that difference is mainly a matter of preference.
However, the structure taken by the original coder has the advantage that properties/methods can be easily added elsewhere in the code:
var MyObject = {};
(function(root) {
var seconds_per_day = 24 * 60 * 60;
root.myFunction = function(foo) {
return seconds_per_day;
};
})(MyObject);
(function(root) {
var another_private_variable = Math.pi;
root.myFunction2 = function(bar) { };
})(MyObject);
Bottom line, there is no need to adopt this approach if you don't need to, but there is also no need to change it, since it works perfectly well and actually has some advantages.
First pattern can be used as a module which takes an object and returns that object with some modifications. In other words, you can define such modules as follows.
var module = function (root) {
root.myFunction = function (foo) {
//do something
};
}
And use it like:
var obj = {};
module(obj);
So an advantage could be the re-usability of this module for later uses.
In the first pattern, you can define a private scope to store your private stuff such as private properties and methods. For example, consider this snippet:
(function (root) {
// A private property
var factor = 3;
root.multiply = function (foo) {
return foo * factor;
};
})(MyObject);
This pattern can be used to add a method or property to all types of objects such as arrays, object literals, functions.
function sum(a, b) {
return a + b;
}
(function (root) {
// A private property
var factor = 3;
root.multiply = function (foo) {
return foo * factor;
};
})(sum);
console.log(sum(1, 2)); // 3
console.log(sum.multiply(4)); // 12
In my opinion the main advantage could be the second one (creating a private scope)
This pattern provides a scope in which you can define helper functions that are not visible in the global scope:
(function (root) {
function doFoo() { ... };
root.myFunction = function (foo) {
//do something
doFoo();
//do something else
};
})(MyObject);
doFoo is local to the anonymous function, it can't be referenced from outside.
I would like to do the following.I have a code like this:
var obj = {
method : function() {}
};
var func = function() {
return method(); //method is undefined here
};
func(); // What to do here?
Is it possible to call func in a way that it will see the method inside from obj as it was given for example as a parameter. I want to use obj.method inside func, without writing 'obj.' before and without modifying func itself. Is there any hack possible to achieve this?
In other words, is it possible to force obj as a closure into func?
I tried:
with(obj) {
func();
}
But it doesn't work. Anyone, any ideas? Or is it the only option to get the body of the function as string, put 'with(obj)' inside it and then create a new function out of it?
Clarification:
Because this code will be in a helper class 'eval' is OK. Which I don't want is the modification of the function through .toString(), because browsers implement it differently.
This is a solution, using eval (MDN):
var obj = {
method : function() {console.log("it workes!");}
};
var func = function() {
return method(); //method is undefined here
};
var newfunc = (function (obj, func) {
var method = obj.method;
eval("var f = " + func.toString());
return f;
}(obj, func));
newfunc(); //it workes
Basically you're just creating a new scope with a local variable called method and re-evaluating the function body in this scope. So you're basically creating a new function with the same body. I don't really like this approach and I wouldn't recommend it, but considering your constraints, it might be the only solution.
And yes, it still requires you to write obj.method, but not inside of func. So I figured, it should be ok.
EDIT
So here is a version, in which you don't have to specify the property name manually:
var newfunc = (function (__obj__, __func__) {
for (var __key__ in __obj__) {
if (__obj__.hasOwnProperty(__key__)) {
eval("var " + __key__ + " = " + __obj__[__key__]);
}
}
eval("var __f__ = " + func.toString());
return __f__;
}(obj, func));
This also done by using eval().
Note that I changed all remaining local variables to a names containing underscores, to minimize the probability of name collisions with properties inside obj.
Note also that not all valid property names are valid variable names. You could have an object like this:
var obj = {
"my func": function () {}
}
But if you would use this object you would generate a syntax error with the above method, because it would try to evaluate:
var my func = ...
As apsillers said in the comment section, it gets even worse if you don't have control over the properties of obj. In this case you shouldn't use eval at all, because you would make cross-site scripting attacks very easy (example from apsillers):
var obj = {
"a; alert('xss'); var b": function () {}
}
would evaluate to 3 different statements:
var a;
alert('xss');
var b = function () {};
This is not possible unless you define method separately:
var obj = {
method : function() {}
},
method = obj.method;
// rest of code
This is because the method reference inside func() assumes the window. namespace; thus, without modifying func() itself, it can't be done sanely.
More clarified version based on basilikum's answer, and I've found a simplification with 'with':
var obj = {
method : function() { return "it workes!"; }
};
var func = function() {
return method(); //method is undefined here
};
(function (obj, func) {
with(obj) {
eval("var __res__ = (" + func.toString() + ")()");
}
return __res__;
}(obj, func));
>> "It workes!"
Using JavaScript, say I have a function X, and in that function an object called objectX is created. function X returns objectX. Later in the code function Z(somevar, anObject) receives objectX as one of it's parameters.
Now in function Z, is objectX and all its properties referred to as anObject inside function Z?
And what happens if function Z returns anObject? Will the rest of the code see the object as "objectX" or "anObject"?
function X() {
...
objectX = {};
...
return objectX;
}
X();
function Z(anything, anObject) {
...
return anObject
}
Z(something, objectX);
anObject and objectX both are referencing to the same space in memory, so, name it as you want, it's always the same object.
Good luck!
This is mostly a question of scope.
function X() {
// local objectX, only accessible through this name inside X()
var objectX = {};
objectX.foo = 'bar';
return objectX;
}
function Z(somevar, anObject) {
// anObject is passed in as a parameter
// it's only accessible through this name inside Z()
anObject.foo = somevar;
return anObject;
}
// get the 'objectX' from X() and store it in global variable a
var a = X();
// pass the received 'objectX' into Z()
// note that the variable names objectX and anObject cannot be accessed
// because they are local variables of the functions X() / Z()
var b = Z('baz', a);
// a is now the same as b, they both reference the same var
// a.foo and b.foo both are set to 'baz'
I believe an example is the best way to teach. Here is some code (click here to see it in JS Bin):
// Defines the variable to keep track of how many objects X() defines.
var num = 1;
// Instantiate another variable to see if it is changed by Z().
var anObject;
// Creates an object with a comment and a random number.
function X() {
// Create an object and give it a name.
var objectX = {comment : "Creation #" + num};
// Increase the value of num.
num++;
// Add another random number between 0 and 100 inclusively.
objectX.randNum = Math.round(Math.random() * 100);
// Return objectX.
return objectX;
}
// Modifies the second parameter by adding the value of the first parameter.
function Z(somevar, anObject) {
anObject.somevar = somevar;
return anObject;
}
var objectX = X(), objectY = X();
objectX2 = Z('coolness', objectX);
// Notice that objectX is still the result of calling X() the first time.
alert("objectX.comment = " + objectX.comment);
// Notice that objectX is not equal to objectY.
alert("objectX === objectY evaluates to " + (objectX === objectY));
// Notice that objectX2 is the same thing as objectX.
alert("objectX === objectX2 evaulates to " + (objectX === objectX2));
// Notice that anObject is not defined.
alert("typeof anObject evaluates to " + (typeof anObject) + " after Z is called.");
alert("Now review the JavaScript code.");
If read through the comments, you will find the answers to your questions. First you will notice that in function Z, since I passed objectX as the second parameter, inside of the function, it could be referred to by anObject. Second you will notice that once outside of function Z, anObject no longer refers to objectX. The comments also reveal other things that are true in JavaScript.
Javascript has function scope. This means that every variable declared within a function, will only be accessible from within that function.
If you’d properly declared the objectX variable with var, as follows:
function X() {
...
var objectX = {};
...
return objectX;
}
then objectX would only be known as objectX inside the X function. Elsewhere, it would be known as whatever variable you’d assigned it to. Since in your code, you don’t assign the result of X() to anything, objectX would not be accessible from anywhere.
However, here’s one of Javascript’s more serious design flaws: if you don’t explicitly declare a variable (using the var statement, or as a function parameter), that variable will automatically become a global variable. That means that it will be accessible anywhere.
Because of this, in your code above, you can access objectX everywhere by that name.
anObject, on the other hand, is properly declared (as a parameter), and that means its scope will be limited to the Z function.
In short, the way your code is written, objectX is accessible everywhere by way of the objectX variable, and inside the function Z, you can reference it both as objectX and as anObject.
Do note, however, that global variables are a Bad Thing™, since they can make it quite hard to figure out what variable gets assigned by who, when, and why — as you’ve noticed.
While Javascript makes it impossible to completely avoid them, as a rule you should try to keep the scope of your variables as small as possible (scope = where in your program that variable can be accessed).
To that end, I would recommend refactoring your code like igorw has.
Here is link to jsfiddle
Lets take the following example below:
Person = function(name){
this.name = name;
}
function x(){
var john = new Person('john');
return john;
}
function z(tempVar, anObject){
var newObj = anObject;
newObj.name = tempVar;
return newObj;
}
myPerson = x();
console.log(myPerson.name); //john
console.log(z('peter', myPerson).name); //peter
console.log(myPerson.name); //peter
You can see, even though you created a new object in z but because they are referencing to the same object myPerson's name property is also changed after z() is called.
var namespaced = {
A: function(){
function r(){
//do some stuff
return something;
}
var someProperty = 5;
function j(){
//do some more stuff
return something;
}
},
B: function(){
//can I call A and C?
A.r();
C.d();
},
C: function(){
function d() {
//do stuff we like
}
}
}
Then I could do...
namespaced.A.j();
namespaced.C.d();
something = namespaced.A.someProperty;
right?
Would I need to do this too?
var something = new namespaced.A()?
If so does A() have a constructor? I'm really confused here :{
I'm trying to encapsulate my javascript so it's easy to maintain
Then I could do...
namespaced.A.j();
namespaced.C.d();
something = namespaced.A.someProperty;
No you couldn't. The function j and someProperty are only local to A and are not propagated to the outside. If you want to access them from the outside, you have to make them a property of the function, using this:
var namespaced = {
A: function(){
this.r = function(){
//do some stuff
return something;
};
this.someProperty = 5;
this.j = function(){
//do some more stuff
return something;
};
}
}
But you would still need to call var a = new namespaced.A() in order to access the functions.
If you want to call namespaced.A.j() directly, you would have to declare A as object, not as function:
var namespaced = {
A: {
r: function(){
//do some stuff
return something;
},
someProperty: 5,
j: function(){
//do some more stuff
return something;
}
}
}
So it depends on what you want to achieve eventually... to get a better insight into these methods, I recommend JavaScript Patterns.
This is what you need to understand about JavaScript:
When you write
var obj = { A: a, B: b, C: c };
you are creating (and assigning to obj) an object with properties called A, B and C mapping to values a, b and c respectively. These values may very well be functions, so when you have
var obj = { A: function(){...} };
you are creating an object with a property called "A" which is a function. You can refer to it with obj.A and call with obj.A().
When you call obj.A(), the keyword this inside the body of function A will refer to obj. You can use it to assign new properties to obj:
var obj = {
A: function() { this.prop = "Hello!"; }
};
obj.A();
alert( obj.prop ); // alerts "Hello!"
So, inside namespaced.A.j() the this keyword will point to namespace.A (it's what is to the left of the last dot).
You can apply a function to an object like so: func.apply(obj) or like so: func.call(obj). In this case, the this keyword will refer to obj instead. This isn't relevant to your case, but if func takes parameters (let's say param1 and param2), you can apply the function like so: func.apply(obj, [val1, val2]) or like so: func.call(obj, val1, val2).
All variables declared inside a function live only inside that function. They are not visible outside. And when you write function doStuff(){} it's (I'm simplifying here) as good as if you wrote var doStuff = function(){}; So nested functions live and can be used only inside the surrounding function; that is, unless you assign them to something accessible from outside.
When you call something like new Cons() what happens is the creation of a new empty object followed by the application of Cons() on that object. In other words, it's the same as
var obj = {};
Cons.apply(obj);
or if you prefer:
var obj = {};
obj.Cons = Cons;
obj.Cons();
// obj's Cons property then mysteriously disappears
// unless it was explicitly set inside Cons() (oh my, how confusing! :)
So you can have this:
function Duck(name){
this.myName = name;
this.quack = function(){
alert(this.myName + " quacks!");
}
};
donald = new Duck('Donald');
donald.quack();
With all the preceding in mind, a way to write namespaced code is like this:
// The following syntax, confusing to someone who hasn't seen it before,
// is defining a new anonymous function and immediately using it
// as a constructor applied to a new empty object.
//
// Alternatively, you can use this syntax:
// var namespaced = {};
// (function(){
// ....
// }).apply(namespaced);
//
var namespaced = new (function(){
// This creates a new variable named "namespaced"
// which is visible only inside this anonymous function.
// This variable points to the still-empty object created by
// 'new'. This object will, once we're done with this anonymous function,
// be assigned to a variable, outside, which by "coincidence" is
// also named "namespaced".
var namespaced = this;
// You could alternatively not create the variable "namespaced"
// and use 'this' directly inside this anonymous function. But,
// the 'this' keyword may point to different objects inside the
// nested functions that follow, so we create it to avoid confusion.
// This assigns a new object to variable 'A', which isn't visible outside.
// Use a constructor function defined inline.
var A = new (function(){
var A = this; // 'this' now refers to the empty object created just above
this.someProperty = 5; // Two different ways of
A.anotherProperty = 7; // doing mostly the same thing
this.j = function(){
//do some more stuff
// 'this' will point to j, here
return something;
}
// Function r isn't visible outside of A's constructor like this!
function r(){
//do some stuff
return something;
}
// Make 'r' visible outside by assigning it to a property of 'A'.
// Look, it's also called "r". What fun!
A.r = r;
})();
// Make the object in variable 'A' visible outside of
// 'namespaced's constructor, by making it a property of 'namespaced'
namespaced.A = A;
// Create a new object as before.
// This time we won't make it visible outside
// of "namespaced"'s constructor.
var C = new (function(){
this.d = function (){
//do stuff we like
}
})();
// Give "namespaced" a property 'B'.
// This time it's a function instead of a nested object.
namespaced.B = function(){
// It's cool to make these function calls here, because
// (a) nested functions can see the variables ('A' & 'C')
// of surrounding functions, even if they terminate in the meantime;
// and (b) 'r' & 'd' are properties of 'A' and 'C'.
A.r();
C.d();
};
// You could return 'this' or 'namespaced' from this constructor,
// but the 'new' keyword will make sure the "namespaced" variable
// outside will get the no-longer-empty object it created,
// so you can just not return anything.
})();
// Now you can do
five = namespaced.A.someProperty;
seven = namespaced.A.anotherProperty;
something = namespaced.A.j();
namespaced.B(); // Calls A.r() and C.d()
// But you can't do
namespaced.C.d(); // WRONG: "namespaced" doesn't have a property named "C"
I hope this helps more than it confuses.
What is the difference between declaring a variable with this or var ?
var foo = 'bar'
or
this.foo = 'bar'
When do you use this and when var?
edit: is there a simple question i can ask my self when deciding if i want to use var or this
If it is global code (the code is not part of any function), then you are creating a property on the global object with the two snippets, since this in global code points to the global object.
The difference in this case is that when the var statement is used, that property cannot be deleted, for example:
var foo = 'bar';
delete foo; // false
typeof foo; // "string"
this.bar = 'baz';
delete bar; // true
typeof bar; "undefined"
(Note: The above snippet will behave differently in the Firebug console, since it runs code with eval, and the code executed in the Eval Code execution context permits the deletion of identifiers created with var, try it here)
If the code is part of a function you should know that the this keyword has nothing to do with the function scope, is a reserved word that is set implicitly, depending how a function is called, for example:
1 - When a function is called as a method (the function is invoked as member of an object):
obj.method(); // 'this' inside method will refer to obj
2 - A normal function call:
myFunction(); // 'this' inside the function will refer to the Global object
// or
(function () {})();
3 - When the new operator is used:
var obj = new Constructor(); // 'this' will refer to a newly created object.
And you can even set the this value explicitly, using the call and apply methods, for example:
function test () {
alert(this);
}
test.call("hello!"); //alerts hello!
You should know also that JavaScript has function scope only, and variables declared with the var statement will be reachable only within the same function or any inner functions defined below.
Edit: Looking the code you posted to the #David's answer, let me comment:
var test1 = 'test'; // two globals, with the difference I talk
this.test2 = 'test'; // about in the beginning of this answer
//...
function test4(){
var test5 = 'test in function with var'; // <-- test5 is locally scoped!!!
this.test6 = 'test in function with this'; // global property, see below
}
test4(); // <--- test4 will be called with `this` pointing to the global object
// see #2 above, a call to an identifier that is not an property of an
// object causes it
alert(typeof test5); // "undefined" since it's a local variable of `test4`
alert(test6); // "test in function with this"
You can't access the test5 variable outside the function because is locally scoped, and it exists only withing the scope of that function.
Edit: In response to your comment
For declaring variables I encourage you to always use var, it's what is made for.
The concept of the this value, will get useful when you start working with constructor functions, objects and methods.
If you use var, the variable is scoped to the current function.
If you use this, then you are assigning a value to a property on whatever this is (which is either the object the method is being called on or (if the new keyword has been used) the object being created.
You use var when you want to define a simple local variable as you would in a typical function:-
function doAdd(a, b)
{
var c = a + b;
return c;
}
var result = doAdd(a, b);
alert(result);
However this has special meaning when call is used on a function.
function doAdd(a, b)
{
this.c = a + b;
}
var o = new Object();
doAdd.call(o, a, b);
alert(o.c);
You note the first parameter when using call on doAdd is the object created before. Inside that execution of doAdd this will refer to that object. Hence it creates a c property on the object.
Typically though a function is assigned to a property of an object like this:-
function doAdd(a, b)
{
this.c = a + b;
}
var o = new Object();
o.doAdd = doAdd;
Now the function can be execute using the . notation:-
o.doAdd(a, b);
alert(o.c);
Effectively o.doAdd(a, b) is o.doAdd.call(o, a, b)
var foo = 'bar'
This will scope the foo variable to the function wrapping it, or the global scope.
this.foo = 'bar'
This will scope the foo variable to the this object, it exactly like doing this:
window.foo = 'bar';
or
someObj.foo = 'bar';
The second part of your question seems to be what is the this object, and that is something that is determined by what context the function is running in. You can change what this is by using the apply method that all functions have. You can also make the default of the this variable an object other than the global object, by:
someObj.foo = function(){
// 'this' is 'someObj'
};
or
function someObj(x){
this.x=x;
}
someObj.prototype.getX = function(){
return this.x;
}
var myX = (new someObj(1)).getX(); // myX == 1
In a constructor, you can use var to simulate private members and this to simulate public members:
function Obj() {
this.pub = 'public';
var priv = 'private';
}
var o = new Obj();
o.pub; // 'public'
o.priv; // error
Example for this and var explained below:
function Car() {
this.speed = 0;
var speedUp = function() {
var speed = 10; // default
this.speed = this.speed + speed; // see how this and var are used
};
speedUp();
}
var foo = 'bar'; // 'var can be only used inside a function
and
this.foo = 'bar' // 'this' can be used globally inside an object